Long-Term Hydrologic Sustainability of Calcareous Fens along Glacial Lake Agassiz Beach Ridges, Northwestern MN

A THESIS SUBMITTED TO THE FACULTY OF THE UNIVERSITY OF MINNESOTA BY

Nicholas Robert Budde

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

Howard Mooers, Advisor

June 2020

©2020 Nicholas R. Budde

Acknowledgements

First and foremost, I'd like to thank my advisor on this project, Howard Mooers (UMN-Duluth) for all of his time, guidance, and assistance during the planning, fieldwork, analysis, and reporting stages of this project. I'd also like to thank committee members Salli Dymond (UMN-Duluth), John Pastor (UMN-Duluth) and Tim Cowdery (USGS Twin Cities, MN) for their assistance and feedback over the course of the project. Tim and the USGS Twin Cities also graciously lent the water level transducers used for this project. I'm ever grateful for the fieldwork help from Mitch Ihlang and Ian Mooers. Nate Johnson (UMN-Duluth) shared both his water chemistry expertise as well as some of his water chemistry equipment for use in the field. Nigel Wattrus (UMN-Duluth) was a great help in setting me up for success using the electrical resistivity equipment and in interpreting the results. John Swenson (UMN Duluth) also helped answer some of my hydrogeology related questions. Boris Shmagin (retired, South Dakota State University) took time to teach me the basics of statistics and multivariate analysis and also was great help in interpreting the results of statistical analyses done within this project. The Natural Resources Research Institute at UMN-Duluth also lent some water quality field equipment. Julie Agnich (UMN-Duluth) processed the stable isotope samples. The University of Minnesota College of Food, Agricultural and Natural Resource Sciences' Research Analytical Lab ran the water chemistry samples. The Tritium Laboratory at the University of Miami also deserves gracious thanks, as they donated 10 free tritium analyses to the Geological Society of America annual meeting to help a graduate student with their research. I was the lucky recipient of this generosity, and these analyses provided valuable results within this project. Lastly, I'd like to thank Duininck Companies and Star of the North Beans for land access for the project as well as

other landowners who allowed us to sample wells on their property. Partial funding for this investigation was provided by the Geology Research Fund (UMD Earth and Environmental Sciences) and by the Graduate School of the University of Minnesota Duluth. My salary and tuition benefits provided by the UMD Department of Earth and Environmental Sciences also helped make this masters project become a reality.

Abstract

Calcareous fens are peat-accumulating wetlands fed by calcium-rich groundwater that support several threatened species of plants that evolved to thrive in these geochemical conditions. Fifty-three of Minnesota's nearly 300 identified calcareous fens are located in the Glacial Lake Agassiz beach ridge complex in northwestern Minnesota. Each of these fens is located immediately downslope of large sand/gravel beach ridges, where peat aprons have accumulated on the seepage face. This investigation characterizes the hydrology and landscape setting of two calcareous fens that are typical of the larger groups. Three potential sources of water to the fens are considered: groundwater from the surficial beach ridge aquifers, underlying confined aquifers, or a combination of the two influenced by seasonal hydrology. Water levels in wells in the confined aquifers, surficial beach ridge aquifers, and in and below the fens were compared with rainfall hydrographs to identify hydrologic connections. Hydrologic responses to rainfall events and associated hydraulic gradients suggest the calcareous fens are well-connected to the beach-ridge aquifer. Wells in the beach-ridge aquifers and wells in and below the fens respond synchronously to rainfall events. Water chemistry and stable isotopes are similar within the beach ridge aquifer and calcareous fens and differ significantly from water in confined aquifers. Beach ridge aquifer complexes are relatively thin (<8-10 m) and overly thick clay/clay loam till. These shallow aquifers exhibit high seasonal recharge and have permanent saturated zones, providing a continual source of water for the fens. Electrical resistivity profiles and 3D aquifer models characterized the glacial stratigraphy and highlight the well-developed physical connection between beach ridge aquifers and calcareous fens.

Table of Contents

List of Tables	V
List of Figures	vi
Introduction	1
Background	4
Study Sites	11
Methods	22
Field Hydrology	22
Field Chemistry and Isotope Sampling	23
Resistivity Survey	26
Rockworks Model	26
Statistical Chemistry Model	27
GIS and statistical analysis of beach ridge fens	28
Results	29
Hydrology	29
Water Chemistry	43
Stable Isotopes	54
Mixing Model	60
Tritium	61
Rockworks Model	61
Resistivity Survey	68
Beach Ridge Fens GIS and Statistical Analysis	70
Discussion	72
Conclusion	84
References	86
Appendix A: Well Construction Logs	90
Appendix B: Full Chemistry and Isotopes Results	104
Appendix C: Detailed Multivariate Statistics Results	125
Appendix D: Daily Water Level Fluctuations Analysis	135

List of Tables

Table 1. Technical criteria for calcareous fen identification in Minnesota
Table 2. Construction specifications for all wells at both Sanders Fen North and Agassiz Nelson
Fen1
Table 3. General list of variables analyzed in principal component analysis of 53 calcareous and
26 non-calcareous beach ridge fens28
Table 4. Hydraulic gradients between surficial wells at Sanders Fen for 8/10/19 and 10/18/19 at noon
Table 5. Hydrograph timing and amplitudes in response to two rainfall events at Sanders Fen North.
Table 6. Hydraulic gradients between surficial wells at Agassiz-Nelson Fen for 8/10/19 and 10/18/19 at noon
Table 7. Hydrograph timing and amplitudes in response to two rainfall events at Agassiz-Nelson Fen.
Table 8. Proportions of water entering Sanders Fen North and Agassiz-Nelson Fen from the beach ridge aquifer compared to the confined aquifer.
Table 9. Description of factors extracted using a principal component analysis to describe
calcareous fen occurrence70
Table 10. P-values for each factor in the calcareous fen occurrence multivariate analysis72
Table 11. Monitoring season monthly rainfall compared to climatic data72

List of Figures

Figure 1. Photo of Sanders Fen North, a calcareous fen that was studied in detail as a part of this
project. Author photo, June 20, 2019 1
Figure 2. MNDNR conceptual models of calcareous fen hydrology 6
Figure 3. Cross section of typical beach seep wetlands at the base of a glacial lake beach ridge in
the Glacial Ridge National Wildlife Refuge9
Figure 4. Study fen locations within Minnesota11
Figure 5. Typical cross section of a calcareous fen and beach ridge and the locations of surficial
system wells15
Figure 6. Locations and depths of wells at Sanders Fen North near Thief River Falls, MN17
Figure 7. Locations and depths of wells at Agassiz-Nelson Fen near Gary, MN19
Figure 8. South nest well responses to Summit pump test21
Figure 9. Sanders Fen North SC transect hydrograph with rainfall at Thief River Falls, MN30
Figure 10. Sanders Fen North SN transect hydrograph with rainfall at Thief River Falls, MN30
Figure 11. Sanders Fen North SC transect hydrograph for July 8-9, 2019 storm with rainfall at
Thief River Falls, MN33
Figure 12. Sanders Fen North SC transect hydrograph for August 25-26, 2019 storm with rainfall
at Thief River Falls, MN33
Figure 13. Agassiz-Nelson Fen NN transect hydrograph with rainfall at Twin Valley, MN34
Figure 14. Agassiz-Nelson Fen NC transect hydrograph with rainfall at Twin Valley, MN35
Figure 15. Agassiz-Nelson Fen NS transect hydrograph with rainfall at Twin Valley, MN35
Figure 16. Agassiz-Nelson Fen north nest hydrograph with rainfall at Twin Valley, MN37
Figure 17. Agassiz-Nelson Fen south nest hydrograph with rainfall at Twin Valley, MN37
Figure 18. Agassiz-Nelson Fen NC transect hydrograph for July 8-9, 2019 storm with rainfall at
Twin Valley, MN40
Figure 19. Agassiz-Nelson Fen NC transect hydrograph for August 25-26, 2019 storm with rainfall
at Twin Valley, MN40
Figure 20. Agassiz-Nelson Fen North Nest hydrograph for July 8-9, 2019 storm with rainfall at
Twin Valley, MN41
Figure 21. Agassiz-Nelson Fen South Nest hydrograph for July 8-9, 2019 storm with rainfall at
Twin Valley, MN41
Figure 22. Water levels in MN DNR well 244122 since 199542
Figure 23. Piper diagram of major ion water chemistry for Sanders Fen from July 2019 samples.
Figure 24. Piper diagram of major ion water chemistry for Sanders Fen from October 2019 samples45
Figure 25. Piper diagram of major ion water chemistry for Agassiz-Nelson Fen from July 2019 samples46
Figure 26. Piper diagram of major ion water chemistry for Agassiz-Nelson Fen from October
2013 Samples4/

List of Figures (Cont.)

Figure 27	. Selected concentration anomalies of metals and anions from beach ridge aquifer	
water for	Sanders Fen during July 2019	48
Figure 28	. Selected concentration anomalies of metals and anions from beach ridge aquifer	
water for	Sanders Fen during October 2019	49
Figure 29	. Selected concentration anomalies of metals and anions from beach ridge aquifer	
water for	Agassiz-Nelson Fen during July 2019	50
Figure 30	. Selected concentration anomalies of metals and anions from beach ridge aquifer	
water for	Agassiz-Nelson Fen during October 2019	51
Figure 31	. Factor scores for all wells sampled at both fen sites divided into quartiles based on	
depth and	d site	53
Figure 32	. Stable isotopes at Sanders Fen North for samples collected July 2019	55
Figure 33	. Stable isotopes at Sanders Fen North for samples collected October 2019	56
Figure 34	. Stable isotopes at Agassiz-Nelson Fen for samples collected July 2019	57
Figure 35	. Stable isotopes at Agassiz-Nelson Fen for samples collected October 2019	58
Figure 36	. Rainfall and snow samples collected near Agassiz-Nelson Fen during September 201	9.
		59
Figure 37	. Tritium counts in waters from sampled wells in October 2019	61
Figure 38	. North-south cross-section through Sanders Fen Rockworks 3D model	52
Figure 39	. East-west cross-section through Sanders Fen Rockworks 3D model	63
Figure 40	. North-south cross-section through Agassiz-Nelson Fen Rockworks 3D model	54
Figure 41	. East-west cross-section through Agassiz-Nelson Fen Rockworks 3D model	65
Figure 42	. Fence diagram of stratigraphy in immediate area around Sanders Fen	66
Figure 43	. Fence diagram of stratigraphy in immediate area around Agassiz-Nelson Fen	67
Figure 44	. Sanders Fen modeled electrical resistivity profile	69
Figure 45	. Agassiz-Nelson Fen modeled electrical resistivity profile	69
Figure 46	. Hydrology of Beach Ridge Calcareous Fens	74
Figure 47	. Confined aquifer system at Agassiz-Nelson Fen	78

Introduction

Calcareous fens (Figure 1) are found in a variety of geomorphic settings throughout the northern United States, Canada, and northern Europe. These fens generally range in area from

less than an acre to a few tens of acres and are often associated with other wetland types (Aaseng et al., 2005). Calcareous fens are characterized as peat-accumulating wetlands fed by circumneutral to alkaline groundwater with high concentrations of calcium and low dissolved oxygen (Leete et al., 2005). In Minnesota, calcareous fens are

Figure 1. Photo of Sanders Fen North, a calcareous fen that was studied in detail as a part of this project. Author photo, June 20, 2019.

defined using a combination of their hydrology, soil, water chemistry, and vegetation (Table 1). Calcareous fens are protected under Minnesota Statute 103G.223 because of the presence of several threatened calciphytic plant species including the sterile sedge (Carex sterilis), beaked spike-rush (Eleocharis rostellata), hair beak-rush (Rhynchospora capillacea), whorled nut-rush (Scleria verticillata), and common valerian (Valeriana edulis var. ciliate) (Eggers & Reed, 2011; MNDNR, 2016).

Нус	drology										
Stable, typically upwelling groundwater	flows sufficient to maintain soil saturation										
9	Soils										
Presence of a histosol or histic epipedon (organic soil), potentially with calcium carbonate											
precipitates											
Water Chemistry											
Calcium > 30 mg/L											
pH > 6.7											
Alkalinity	> 1.65 meq/L (> 82.5 mg/L CaCO₃)										
Specific Conductance	> 500 μS/cm										
Dissolved Oxygen	< 2 mg/L										
Veg	etation										
Exceedance of index score based on pres	ence of calciphytic plants listed and scored in										
MNDNR	R (2016)										

Table 1. Technical criteria for calcareous fen identification in Minnesota.

(Compiled from Leete et al., 2005; MNDNR, 2016)

Although vegetation assemblages and water chemistry parameters in calcareous fens have been well described, there is a general paucity of research on their hydrology. Calcareous fens are found in a wide variety of hydrogeomorphic settings across Minnesota. These settings include in the Driftless Area of southeastern Minnesota, the Minnesota River valley, morainal complexes of southwestern and central Minnesota, Glacial Lake Agassiz beach ridges in northwestern Minnesota, and the Lake Agassiz Peatlands of northern Minnesota. Of the 296 identified calcareous fens in Minnesota at the time of this writing (MNDNR, 2019, Native Plant Communities), only a few have been the focus of detailed hydrologic investigations (Almendinger and Leete, 1998a, 1998b; Komor, 1994; Pavlish, 2004).

This investigation evaluates the hydrology and hydrogeology of two calcareous fen in the Lake Agassiz Beach ridge complex that are typical of the fens in this particular hydrogeomorphic setting. This will allow for a better understanding of the hydrologic mechanisms controlling the presence of calcareous fens and their unique biota that includes several threatened plant species.

The hydrology, water chemistry, and geologic setting of these fens are used to test three hypotheses regarding fen hydrology:

- Calcareous fens associated with Agassiz beach ridges are completely fed by surficial beach ridge aquifers;
- Calcareous fens associated with Agassiz beach ridges are primarily fed by water from confined aquifers;
- 3. Calcareous fens associated with Agassiz beach ridges are primarily fed by surficial aquifers except during dry periods, when water from buried aquifers helps sustain them.

The hypotheses were tested through a detailed study of the physical, chemical, and isotopic hydrology of two beach ridge calcareous fens as well as a statistical analysis of landscape factors describing calcareous and non-calcareous fens along Minnesota's Lake Agassiz beach ridges.

Background

In a study of fens in the Minnesota River Valley, Almendinger and Leete (1998a, 1998b) show that fens are commonly associated with permeable, coarse-grained deposits in topographic settings that allow substantial vertical hydraulic head gradients. Such fens need not depend on the local presence of carbonate bedrock and depend instead on shallow calcareous deposits (whether unconsolidated or not) in the recharge area. Although upward ground-water flow exists beneath all of the fens studied by Almendinger and Leete (1998a, 1998b), Komor (1994), and Pavlish (2004), the total depth of the flow system that actually contributes ground water to the fens is unknown and site-specific. Komor (1994) used stable-isotope analysis of water to demonstrate that some ground water emerging at Savage Fen in the Minnesota River Valley probably recharged on the adjacent bluffs from ponds about 2 km from the fen; in addition, the young age of ground water at Savage Fen suggested short ground water travel time from the recharge area supporting the nearby recharge.

Literature on calcareous fens outside of Minnesota generally focuses on the vegetation and chemical characteristics of fen water. Locations of these studies include the north-central and northeastern United States (Bedford & Godwin, 2003; Bowles et al., 2005; Miner & Ketterling, 2003), southern Canada (Duval et al., 2012), and England (Boyer & Wheeler, 1989). In a water budget study of three calcareous fens near Toronto, Ontario, Canada, Duval and Waddington (2018) conclude that calcareous fens need not sit in groundwater discharge zones, the geomorphic setting commonly deemed necessary for fen development (Almendinger & Leete, 1998b; Amon et al., 2002). Instead, calcareous fens in their investigation were dominated by stream recharge and precipitation with minor groundwater contributions to only one of the fens (Duval and Waddington, 2018). A fen's hydrogeomorphic setting is an important control on the movement of water into and through the fen (Duval & Waddington, 2018), and since fens are found in a variety of unique landscape settings (Almendinger & Leete, 1998b; Duval & Waddington, 2018; Thompson, 1992), research on the different settings is vital to better understand fen function and occurrence.

Minnesota calcareous fens fall into three general groups based on hydrology and peat landforms: 1) Peat domes sustained by localized, small areas of upwelling groundwater where conductive sediments penetrate a confining unit to a confined aquifer with above-surface hydraulic heads (Figure 2a); 2) Peat aprons at seepage faces with diffuse groundwater discharge (Figure 2b); and 3) Spring ponds with discharging groundwater (Aaseng et al., 2005; Leete et al., 2005). Coring through the peat into the underlying mineral soil showed that sand and gravel was present under all but one calcareous fen in the study by Almendinger and Leete (1998b), indicating that coarse inorganic substrate allows large amounts of groundwater to discharge at the fen. Beach ridges, bluffs, incised valleys, and morainal complexes can provide hydrogeologic settings that create springs and seeps conducive to the formation of calcareous fens (Almendinger and Leete, 1998b).

Figure 2. MNDNR conceptual models of calcareous fen hydrology including groundwater flow paths for **a**) a morainal aquifer window setting and **b**) a river valley terrace setting (MNDNR, 2017).

The Agassiz beach ridge fens that are the focus of this investigation are located immediately downslope of Glacial Lake Agassiz beach ridges, where gentle slopes intersect groundwaterbearing, beach-ridge surficial aquifers. As the coarse-grained, high-permeability beach sediments thin on the down-slope edge, a seepage face is present.

These beach ridges and the underlying sediments are a result of glacial processes (Cowdery et al., 2008, 2019).

Much of northwestern Minnesota's glacial sediments were deposited during the Wisconsinan glaciation of the Laurentide Ice Sheet beginning 75,000 years ago. Advance and retreat of various glacial lobes including the Wadena, Red River, and most recently (14,000 years ago) the Des Moines lobe left a complex stratigraphy of regionally extensive calcium carbonaterich, fine-grained tills interspersed with smaller, localized outwash and coarser-grained deposits (Lehr & Hobbs, 1992; Minnesota Geological Survey, 2017). Throughout the region, the regionally extensive tills act as a confining layer over localized confined aquifers that are found at depths ranging from around 20 to over 200 feet (MN County Well Index, 2019). As the Des Moines Lobe retreated past a continental divide at Browns Valley, Minnesota, meltwater built up behind the glacier forming Glacial Lake Agassiz from approximately 11,500 years ago through 9,500 years ago in Northwestern Minnesota (Teller, 1987; Thorleifson, 1992). As outlets fluctuated throughout the lake's history, a series of beach ridges were formed at decreasing shoreline elevations along the lake's margin, the eastern shoreline traversing northwestern Minnesota in a largely north-south direction. These beach ridges consist of wave-worked sands and gravels left behind at the lake margin after waves winnowed away fine-grained sediments (Cowdery et al., 2008; Thorleifson, 1992). These sand and gravel beach ridges form surficial aquifers up to 35 feet thick, up to several hundred feet wide, and tens to hundreds of miles long. Occasionally, these beach ridges lie atop previously deposited sands and gravels, increasing the surficial

7

aquifer thickness to up to 80 feet and occasionally providing connections to deeper sand and gravel aquifers (Cowdery et al., 2008).

Beach-seep wetlands (seepage wetlands) within the Glacial Ridge National Wildlife Refuge in northwestern Minnesota were studied as a part of a comprehensive hydrologic investigation of prairie reconstruction around Lake Agassiz beach ridges (Cowdery et al., 2008, 2019). Cowdery and others (2008) characterized the beach-seep wetlands as fed by groundwater seepage from the thin, surficial beach ridge aquifers (Figure 3). This a result of the higher local slope (~0.01), the proximity of the beach-seep fens to the beach ridges, and a high recharge of up to 25 inches/year over the beach ridge aquifers. Fifty-three identified calcareous fens are located along the beach face-to-foreshore transition zone of Minnesota's Glacial Lake Agassiz beach ridges and are often associated with other types of seepage wetlands rather than forming a continuous calcareous fen complex (Aaseng et al., 2005; Cowdery et al., 2008, 2019).

Figure 3. Cross section of typical beach seep wetlands at the base of a glacial lake beach ridge in the Glacial Ridge National Wildlife Refuge (Cowdery et al., 2008).

Mining of gravel from below beach ridges (and subsequent disturbance of near-surface aquifers and confining units) has led to research on gravel mining's impact on calcareous fens. This includes studies on the hydrologic impacts of a gravel mine on a Clay County, MN calcareous fen system (Merritt et al., 2002; Pavlish, 2004). Groundwater modeling of a gravel pit and the nearby Felton Prairie calcareous fens shows sub-water table mining results in a fivemeter drop in hydraulic head below the fens (Merritt, et al., 2002). Because of complicated subsurface glacial geology, Pavlish (2004) was unable to generate conclusive hydraulic head maps of the system and called for conservative management of the fens because of potential linkages between the surficial and deep groundwater.

Two hydrogeologic investigations involving high-capacity pump tests have been conducted in the vicinity of two beach ridge calcareous fens in Norman County: the Agassiz-Nelson and Spring Creek 25 fens (Braun, 2014; Summit, 2015). These studies determined hydrogeologic properties of the confined aquifer and aquitard. However, neither of the studies demonstrated any hydrologic connection between the confined and surficial beach-ridge aquifers or the fens.

Study Sites

The Lake Agassiz beach ridge hydrogeomorphic setting hosts a myriad of wetlands, including 53 identified calcareous fens and hundreds of other wetlands of various types. To evaluate the hydrology of calcareous fens in this setting, two sites were chosen for detailed hydrologic analysis. In addition, 53 calcareous fens and 26 non-calcareous fens along the beach ridges of northwestern Minnesota were part of a multivariate analysis of landscape factors that potentially control fen occurrence. The two detailed study sites are Sanders Fen North, west of Thief River Falls, MN, in Pennington County and Agassiz-Nelson Fen, near Gary, MN, in Norman County (Figure 4).

Figure 4. Study fen locations within Minnesota.

The hydrologic investigations involved assessment of the geomorphology of the beach ridges, surficial aquifers, confined aquifers, and wetland characteristics. Based on assessment of the hydrology, wells were installed at both sites (Table 2). Existing wells also were monitored; detailed logs for existing wells can be found in Appendix A. **Error! Reference source not found.** is a generalized cross section of the fen and beach ridge found at both sites. It also includes generalized locations of wells installed in transects across both sites.

Ceroorod Location			Beach Ridge Aquifer	Sand Apron Up-Ridge of Fen	Sand Apron Up-Ridge of Fen	Sand Apron below Fen	Base of Fen Peat	Sand Apron below Fen	Fen Surface Water	Beach Ridge Aquifer	Sand Apron Up-Ridge of Fen	Sand Apron below Fen	Base of Fen Peat	Confined Aquifer	Beach Ridge Aquifer
Casing	Dia. (in		2	2	2	2	2	2	2	2	2	2	2	4	2
Screen	to (ft):		9.58	4.39	3.65	6.1	3.78	8.05	1.1	9.3	3.52	6.68	3.98	224	13
Screen	from (ft):	orth	4.58	2.52	2.67	4.79	1.48	6.55	0	4.3	2.54	5.18	1.98	220	8
Screen	Len (ft)	s Fen No	5	1.87	0.98	1.31	2.3	1.5	1.1	5	0.98	1.5	2	4	5
Well	Depth (ft)	Sander	9.58	4.39	3.65	6.1	3.78	8.05	1.1	9.3	3.52	6.68	3.98	224	13
Ground Surface	Elev (ft)		1101.53	1096.06	1094.06	1092.07	1091.92	1090.93	1091.83	1101.71	1096.86	1092.62	1092.71	1118	1105
Inctall Data	ווואנמוו עמנפ		6/25/2019	6/25/2019	6/20/2019	6/25/2019	6/20/2019	6/25/2019	7/29/2019	6/25/2019	6/26/2019	6/26/2019	6/26/2019	10/9/1998	5/6/1992
NW	Well ID													580065	244122
			SC0	SC1	SC4	SC7D	SC7S	SC9	SCF	SNO	SN2	SN6D	SN6S	580065	244122

Table 2. Construction specifications for all wells at both Sanders Fen North and Agassiz Nelson Fen.

											ands	ands				ands				/2013	12012
ned Location		ר Ridge Aquifer	Apron Up-Ridge of Fen	n Ridge Aquifer	Apron Up-Ridge of Fen	h Ridge Aquifer	Apron Up-Ridge of Fen	Apron below Fen		ce Sand at Nest	nediate Confining/Fine S	mediate Confining/Fine S	n Confined Aquifer		ce Sand at Nest	nediate Confining/Fine S	Confined Aquifer	n Confined Aquifer	Confined Aquifer	well 276843 drilled 4/22/	well 276841 drilled 4/17,
Scree		Beac	Sand	Beac	Sand	Beac	Sand	Sand		Surfa	Interi	Interi	Nort		Surfa	Interi	South	South	South	lacing	lacing
Casing Dia. (in)		2	2	2	2	2	2	1.25		1.25	2	2	2		1.25	2	2	2	12	*Rep	**Ren
Screen to (ft):		6	5.42	9.1	4.37	8.7	2.83	5.75		5.5	16	38	102		5.3	43	86	66	101		
Screen from (ft):	Fen	4	3.42	4.1	0	3.7	0.83	5.25		3.5	11	33	82		3.3	38	81	59	71		
Screen Len (ft)	-Nelson	5	2	5	4.37	5	2	0.5	th Nest	2	5	5	20	h Aquife	2	5	5	7	30		
Well Depth (ft)	Agassiz	6	5.42	9.1	4.37	8.7	2.83	5.75	Nor	5.5	16	38	102	Soutl	5.3	43	86	66	101		
Ground Surface Elev (ft)		1050.73	1048.97	1051.63	1046.92	1051.82	1046.08	1043.4		1064.01	1063.87	1063.88	1064.25		1051.51	1051.48	1051.26	1069.65	1059.9		
Install Date		6/27/2019	7/18/2019	6/26/2019	7/9/2015	6/26/2019	6/26/2019	6/21/2018		8/6/2014	8/6/2014	8/6/2014	6/22/2015		8/7/2014	8/7/2014	6/22/2015	6/22/2015	9/13/2012		
MN Well ID					276847			278583		276845	806836	806837	801345		276844	806835	801346	804872	791080		
Well Name		NSO	NS3	NCO	NCSP3	ONN	NN3	DNR Deep 3		SP2	SMW2	SMW3	*WMN		SP1	SMW1	SMW (SMWR)**	804872	W-5		

Table 2 (cont.). Construction specifications for all wells at both Sanders Fen North and Agassiz Nelson Fen.

Sanders Fen North was selected for study because it is a typical beach-ridge fen, under private ownership, and the owners encouraged this investigation. Two transects of piezometers were installed across the fen and up the beach ridge: transect SC (Sanders Central) and transect SN (Sanders North) (Figure 6). The SC transect passes through high-quality calcareous fen. The SN transect passes through low-quality calcareous fen that is overgrown with trees and shrubs. Peat thicknesses gathered using a peat probe increase from around 2 feet at the upgradient edge of the fen to up to 6 feet at the downgradient edge. Depths are consistently 4-5 feet along the fen's central axis. Most domestic wells in the area are at around 200 ft depth, as this is the first major confined aquifer, so a domestic well (MN well ID 580065) one mile east of the fen site was sampled for chemistry and isotopic data on the area's confined aquifer. The Minnesota DNR also monitors a well in the beach ridge at the corner of the property (MN well ID 244122) by taking tape water level measurements several times per year.

Figure 6. Locations and depths of wells at Sanders Fen North near Thief River Falls, MN.

Agassiz-Nelson fen was selected for study because of previous study data being available at the site and the fen system quality. Three transects of piezometers were installed at this site in the beach ridge and sand apron upgradient of the fen: transect NN (Agassiz-Nelson North), transect NC (Agassiz-Nelson Central), and transect NS (Agassiz-Nelson South) (Figure 7). Water chemistry and isotope samples were also taken from 3 surficial puddles in the fen. The fen itself is on state land, and as a result of delays in the permitting process, access to install wells was not granted in time for summer and fall monitoring. Water level data from a state-installed well in the sand below the fen, well DNR Deep 3, were included in this study. Two existing nests of wells from earlier pump tests are at the site: a north nest and a south nest (Figure 7). Well SMW is grouted closed. To monitor the aquifer penetrated by SMW, a replacement well was used: MN well ID# 804872. This well penetrates the same aquifer as SMW and heads were found to be consistently only 1.5 feet higher than in SMW (Summit, 2015). Peat depths in the fen increase from 1.5 feet at the upgradient edge of the fen to 4 feet at the downgradient edge, with depths along the fen's central axis consistently being around 3 feet.

Figure 7. Locations and depths of wells at Agassiz-Nelson Fen near Gary, MN.

There were two pump tests performed at the Agassiz Nelson Fen site. The first, by Braun Intertec (2014) found that when a well north of well NMW was pumped, well NMW responded to pumping but SMW did not. Only wells in the confined aquifer were monitored for this pump test; the surficial system was not monitored.

The second test by Summit Envirosolutions (2015) found that when well W-5 (MN well ID 791080; south of well SMW) was pumped, wells SMW, SMW1, and 804072 all responded while well NMW and other deep wells north of that well did not respond. The surficial beach ridge system near the fen (well NCSP3) also did not respond to pumping, indicating the confined aquifer is not connected to the surficial beach ridge system in the vicinity of the Agassiz-Nelson fen. Well SMW1 is screened in fine sand at the base of the upper confining unit. It is just above a lens of sand 5-10 feet thick and separated from the pumped aguifer by 5-10 foot clay layer at both the south nest and well W-5. There is a sand lens at similar depth (about 40 ft) at well W-5. The Summit pump test was conducted in the winter when the surface was frozen. When well W-5 was pumped at a high rate during the summer, bubbling was observed at the surface around the outside of the casing, suggesting the well is not sealed properly. Because of this, when the well was pumped in the deeper sand (70-100 ft depth) during the Summit test it may have pulled water from the 40 foot deep sand through the leaky seal around the casing (Summit, 2015). This could result in the small response in well SMW1 during the pump test (Figure 8) rather than water being pulled through the confining clays. Summit (2015) also suggested the connection could be a result of construction issues, but they suggested the issues may be with SMW. The lack of response between the two nest sites during both pump tests indicates that there are two different confined aquifers below the fen site separated by a barrier boundary, one of the aquifers being penetrated by the north nest, the other by the south.

20

Figure 8. South nest well responses to Summit pump test (figure from Summit Envirosolutions, 2015).

Methods

A combination of hydrologic, chemical, and isotopic investigations were used to determine the hydrology at Sanders Fen and Agassiz-Nelson Fen.

Field Hydrology

Monitoring wells were installed between late June and mid-July, 2019, in transects moving across the fen and up the beach ridge at both sites. Wells were constructed of 2 inch PVC pipe with 0.01 inch screen slot size. Table 2 has well dimension details. In the beach ridge, holes were drilled with a trailer-mounted, gas-powered drill rig. Wells in and adjacent to the fen were handdug using a peat auger. Wells were developed using a surge block and were bailed following construction. All well collars were surveyed to a common datum: preexisting well NCSP3 at Agassiz-Nelson Fen and well SC0 at Sanders Fen.

Pressure transducers were installed in all constructed wells and preexisting monitoring wells described above at Agassiz-Nelson Fen. These transducers are unvented, so a barometric pressure logger was deployed at each site to allow for barometric pressure corrections. Readings were taken every 15 minutes from the time of installation. Before reading out transducer data, a depth to water measurement was taken from a marked point on each well collar to allow water levels to be tied to a true reference elevation. Water levels from transducers were tied to this elevation and added to the hydrograph record for the corresponding well.

Because of land access issues, the only well hydrology data collected from within Agassiz-Nelson Fen are from Minnesota DNR-installed well Agassiz-Nelson Deep 3 (MN well ID 278583). This well is screened in the sand below the fen. The Minnesota DNR collected water levels every hour from June through October of 2019 and the data are publically available (MN DNR Cooperative Groundwater Monitoring, 2019).

Rainfall data for both sites were gathered from the Minnesota Community Collaborative Rain, Snow, and Hail network. At Agassiz-Nelson Fen, data from station Twin Valley 0.1 NE (station ID MN-NR-1; 10 miles south of the fen) were used for the entire study duration. At Sanders Fen North, data from Thief River Falls 0.3 NW (MN-PG-4; 8 miles east of the fen) were used unless a day was missing, then for that day data from Goodridge 7.4 SW (MN-PG-3; approximately 18 miles east of the fen) were used. Gauge-collected rainfall is recorded each day between 6 and 8 AM.

Field Chemistry and Isotope Sampling

The entire monitoring well network at both fen sites was sampled twice, first on July 29-30, 2019, and second on October 19-20, 2019. MN DNR well Deep 3 was not sampled. For wells in low water-yield material, the well was pumped dry before sampling. Three well volumes of water were pumped out of higher-yield wells before sampling. Sampling procedures follow Alexander and Alexander (2015). Cation and anion samples were collected in 15mL polypropylene centrifuge tubes after being filtered through a 0.22 micron PES filter. Cation samples were pre-preserved with 2 drops of reagent-grade HCl in July and with 170 µL of reagent- grade nitric acid in October. Alkalinity samples were collected in 250 mL glass BOD bottles with no headspace. Samples for stable isotope analysis were collected in the same 15mL centrifuge tubes with no headspace and were sealed with parafilm as an extra precaution against contaminating leakage. In October, seven samples were collected for tritium analysis,

each in a 1L HDPE bottle. General water quality parameters including temperature, pH, specific conductivity, dissolved oxygen, and oxidation-reduction potential (July) were collected using a calibrated Hydrolab MS-5 sonde. Cation, anion, isotope, and alkalinity samples were kept on ice after sampling and were transferred to a refrigerator as soon as possible.

Cation and anion samples were sent to the Research Analytical Lab at the University of Minnesota in St. Paul, MN. Cations were analyzed using an ICP-OES, anions using an IC. Stable isotopes δ^2 H (deuterium) and δ^{18} O were analyzed on a Picarro L2130-I with a High Precision Vaporizer (A0211) at the University of Minnesota-Duluth. Tritium samples were analyzed at the Tritium Laboratory at the University of Miami, Miami, FL. Alkalinity titrations were performed in triplicate following the Hach 8203 (2018) digital titration method at the University of Minnesota-Duluth.

Quality control and quality assurance measures include calculating charge balances on cation and anions for agreement, using all sampling equipment according to instructions, calibrating the Hydrolab sonde before use, and the collection of 3 field duplicate and 2 field blank samples (9% of total samples). The lab also performed some duplicate runs for cation and anion samples.

Stable isotopes were plotted in dual-isotope space as δ^2 H versus δ^{18} O over a local meteoric water line from Grand Forks, North Dakota (Matheny & Gerla, 1996). This line is comparable to a line from Princeton, Minnesota used by Cowdery et al., (2008) in their study of beach ridge hydrology in the region. Stable isotope (δ 18O and δ D) analysis of water provides a powerful tool for determining the source of water to wetlands. A local meteoric water line is needed to identify the isotopic signature of rainwater in the region and compare it to water in the fens and surrounding aquifers. Several rainfall samples were collected during September 2019 to verify the local meteoric water line and identify the isotopic signature of rainwater at this time of year.

24

Tritium, a radioactive isotope of hydrogen, is used to estimate the age of groundwater. Tritium at approximately 10 TU is naturally found in waters with recent atmospheric contact in the north-central United States. Decades-old or older waters will not have tritium; it will quickly decay to a more stable form as a result of its 12.5-year half-life (Clark, 2015).

Major ion chemistry data are plotted on a Piper diagram. This diagram is a powerful way to distinguish different water chemistry provinces. Major cations (Ca, Mg, Na, and K) and anions (sulfate, chloride, carbonate, and bicarbonate) are plotted on ternary diagrams as percent milliequivalents for each ion out of the respective total for cations or anions. The ternary diagrams for cations and anions are projected to a single diamond-shaped diagram that distinguishes water chemistry provinces.

To discriminate groundwater originating from beach-ridge and confined aquifers, average beach ridge water concentrations were subtracted from all well water concentrations. This leaves waters with differing chemistries from the beach ridges as anomalies when plotted as bar graphs. Concentrations were normalized so the highest for each analyte is 1.

A mixing model also can be used to discriminate the proportion of water entering the fen from the confined aquifers compared to the beach ridge aquifers. Using water chemistry and stable isotope data from wells in the beach ridge aquifer and in the confined aquifer as endpoints, the proportion each makes up in the water entering the fen can be calculated using equation 1.

25

Equation 1:

(*Confined Aquifer*) * *A* + (*Beach Ridge Aquifer*) * *B* = (*Water Entering Fen*)

Where A and B are proportions of water from the confined and beach ridge aquifers respectively that result in the chemical or isotopic signature of the water entering the fen. A and B must add up to 100%.

Proportions are calculated for several chemical and isotopic analytes and then averaged.

Resistivity Survey

An electrical resistivity profile was collected at each fen site on November 2, 2019 to distinguish substrate sediment types below the beach ridge and fen. A Supersting R8 system was used to collect the survey. A dipole-dipole method survey at 4m spacing was collected at each site. Electrode connection with the ground was aided by dousing the contact with salt water when needed. The 220-m long transects were collected along transect SC at Sanders Fen and transect NC at Agassiz-Nelson fen. Transects started just past the downgradient edge of the fen and continued up the beach ridge. Data were inverted using AGI EarthImager software.

Rockworks Model

A static model of the regional subsurface geology around the Agassiz-Nelson and Sanders Fens was generated using Rockworks 17. A 20 mile by 20 mile square centered on each fen was modeled. All verified and unverified wells in the Minnesota County Well index falling within this square were input to the Rockworks model. Unverified wells were included because they greatly increase well coverage density; given the overall statistical confidence, a small number of incorrect well locations will have minimal impact on the result. Well stratigraphic logs were interpreted on a binary aquifer/non-aquifer basis. Model resolution was 200 meters by 200 meters horizontally and 1 meter vertically. A 3-dimensional model of aquifers and aquitards in the study area was generated for each site using Lateral Blending the Rockworks 17 Lithology modeler. This modeling method extrudes the well log lithology to one third of the distance between two logs and then randomly assigns a value to the middle third of the distance. It is the recommended method for sites with high subsurface heterogeneity (Rockware Inc., variously dated).

Statistical Chemistry Model

Chemistry records were input into a principal component, multivariate factor analysis to identify patterns in the dataset. For a factor analysis, a matrix is formed of *n* observations with a corresponding set of *p* variables. Principal component analysis will reduce the data to a set of *L* variables (factors) where L < p. Each of these *L* components will describe a proportion of the overall variance as a function of a weighted combination of the original variables. For these analyses, a varimax normalized rotation was performed on the factor axes (Davis, 2011).

For the chemistry data, analytes for both the July and October sampling trips were included as variables (for a complete list, see Appendix C). All chemistry variables that had no variation the value was below detection limit for all or all but one or two wells—were removed from the analysis. 56 chemical variables remained for analysis. Data on both sampling trips were available for 26 wells. After analyzing which chemical parameters loaded on each factor, how each well scored on the major factors was plotted to distinguish different water chemistry provinces among the wells.
GIS and statistical analysis of beach ridge fens

Calcareous fens and associated non-calcareous fens occur along the entire Lake Agassiz beach ridge complex, and the landscape and hydrologic variables controlling calcareous fen distribution have heretofore not been evaluated. Therefore, 53 calcareous fens and 26 noncalcareous wetlands located in similar geomorphic settings at the base of beach ridges were selected for study. Thirty-one variables were extracted using GIS and are listed in Table 3 (see Appendix C for full list and extraction method). These 31 variables and the corresponding 53 calcareous and 26 non-calcareous fen observations were analyzed by principal components analysis. Factor scores were plotted, with calcareous and non-calcareous fens delineated.

Table 3. General list of variables analyzed in principal component analysis of 53 calcareous and26 non-calcareous beach ridge fens (See Appendix C for full list).

- Landsat 8-based thermal infrared and RGB values
- NAIP17 imagery RGB values
- Distances to roads, gravel pits, and streams
- Width, length, and area of fen
- Fen elevation
- Fen location
- Cross sectional area and volume of beach ridge associated with fen
- Beach ridge land use
- Depth to first confined aquifer
- Soil hydraulic conductivity of beach ridge and fen

Results

Hydrology

At Sanders Fen, hydraulic heads in wells along both the SC transect (Figure 9) and the SN transect (Figure 10) all respond synchronously to rainfall and recharge events. Table 4 presents the hydraulic gradients between the higher beach ridge heads and the lower heads in the sand apron below the fen. It also presents gradients from the sand below the fen into the peat base. The SC transect through the high-quality calcareous fen has a stronger upward gradient from the sand beneath the peat up into the base of the peat than the scrubbier SN transect (Table 4). Along the SC transect, the well in the sand below the fen (SC7D) has a higher amplitude response to rainfall events than the well in the base of the peat (SC7S) (Figure 9).

Figure 9. Sanders Fen North SC transect hydrograph with rainfall at Thief River Falls, MN.

Figure 10. Sanders Fen North SN transect hydrograph with rainfall at Thief River Falls, MN.

Table 4. Hydraulic gradients between surficial wells at Sanders Fen for 8/10/19 and 10/18/19 at noon. Both selected times are at periods of stability in the hydrographs.

Gradients (ft/ft)	From Beac	h Ridge to	From Sand Below Fen			
	Sand Be	low Fen	into Peat Base			
	SC Transect	SN Transect	SC Transect	SN Transect		
8/10/19 12:00	0.008	0.010	0.20	0.006		
10/18/19 12:00	0.018	0.020	0.31	0.049		

Table 5 and Figure 11. Sanders Fen North SC transect hydrograph for July 8-9, 2019 storm with rainfall at Thief River Falls, MN. & Figure 12 show the hydrograph timing and amplitude response for all of the installed wells at Sanders Fen North for two storms: July 8-9, 2019 and August 25-26, 2019. Water levels in the wells in the sand apron adjacent to the fen and the surface water in the fen rose first in response to rainfall. The water table is near the land surface for these wells. Water levels in the beach ridge aquifers took from 30-90 minutes to respond to rainfall and the response is spread over a longer time. There is a larger vadose zone at these wells. Water levels in the sand under the fen responded similarly to the beach ridge aquifer and with a higher amplitude than the wells above them in the base of the peat.

Table 5.	Hydrograph	timing and	amplitudes in	response to	two rainfall	events at	Sanders F	en
North.								

		Sanders Fen North			Sanders Fen North		
(2.3" rain 7/8-9/19)				5/19)			
Well Location	Well	Time to Peak (hr)	Time to respond after first well response (min)	Water level rise from start to peak (ft)	Time to Peak (hr)	Time to respond after first well response (min)	Water level rise from start to peak (ft)
Beach Ridge Aquifer	SC0	43.25	30	0.31	39.25	30	0.13
Sand Apron Upgradient	SC1	3.25	15	0.29	2.25	15	0.95
Sand Apron Upgradient	SC4	3.50	0	0.61	2.50	15	0.62
Base of Peat	SC7S	27.00	30	0.14	22.75	30	0.14
Sand Below Fen	SC7D	41.25	45	0.24	29.25	45	0.24
Sand Below Downgradient Edge Fen	SC9	63.50	165	0.12	64.25	105	0.15
Fen Surface	SCF		Not Installed		2.50	0	0.14
Beach Ridge Aquifer	SN0	43.75	0	0.29	42.00	90	0.11
Sand Apron Upgradient	SN2	4.25	0	0.70	2.75	15	0.42
Base of Peat	SN6S	31.00	30	0.26	26.00	30	0.44
Sand Below Fen	SN6D	29.25	45	0.31	23.75	45	0.48

Figure 11. Sanders Fen North SC transect hydrograph for July 8-9, 2019 storm with rainfall at Thief River Falls, MN.

Figure 12. Sanders Fen North SC transect hydrograph for August 25-26, 2019 storm with rainfall at Thief River Falls, MN.

At Agassiz-Nelson Fen, the wells in the sand apron adjacent to the fen and well DNR Deep 3 below the fen respond to rainfall events similarly to the beach ridge (Figure 13-Figure 15). The gradients between the higher heads in the beach ridge and the lower heads in the sand below/adjacent to the fen on Agassiz-Nelson transects are presented in Table 6. Well DNR Deep 3 in the sand below the fen has heads higher than the ground surface.

Figure 13. Agassiz-Nelson Fen NN transect hydrograph with rainfall at Twin Valley, MN.

Figure 14. Agassiz-Nelson Fen NC transect hydrograph with rainfall at Twin Valley, MN. DNR Deep 3 well is also included on this figure because of the spotty record of well NN3.

Figure 15. Agassiz-Nelson Fen NS transect hydrograph with rainfall at Twin Valley, MN.

 Table 6. Hydraulic gradients between surficial wells at Agassiz-Nelson Fen for 8/10/19 and

 10/18/19 at noon. Both selected times are at periods of stability in the hydrographs.

Cradianta (ft/ft)	From Beach Ridge to Sand Below or Adjacent to Fen						
	NN0 to DNR Deep 3 NC0 to NCSP3		NSO to NS3				
8/10/2019 12:00	0.010	0.008	0.007				
10/18/2019 12:00	0.017	0.010	0.008				

The north nest, about 0.5 miles north of Agassiz-Nelson fen, has a downward gradient from surficial sand well SP2 (Figure 16) through the 16 (SMW2) and 38 ft (SMW3) deep wells in the intermediate fine confining sands, to the deep confined aquifer at 102 ft (well NMW).

At the south nest, about 0.5 miles south of Agassiz-Nelson fen, there is a small downward gradient from well SP1 in the surficial sand (Figure 17) to well SMW1. There is an upward gradient from well 804872 to well SMW1 (Figure 17). The static hydraulic heads found in both north and south well nests during this study agree with those found by Summit (2015).

Figure 16. Agassiz-Nelson Fen north nest hydrograph with rainfall at Twin Valley, MN

Figure 17. Agassiz-Nelson Fen south nest hydrograph with rainfall at Twin Valley, MN.

Table 7 and Figure 18-Figure 21 show the timing and amplitude response of well hydrographs at Agassiz-Nelson Fen in response to two storms: July 8-9, 2019 and August 25-26, 2019. The wells in the sand apron adjacent to the fen that are screened closer to the land surface responded first to the rainfall. Well DNR Deep 3 responded on a similar time scale to the wells in the sand adjacent to the fen (Figure 18-Figure 19). The beach ridge aquifer responded just over an hour later for the July storm and nearly 10 hours later for the August storm when less rain fell and vegetation was further developed. At the north nest, all wells respond to the rainfall events, with response muting with depth (Figure 20). At the south nest, the larger July storm lead to a small response in well SMW1 (Figure 21), but for the smaller August storm a response could not be distinguished in well SMW 1 or the deeper well 804872.

Table 7. Hydrograph timing and amplitudes in response to two rainfall events at Agassiz-Nelson Fen.

		Agassiz-Nelson Fen		Agassiz-Nelson Fen		en	
	(2.6" rain at Twin Valley 7/8-9/19)			(1.4" rain at Twin Valley 8/25- 26/19)			
Well Location	Well	Time to Peak (hr)	Time to respond after first well response (min)	Water level rise from start to peak (ft)	Time to Peak (hr)	Time to respond after first well response (min)	Water level rise from start to peak (ft)
Beach Ridge Aquifer	NN0	63.75	75	1.37	77.50	555	0.47
Sand Apron Upgradient	NN3	4.50	0	1.53	10.75	0	1.34
Beach Ridge Aquifer	NC0	58.50	75	0.85	103.25	570	0.34
Sand Apron Upgradient	NCSP3	5.00	0	0.76	12.75	0	0.39
Beach Ridge Aquifer	NS0	60.25	75	0.81	98.50	660	0.23
Sand Apron Upgradient	NS3	Not Installed			64.25	30	0.43
Sand Beneath Fen	DNR Deep 3	5.00	15	0.22	11.00	45	0.24
Surficial Sand at S Nest	SP1	26.00	75	2.01	72.75	675	0.29
Confining Unit S Nest	SMW1	76.75 90 0.23		0.23	No/minimal response		
Confined Aquifer S Nest	804872	Not Installed			1	No/minimal respo	nse
Surficial Sand at N Nest	SP2	23.00	15	2.96	77.75	510	0.57
Confining Unit N Nest 16 ft deep	SMW2	49.75	30	1.22	75.25	675	0.28
Confining Unit N Nest 38 ft deep	SMW3	55.75	30	0.92	74.00	750	0.24
Confined Aquifer N Nest	NMW	75.00	180	0.54	63.50	1305	0.09

Figure 18. Agassiz-Nelson Fen NC transect hydrograph for July 8-9, 2019 storm with rainfall at Twin Valley, MN.

Figure 19. Agassiz-Nelson Fen NC transect hydrograph for August 25-26, 2019 storm with rainfall at Twin Valley, MN.

Figure 20. Agassiz-Nelson Fen North Nest hydrograph for July 8-9, 2019 storm with rainfall at Twin Valley, MN.

Figure 21. Agassiz-Nelson Fen South Nest hydrograph for July 8-9, 2019 storm with rainfall at Twin Valley, MN.

The DNR monitoring well (ID 244122) at Sanders Fen is used to address saturated thickness in beach-ridge aquifers over long timescales; the beach ridge aquifer has had a continuously saturated zone since records began in 1995. The well has not had water levels below an elevation of 1099 feet (Figure 22). Clay was encountered at an elevation of 1092 ft. There has always been at least 7 feet of saturated zone in the beach ridge at this location.

Figure 22. Water levels in MN DNR well 244122 since 1995. Monthly rainfall at the National Weather Service in Grand Forks, ND (ID USC00323621) is included.

Water Chemistry

Full chemistry results are tabulated in Appendix B. Water chemistry data was plotted on Piper diagrams. At Sanders Fen, for both the July (Figure 23) and October (Figure 24) samplings, well 580065 in the confined aquifer has a distinct general chemistry with larger proportions of sodium, potassium, sulfate, and chloride and a lower proportion of calcium. All of the other wells, including the beach ridge aquifer and all wells in and below the fen have similar chemistries with high carbonate and calcium/magnesium proportions. At Agassiz-Nelson fen (Figure 25-Figure 26), the wells in the beach ridge aquifer and those in the sand adjacent to the fen, which hydraulically behave like well DNR Deep 3 below the fen, all have similar general chemistries with high carbonate and calcium/magnesium proportions. The intermediate-depth and confined wells at the north nest have a different chemistry from the surface system, and plot intermediate between the surficial wells and the two confined wells at the south nest. At the south nest, well SMW1 has a higher proportion of sulfate than well 804872 in the confined aquifer below.

Figure 23. Piper diagram of major ion water chemistry for Sanders Fen from July 2019 samples.

Figure 24. Piper diagram of major ion water chemistry for Sanders Fen from October 2019 samples.

Figure 25. Piper diagram of major ion water chemistry for Agassiz-Nelson Fen from July 2019 samples.

Figure 26. Piper diagram of major ion water chemistry for Agassiz-Nelson Fen from October 2019 samples.

Normalizing and plotting selected metal and anion concentrations as anomalies from the average beach ridge aquifer water gives similar results. Waters with chemistry similar to the beach ridge aquifer have anomalies close to zero. All surficial wells, including those in and below the fen at both sites plot near zero, while the deep aquifer and intermediate confining unit wells plot with large deviations from zero (Figure 27-Figure 30).

Figure 27. Selected concentration anomalies of metals and anions from beach ridge aquifer water for Sanders Fen during July 2019.

Figure 28. Selected concentration anomalies of metals and anions from beach ridge aquifer water for Sanders Fen during October 2019.

Figure 29. Selected concentration anomalies of metals and anions from beach ridge aquifer water for Agassiz-Nelson Fen during July 2019.

Figure 30. Selected concentration anomalies of metals and anions from beach ridge aquifer water for Agassiz-Nelson Fen during October 2019.

Finally, when the entire suite of chemistry data collected during both sampling events at both fen sites are input into a principal component factor analysis, a distinct divide again arises between all of the surficial wells and the wells in the deeper aquifers. Twelve factors were extracted. Two factors describe more than 10% of the variance, with factor 1 describing 22.5% and factor 2 describing 12% (Full results in appendix C). Factor 1 is loaded by mainly group 1A and 2A metals that are fairly conservative in the environment (eg. Li, Sr, K, Na) along with B, S, and SO4. Factor 2 is loaded by specific conductance and the calcium-carbonate system ions: Ca, Mg, and Alkalinity (carbonate). When plotting how each well scores on factor 2 versus factor 1, nearly all wells break into quartiles following their site and depth (Figure 31). Factor 2 simply divides the wells into their sites, with Agassiz-Nelson Fen wells plotting above the horizontal dividing line (Figure 31) and Sanders Fen wells below. Factor 2's division shows waters at Agassiz-Nelson are a bit richer in calcium/magnesium and carbonate than Sanders Fen waters. Factor 1, loaded by conservative metals, divides deep and intermediate wells to the right of the vertical line and surficial wells to the left (Figure 31). All 3 north nest wells (SMW2, SMW3, and NMW) plot much closer to the surficial wells than the south nest wells (SMW1, 804872). At Sanders Fen, confined aquifer well 580065 plots away from the rest of the surficial wells based on factor 1.

Figure 31. Factor scores for all wells sampled at both fen sites divided into quartiles based on depth and site. Exceptions to the major divisions are circled. There were no appreciable concentrations in field blanks samples for ions of interest. Field duplicate samples and lab duplicate samples had overall errors of less than 7%, with two exceptions. The July lab duplicate for well SC9 had an error of 16% and the October lab duplicate for well SMW1 had an error of 13%--largely a result of increases in small concentrations leading to a large error. Charge balance errors did not exceed an acceptable 13%, with average charge balance errors for both months being 8%. More details on quality assurance and control are in Appendix B.

Stable Isotopes

Water samples collected at both fen sites were analyzed for stable isotopes δ^{18} O and δ^{2} H (deuterium). For full tabulated results see Appendix B. When plotted in dual-isotope space (Figure 32-Figure 35), all samples plot along the Grand Forks, ND meteoric water line (Matheny & Gerla, 1996). The wells at the Agassiz-Nelson north nest plot closer to the surficial wells during both samplings. The deepest well, NMW, plots with the surficial wells, while the intermediate depth wells are slightly lighter than the surficial water samples. The tightly confined south nest wells have an even lighter signature, as does the confined aquifer at Sanders Fen. The wells in, below, or next to the fen at both sites during both samplings plot with the beach ridge aquifer values, which also is similar to the rainfall isotope values collected during September (Figure 36) where δ 18O values are between -9.5 and -12.

Figure 32. Stable isotopes at Sanders Fen North for samples collected July 2019.

Figure 33. Stable isotopes at Sanders Fen North for samples collected October 2019.

Figure 34. Stable isotopes at Agassiz-Nelson Fen for samples collected July 2019.

Figure 35. Stable isotopes at Agassiz-Nelson Fen for samples collected October 2019.

Figure 36. Rainfall and snow samples collected near Agassiz-Nelson Fen during September 2019.

Mixing Model

A mixing model helps determine the proportion of water entering the fen from the beach ridge compared to the confined aquifer (Table 8). At Sanders Fen North, well SCO in the beach ridge aquifer and well 580065 in the confined aquifer were used as mixing endpoints for well SC7D in the sand below the fen. At Agassiz-Nelson Fen, well NCO in the beach ridge aquifer and well 804872 in the south confined aquifer were used as mixing endpoints for well NCSP3 in the sand immediately adjacent to the fen. The north nest at Agassiz-Nelson Fen was not used because of the downward gradient to the deep aquifer. Mixing models using stable isotopes, several conservative metal concentrations (B, Ca, Li, Na, Sr) and chloride concentrations were averaged for each site and month.

Table 8. Proportions of water entering Sanders Fen North and Agassiz-Nelson Fen from the beach ridge aquifer compared to the confined aquifer.

Fen	Month	% Deep	% Beach Ridge	
Sanders Fen North	July	-6	106	
Sanders Fen North	October	5	95	
Agassiz-Nelson Fen	July	-6	106	
Agassiz-Nelson Fen	October	-6	106	

Tritium

Seven wells were sampled for radioactive tritium (hydrogen-3) during October 2019 (Figure 37). Wells 580065, 804872, and NMW are in confined aquifers and have the lowest counts. The four wells with higher counts are in the surficial system.

Figure 37. Tritium counts in waters from sampled wells in October 2019. Error bars capture one standard deviation of counting error.

Rockworks Model

The glacial subsurface of a 20 mile by 20 mile square region centered on each of the two study fens, when modeled in three dimensions using well-log stratigraphy data, is highly heterogeneous. Aquifers start and end irregularly across the region. Figure 38-Figure 41 are cross sections through the entire 20 mile by 20 mile square model illustrating the irregularity of the glacial substrate around both fen sites. Videos of more slices through the models are included in supplementary materials

Figure 38. North-south cross-section through Sanders Fen Rockworks 3D model. Sanders Fen is located at the intersection of the axis lines. Vertical exaggeration 64x. Units in meters. Horizontal values are UTM Zone 15N Extended.

Figure 39. East-west cross-section through Sanders Fen Rockworks 3D model. Sanders Fen is located at the intersection of the axis lines. Vertical exaggeration 64x. Units in meters. Horizontal values are UTM Zone 15N Extended.

Figure 40. North-south cross-section through Agassiz-Nelson Fen Rockworks 3D model. Agassiz-Nelson Fen is located at the intersection of the axis lines. Vertical exaggeration 64x. Units in meters. Horizontal values are UTM Zone 15N Extended.

Figure 41. East-west cross-section through Agassiz-Nelson Fen Rockworks 3D model. Agassiz-Nelson Fen is located at the intersection of the axis lines. Vertical exaggeration 64x. Units in meters. Horizontal values are UTM Zone 15N Extended.

Zooming the model to a 3.75 mile (6km) by 3.75 mile square area centered on each fen and creating fence diagrams reveals more about the subsurface lithology directly below each fen. At Sanders Fen (Figure 42), directly below the fen (at the center of the diagram) there is only aquitard material and the first major aquifer, mainly to the east of the fen, is at 200 ft depth.

Figure 42. Fence diagram of stratigraphy in immediate area around Sanders Fen. Sanders Fen is located at the center. Vertical exaggeration 10x. Units in meters. Horizontal values are UTM Zone 15N Extended.

At Agassiz-Nelson Fen, the model captures the more complicated pattern of aquifers and aquitards in the area (Figure 43). A gap falls between the aquifer systems north of the fen and south of the fen, though the exact location is unclear because of the coarseness of the model. South of the fen, where the south nest is located, a thin layer of sand where SMW1 is located is separated by an aquitard from the thicker aquifer penetrated by well 804872, SMW, and well W-5, pumped in the Summit (2015) test. The model also captures the complicated stratigraphy at the north nest, with inter-fingering patches of aquifer material extending from the surface to well NMW's depth.

Figure 43. Fence diagram of stratigraphy in immediate area around Agassiz-Nelson Fen. Agassiz-Nelson Fen is located at the center. Vertical exaggeration 10x. Units in meters. Horizontal values are UTM Zone 15N Extended.

Resistivity Survey

Geophysical sections generated using electrical resistivity provide a more refined picture of the stratigraphy below the fens. Higher resistivity values tend to signify sands, while lower values signify clays and saturated materials. At Sanders Fen (Figure 44), the highest resistivity values are at the right side of the profile, corresponding to the location of the beach ridge. Moving left towards the fen, resistivity values decrease slightly as the water table gets closer to the surface. There is a clear horizon at about 10-15 ft (3-5 meters) depth where there is a drop in resistivity that continues with relatively lower resistivity values to the depth of the profile at 170 ft (52 meters).

At Agassiz-Nelson Fen (Figure 45), there is a clear horizon of higher resistivity in the upper 7-15 ft (2-5 meters) across the entire length. This high-resistivity layer is underlain by a layer of lower resistivity that is about 25 ft (8 meters) thick. At approximately 30-35 ft (10 meters) depth, there is increased resistivity again continuing to approximately 100 ft (30m) depth. Both modeled profiles have RMS errors below 5%, meaning the modeled profiles match the collected data well.

Figure 44. Sanders Fen modeled electrical resistivity profile. Notice the different resistivity scale compared to Figure 45.

Figure 45. Agassiz-Nelson Fen modeled electrical resistivity profile. Notice the different resistivity scale compared to Figure 44.

Beach Ridge Fens GIS and Statistical Analysis

A statistical analysis of 53 beach ridge calcareous fens and 26 non-calcareous beach ridge

wetlands was used to help understand the importance of beach ridges for calcareous fen

occurrence. Nine factors were extracted from the input landscape variables. See Appendix C for

detailed results. Table 9 displays what environmental variables each of the extracted factors

describe.

Table 9. Description of factors extracted using a principal component analysis to describe calcareous fen occurrence.

Factor	Loaded variables
1	NAIP imagery red, green, and blue coloring
2	Saturated hydraulic conductivity of beach ridges
3	More northerly fens are colder and have larger depth to confined aquifer. This is the
	only factor that depth to confined aquifer has a loading greater than 0.25 (at 0.59).
4	The inverse relationship between the beach ridge being covered by crops or natural
	prairie
5	Saturated hydraulic conductivity of the soil in and downgradient of the fen
6	Area of the fen and the length perpendicular (and parallel) to the beach ridge
	increase together.
7	Aspect ratio of the fen—length parallel over perpendicular to the beach ridge
8	Beach ridge volume and cross sectional area (the volume divided by the length
	parallel to ridge front)
9	Relationship between Landsat summer red, green, and Thermal Infrared (TIR)

To determine whether there is a difference between calcareous and non-calcareous fens among the factors, factor scores were input into a *t*-test to determine if there is a statistically significant difference between the means of the calcareous fens and non-calcareous fens (Table 10). *P*-values less than 0.05 mark significant differences between calcaerous and noncalcaereous fens. Factor 2 (12% of the variance), which describes the hydraulic conductivity of the beach ridge, and Factor 4 (6% of the variance), which describes whether the beach ridge is covered in prairie or crops, were the only two factors that statistically discriminate calcareous and non-calcareous fens. The calcareous fens scored higher on Factor 2, which corresponds to higher beach ridge conductivities. The calcareous fens also scored higher on Factor 4, which corresponds to more prairie coverage and less crop coverage. On average, the calcareous fens have 51% crop and 34% prairie coverage, while the non-calcareous fens have 66% crop and 26% prairie coverage.

Factor	<i>p</i> -value
1	0.610
2	0.022
3	0.349
4	0.036
5	0.194
6	0.488
7	0.290
8	0.364
9	0.990

Table 10. P-values for each factor in the calcareous fen occurrence multivariate analysis.

Discussion

The hydrology, chemistry, isotope, geophysical, and modeling data collected as a part of this study support the hypothesis that the surficial beach ridge aquifers are the primary source of water feeding calcareous fens. Both Sanders Fen North and Agassiz-Nelson Fen, the two primary study sites, are intricately linked to their beach ridge and a part of the same hydrologic system. The study captured both relatively dry or average months at the beginning of the monitoring season (June-August) and very wet months at the end (September-October) (Table 11). September was the wettest on record since 1941.

Table 11. Monitoring season	monthly rainfo	all compared to a	climatic data	(NOAA NCEI, 201	.9)

Month	Year	Precip (in)	Mean Precip (in) 1981-2010	Anomaly (in)	Wetness Rank (of 79) 1941-2019
10	2019	3.48	1.93	1.55	5
9	2019	8.15	2.05	6.1	1
8	2019	2.65	2.88	-0.23	39
7	2019	3.5	3.15	0.35	25
6	2019	1.67	3.48	-1.81	66
5	2019	1.72	2.67	-0.95	47

At Sanders Fen, the wells in the sand beneath the fen peat, at the base of the fen peat, and in the sand apron upgradient of the fen all respond to natural hydrologic forcing as a system with the wells in the beach ridge surficial aquifer (Figure 9). High heads in the beach ridge provide the potential needed to drive water from the sand below the fen up into the base of the fen peat (Figure 46). The nest of wells in the fen show that there is indeed an upward gradient of water from this sand into the base of the fen peat (Figure 9). The lack of a strong upward gradient in the northern scrubby-quality fen transect (Figure 10) may result in this location's scrubbier quality. The wells below the fen responded to the two analyzed rainfall events as a system with the beach ridge aquifer and the sand apron upgradient of the fen (Figure 11Figure 12). The wells below the fen started having increases in head not long after the upgradient sandapron wells first responded to the rainfall. The beach ridge took longer to respond and reach a peak because of the increased distance water needs to travel to reach the water table at these wells, but the drawn out response in the beach ridge sustains a more drawn out response in the sand below the fen (Figure 11Figure 12). The high-frequency, low amplitude fluctuations that occur approximately daily in the hydrographs are a result of either evapotranspiration or earth tides, which occur when the moon causes the earth to swell and contract (see Appendix D for more information).

Figure 46. Hydrology of Beach Ridge Calcareous Fens. Arrows are generalized water flow paths.

The water chemistry is similar in all of the surficial wells—including the wells in and below the fen, upgradient of the fen, and in the beach ridge aquifer (Figure 23Figure 24Figure 27Figure 28). In the resistivity profile at this site (Figure 44), the beach ridge and surficial sand are clear as a horizon of higher resistivity at the surface with very high resistivity values at the right in the figure corresponding to the beach ridge. Below this, there are lower resistivity values that typically signify clay to the 170-ft depth of the survey. The 200-foot-deep confined aquifer sampled at the site has a different chemistry: it has higher concentrations of stable tracer metals such as lithium, sodium, potassium, and strontium (Figure 27-Figure 28). It also has higher proportions of sulfate and chloride than the surficial wells (Figure 23Figure 24). In the multivariate analysis of the chemistry samples (Figure 31), confined aquifer well 580065 has statistically different factor 1 chemistry (loaded by conservative cations) than all of the surficial wells including those in and below the fen. Wells SCF and SN6S plotted with the higher-alkalinity Agassiz-Nelson Fen wells based on factor 2 (Figure 31). Higher factor 2 scores mean higher calcium-carbonate concentrations. Well SCF monitors the fen surface water. Well SN6S monitors the peat in the scrubby fen transect. Both wells potentially could see surface evaporation, which increases alkalinity by increasing concentration. Stable isotopes also separate the confined aquifer from the surficial system (Figure 32Figure 33). While all data points plot on the local meteoric water line, the confined aquifer water is much lighter than the surficial system. Interestingly, the wells near the ground surface do not plot off the local meteoric water line with an evaporative isotopic signature (Figure 32Figure 33). Water in the confined aquifer recharged at an earlier time, as water from well 580065 has no tritium (Figure 37). The beach ridge aquifer (well SC0) and the sand below the fen (well SC7D) have water with tritium counts above 7 TU, signifying recent recharge (Figure 37).

The confined aquifer, mainly east of the fen, is separated from the surface by 200 feet of confining till and is the first major aquifer underneath the Sanders Fen study area—evidenced by well logs and the Rockworks model (Figure 42) and the lack of a zone of higher electrical resistivity marking sand for 150 feet below the fen (Figure 44). This aquifer may not even extend underneath the fen, as there is a distinct lack of wells immediately west of the fen at any depth—there is no aquifer present to access through drilling. Based on the similarities between the water entering the fen and the beach ridge water and the differences from the confined aquifer, along with the high depth to any confined aquifer, Sanders Fen North is fed by and intricately linked to its associated beach ridge (Figure 46). The results of the averaged chemical and isotopic mixing model (Table 8) highlight the link between the fen and the beach ridge aquifer. During July, 100% of the water is coming from the beach ridge. During October, water enters the fen matches the beach ridge at 95%, though because October was a wet month (Table 11), the beach ridge still likely was providing all of the water to the fen and the 5% matching the deep aquifer is error.

The simultaneous hydrologic response of wells in the beach-ridge aquifer, those immediately adjacent to, and the DNR well beneath Agassiz-Nelson Fen indicate that water feeding Agassiz-Nelson Fen also comes from the beach ridge aquifer (Figure 46). Well DNR Deep 3 in the sand below the fen acts hydrologically as a system with the wells in the sand adjacent to the fen and in the beach ridge aquifer (Figure 13Figure 14). This well in the sand below the fen also has hydraulic head above the ground surface, indicating an upward gradient from sand below the fen into the peat. All surficial wells respond as a system to rainfall events (Figure 18-Figure 19). The wells in the sand apron upgradient of the fen respond first, as the water table is closer to the surface at these wells. The beach ridge takes longer to respond because of the greater depth to the water table. Well DNR Deep 3 below the fen begins responding to both

analyzed storms soon after the sand-apron wells adjacent to the fen as a part of the surficial system. DNR Deep 3 well also has a small rise in head during the fall recharge pulse in late September. All of these surficial wells, just as at Sanders Fen, respond to surficial hydrologic forcing events. All of the surficial wells have similar water chemistry (Figure 25Figure 26Figure 29Figure 30) and isotopic signatures (Figure 34Figure 35). As at Sanders Fen North, the wells at the fen surface interestingly do not show an evaporative isotopic signal. Also, though the surficial well isotope samples fall within the range covered by the rainfall samples collected in September (Figure 36), it must be noted that the isotopic signature of rainfall varies temporally and neither the July nor October sampling event is covered by these rainfall samples. Thus, the collected rainfall samples only give a general estimate of the isotopic composition of rainfall for the region. All of the surficial wells fall in the general range covered by rainfall (Figure 34Figure 35). Water in the beach ridge aquifer (well NC0) and the sand apron adjacent to the fen (well NCSP3) have tritium counts above 7 TU, signifying recent recharge (Figure 37).

The stratigraphy below the fen at this site is more complex and there are two potential sources of deeper, confined groundwater: one to the north of the fen and one to the south (Figure 47). Both confined systems were monitored and can be ruled out as sources of water to the fen for different reasons. Based on pump tests by Braun (2014) and Summit (2015), the north and south aquifers are not connected; there is a barrier boundary between the two somewhere in the vicinity of Agassiz-Nelson fen.

Figure 47. Confined aquifer system at Agassiz-Nelson Fen.

The south aguifer, starting at about 70-80 feet deep, is overlain by 10 feet of till, 5-10 feet of sand (monitored), and then till again until the upper 5 feet of surficial sands (Figure 47). The confined south aquifer is artesian, giving it potential to be forcing water to the fen at the surface. However, the chemistry in this aquifer is again very different. There are higher concentrations of conservative tracer metals and sulfates (Figure 25Figure 26Figure 29Figure 30). The stable isotope samples collected from this aquifer are lighter than the surficial system (Figure 34Figure 35). The water in this aquifer must have recharged at an earlier time, as no tritium was found in well 804872 (Figure 37). Well SMW1, nestled in 5-10 feet of sand and separated from the confined aquifer below by till, has water with an ever larger proportion of sulfate and an even more different chemical signature from the surficial wells in the multivariate chemistry analysis presented in Figure 31. The confining layer between this sand lens and the confined aquifer must be tight, as around 10 feet of head are lost over the short interval of till in between (Figure 17). Also, the hydraulic gradient flips to being downward from the surface into this sand lens (Figure 17). All of the potential from the artesian head in the south aquifer is lost in the confining unit. Any small increases in head in the intermediate sand during summer rainfall events (Figure 21) can be explained by the increased weight of the water in the surficial sands increasing the overlying pressure, as the response is the correct order of magnitude. A change in overlying total stress (+0.7 ft pure water) is proportional to a change in head in the confined aguifer (+0.2 ft) from equation 2.

Equation 2:
$$\Delta \sigma_T = \Delta \sigma_e + \Delta P$$
 (Fetter, 2001)

Where: $\Delta \sigma_T$ is total stress ($\rho g \Delta H$), $\Delta \sigma_e$ is effective stress (*zero*), ΔP is change in pressure in the confined aquifer ($\rho g \Delta h$), ρ is the density of water, g is gravitational acceleration, H is the added load in length units, and h is the head in the confined aquifer in length units.

Though all depths see an increase in head during the fall recharge pulse (Figure 17), the magnitude in the confined system is much lower and the response is dampened in time. It takes time for the loading signal to reach this aquifer. The lack of response in surficial wells during the Summit (2015) pump test of the south aquifer also supports the lack of a surface-confined aquifer connection. The small intermediate layer of sand did respond, but is likely the result of faulty construction of the pumping well W-5. Well W-5 likely pulled water down through a leak along the casing, reducing the head slightly in the intermediate sands rather than pulling water through the tight till in between (Summit, 2015). These hydraulic observations and the very different chemistry and isotopic signatures suggest that the south aquifer is not a source of water to Agassiz-Nelson Fen—if the aquifer even reaches the vicinity below the fen. The average chemical and isotopic mixing model (Table 8) also supports this conclusion. During both the July and October sampling events, the water entering the fen matches that in the beach ridge at 100%.

The north aquifer, starting at around 80 feet deep, is overlain by a complex system of interfingering fine sands and till (Figure 47). There is a downward hydraulic gradient to this aquifer from the surface (Figure 16). This alone eliminates this aquifer as a source of water for the fen: it isn't driving water upward to the fen. All four nest wells respond more to rainfall events (Figure 20) than the comparable south nest wells (Figure 21), likely a result of a combination of recharge and increased pressure from increased loading above. The chemistry and isotopic signatures of the waters in the intermediate fine sands and in the north aquifer also support the downward movement of water from the surface at this site. The chemistry (Figure 25Figure 26Figure 29Figure 30) and isotopic signature (Figure 34Figure 35) of waters in the intermediate fine sands and in the confined aquifer are closer to that of the surface than at the south aquifer. The confined aquifer (well NMW) has approximately 2 TU of tritium (Figure 37). This also suggests recharge is reaching this aquifer; this value is slightly greater than the zero tritium in the other confined aquifers. Although the chemistry and isotopic signature at this aquifer is closer to that of the surface, the downward hydrologic gradient provides a mechanism for this observation. This downward gradient also explains why well SMW3 was an outlier in the chemistry multivariate analysis (Figure 31), as it may be recharged from the surface. Interestingly, well SMW2, which is closer to the surface (16ft deep) than SMW3 (38ft deep), plots with the deeper wells (Figure 31).

The stratigraphic model captures the two different aquifer systems to the north and south of Agassiz-Nelson Fen (Figure 43) and the complex nature of the glacial substrate around this site. The electrical resistivity survey at this site identified an area of slightly increased resistivity marking what likely is fine sand at depths from around 30 to 100 feet overlain by a till layer (Figure 45). Further investigations are needed to verify the location of the boundary between the two confined aquifer systems and which, if any, system extends below the fen and which, if either, is being captured by the higher resistivity values.

This research supports the hydrologic model for beach ridge-seep wetlands described by Cowdery and others (2008) in their study at the nearby Glacial Ridge National Wildlife Refuge. Water stored in the beach ridges feeds fens at the foreshore/beach slope transition. The fens also follow the generalized model for seepage face calcareous fens described by Almendinger & Leete (1998b). The fens form at a break in slope where water from a higher recharge area (the beach ridge) emerges at the base of the slope face. The geomorphic setting of calcareous fens is indeed important for its location: there is a reason that calcareous fens found in northwestern Minnesota are all found along the beach ridge foreshore/beach slope transition zone. The presence of the beach ridge provides the essential recharge and hydraulic head gradient. Confined aquifers could potentially be a good source of water for calcareous fens: they provide

a constant source of water to support the wetland community. Cowdery and others (2008; 2019) found that some beach ridge aquifers dried up. Some beach ridges are big enough or a stable enough water source to support calcareous fens year-round. The beach ridge feeding Sanders Fen has had a fully saturated zone at its base since monitoring began in 1995 (Figure 22). This could be an important distinction: beach ridges that provide a constant source of water are more likely to be associated with calcareous fens, while those that dry up occasionally are associated with intermittently inundated wetlands or no wetlands at all.

The multivariate analysis of landscape factors around northwestern Minnesota's beach ridge fens (Table 9) also supports this landscape model. The hydraulic conductivity of the beach ridge and higher prairie coverage compared to crop coverage on the beach ridge were the only factors that emerged as delineators between calcareous and non-calcareous fens (Table 10). Higher conductivity beach ridges are associated with calcareous fens. These higher conductivities allow water to flow from the ridge to support the calcareous fen at the ridge's base. The association of higher prairie coverage and lower crop coverage on the beach ridge with calcareous fens may highlight the importance of maintaining native prairie coverage on beach ridges above calcareous fens, however the mechanism for this is unknown and bears further research. No other landscape factors emerged as important for delineating between calcareous and noncalcareous fens. This further highlights the importance of the beach ridge aquifers for calcareous fens. Depth to confined aquifer had no impact on occurrence, except corresponded to an increase in depth to confined aquifer at more northerly sites (Factor 3 in Table 9). The lack of confined aquifer influence on beach ridge calcareous fens aligns with the results of the Sanders Fen North and Agassiz-Nelson Fen studies.

The description of the hydrology and landscape setting specifically for calcareous fens along sand beach ridges done in this study supplements and adds to the general description beach

seep wetlands by Cowdery and others (2008; 2019). Literature specifically on calcareous fens is largely limited to their vegetation, peat, and chemical compositions. This study adds a detailed study of the sand and gravel beach ridge calcareous fen setting to the hydrologic work on river terrace and morainal calcareous fen settings by Almendinger & Leete (1998b), providing another hydrologic model for calcareous fens found throughout the world.

Conclusion

This study sought to determine the source of water feeding calcareous fens along northwestern Minnesota's beach ridges. Three hypotheses were tested about the source of the water: whether it comes primarily from the surficial beach ridge aquifer system, primarily from confined/deep sources, or from a mix of the two sources. A combination of hydrologic, chemical, isotopic, geophysical, modeling, and statistical techniques were employed to analyze in detail two calcareous fens: Sanders Fen North and Agassiz-Nelson Fen. Water levels below both fens responded as a system with the other surficial wells at both sites, including the beach ridge aquifers. Chemistry and isotopic results at both fens also matched the surficial systems. Electrical resistivity surveys at both sites confirmed the presence of a confining till layer below the sands that extend below both fens. A variety of chemical, isotopic, and hydrological reasons rule out the confined aquifers as sources. Since the beach ridge aquifers rarely dry up, they provide a lasting source of water for the fen. The heterogeneous nature of the glacial substrate below these fens and the landscape association between calcareous fens and beach ridges highlights this important relationship. This subsurface heterogeneity results in a lack of confined aquifer systems as a viable water source for many calcareous fens. The surficial beach ridge aquifers are always found up-gradient of calcareous fens in this region and are key water sources for the calcareous fens.

Future areas of study include better determining the glacial stratigraphy below Agassiz-Nelson Fen to better constrain the locations of both the north and south aquifers. Also, collecting more hydrologic and chemical data from in and below Agassiz-Nelson Fen would help confirm the model of the site's hydrologic system. Further investigations of the role of land use and native prairie coverage on beach ridges and their relation to calcareous fen occurrence also would be important for the preservation of these communities.

The intricate link between calcareous fens and beach ridges in northwestern Minnesota can be applied to other calcareous fens around the world found along the seepage face of sand ridges. The water stored in the sand beach ridges is vital for sustaining a water source for the calcareous fens and the unique suite of flora that they host.

References

Aaseng, N., Almendinger, J., Dana, R., Klein, T.R., Lee, M., Rowe, E., Whitfeld, T., & Wovcha, D., 2005, Field Guide to the Native Plant Communities of Minnesota: The Prairie Parkland and Tallgrass Aspen Parklands Provinces. Ecological Land Classification Program, Minnesota County Biological Survey, and Natural Heritage and Nongame Research Program, MNDNR St Paul, MN.

Adobe, 2013, Illustrator 2013.

AGI EarthImager, n.d., Advanced Geosciences Inc.

Alexander, S. C. & Alexander, E.C. Jr., 2015, Field and Laboratory Methods, Hydrogeochemistry Laboratory, Department of Earth Sciences, University of Minnesota, Minneapolis, MN.

Almendinger, J. E. & Leete, J. H., 1998a, Peat Characteristics and Groundwater Geochemistry of Calcareous Fens in the Minnesota River Basin, USA, *Biogeochemistry:* vol. 43, no. 1, p. 17-41.

Almendinger, J. E. & Leete, J. H., 1998b, Regional and Local Hydrogeology of Calcareous Fens in the Minnesota River Basin, USA, *Wetlands*: vol. 18, no. 2, p.184-202.

Amon, J.P., Thompson, C.A., Carpenter, Q.J., & Miner, J., 2002, Temperate zone fens of the glaciated Midwestern USA, *Wetlands*, vol. 22, no. 2, p. 301-317.

Bedford, B.L. & Godwin, K.S., 2003, Fens of the United States: Distribution, Characteristics, and Scientific Connection versus Legal Isolation, *Wetlands*, vol. 23, no. 3, p. 608-629.

Bowles, M.L., Kelsey, P.D., & McBride, J.L., 2005, Relationships among environmental factors, vegetation zones, and species richness in a North American calcareous prairie fen, *Wetlands*, vol. 25, no. 3, p. 685–696.

Boyer, M.L.H. & Wheeler, B.D., 1989, Vegetation Patterns in Spring-Fed Calcareous Fens: Calcite Precipitation and Constraints on Fertility, Journal of Ecohydrology, vol. 77, no. 2, p. 597-609.

Braun Intertec, 2014, Memo: Data and Analysis of the Pumping test for Keith Chisholm Farms, Gary Minneosta, presented to Minnesota DNR, project BL-13-02357.

Clark, I., 2015, Groundwater Geochemistry and Isotopes, CRC Press, Boca Raton, FL.

Community Collaborative Rain, Hail, & Snow Network, 2019, National Oceanic and Atmospheric Administration.

Cowdery, T. K., and Lorenz, D. L, with Arntson, A. D., 2008, Hydrology prior to wetland and prairie restoration in and around the Glacial Ridge National Wildlife Refuge, northwestern Minnesota, 2002–5, U.S. Geological Survey Scientific Investigations Report 2007–5200, 68 p.

Cowdery, T. K. and others, 2019, The Hydrologic Benefits of Wetland and Prairie Restoration in Western Minnesota—Lessons Learned at the Glacial Ridge National Wildlife Refuge, 2002–15, U.S. Geological Survey Scientific Investigations Report 2019-5041, 81 p.

Davis, J.C., 2011, Statistics and Data Analysis in Geology, Third Edition, John Wiley and Sons.

Duval, T.P., Waddington, J.M., & Branfireun, B.A., 2012, Hydrological and biogeochemical controls on plant species distribution within calcareous fens. *Ecohydrology*, vol. 5, no. 1, p. 73–89.

Duval, T.P. & Waddington, J.M., 2018, Effect of hydrogeomorphic setting on calcareous fen hydrology, *Hydrological Processes*, vol. 32, no. 11, p. 1695-1708.

Eggers, S. D. & Reed, D. M., 2011, Wetland Plants and Plant Communities of Minnesota and Wisconsin, 3rd ed., United States Army Corps of Engineers, St. Paul District.

ESRI, n.d., ArcGIS Pro 2.4.2 and ArcMap 10.6.

Hach Company, 2018, Method 8203: Phenolphthalein and Total Alkalinity, DOC316.53.01166

Fetter, C.W., 1001, Applied Hydrogeology, Fourth Edition, *Prentice-Hall, Inc.*, Upper Saddle River, NJ.

Gerla, P. J., Gbolo, P., & Gorz, K. L., 2014, Large Scale Prairie Restoration: Managing for Resilence, Draft Final Report, The University of North Dakota, Grand Forks, ND.

Komor, S.C., 1994, Geochemistry and hydrology of a calcareous fen within the Savage Fen wetlands complex, Minnesota, USA, *Geochemica et Cosmochimica Acta*: vol. 58, no. 16, p. 3353-3367.

Lehr, J.D. & Hobbs, H.C., 1992, Field Trip Guidebook Glacial Geology of the Laurentian Divide Area, St. Louis and Lake Counties, Minnesota, Minnesota Geological Survey, St. Paul, MN.

Leete, J.H., Smith, W.R., Janssens, J.A., & Aaseng, N., 2005, Final Report to the US EPA: Test of the Technical Criteria for Identifying and Delineating Calcareous Fens in Minnesota and Draft Revised Technical Criteria for Identifying Calcareous Fens in Minnesota, Minnesota Department of Natural Resources.

Matheny, R. K. & Gerla, P. J., 1996, Environmental isotopic evidence for the origins of ground and surface water in a prairie discharge wetland, *Wetlands*: vol. 16, no. 2, p. 109-120.

Merritt, R.G., Pavlish, J. A., Berg, J. A, & Leete, J. H., 2002, Impacts of Sand and Gravel Mining in the Felton Prairie Area on Down Gradient Calcareous Fens, Minnesota Department of Natural Resources Report to the Felton Stewardship Committee.

Miner, J.J. & Ketterling, D.B., 2003, Dynamics of Peat Accumulation and Marl Flat Formation in a Calcareous Fen, Midwestern United States, *Wetlands*: vol. 23, no. 4, p. 950-960.

Minnesota Department of Health, 2020, Minnesota Well Index Database.

Minnesota Department of Natural Resources, 2016, Technical Criteria for Identifying Calcareous Fens in Minnesota.

Minnesota Department of Natural Resources, 2017, Calcareous Fen Fact Sheet.

Minnesota Department of Natural Resources, 2019, Native Plant Communities, GIS dataset.

Minnesota Department of Natural Resources, 2020, Cooperative Groundwater Monitoring Database.

Minnesota Geological Survey, 2017, Minnesota at a Glance: Quaternary Geology, St. Paul, MN.

Minnesota Geospatial Commons, variously dated, GIS datasets.

Minnesota Geospatial Information Office, variously dated, LiDAR Elevation Data for Minnesota, GIS Dataset, retrieved from https://www.mngeo.state.mn.us/chouse/elevation/lidar.html

Minnesota Statutes, 2018.

National Oceanic and Atmospheric Administration National Centers for Environmental Information (NOAA NCEI), 2019, Climate at a Glance: City Time Series, retrieved December 3, 2019 from https://www.ncdc.noaa.gov/cag/

Pavlish, J. A., 2004, Impacts of sub water table gravel mining on the ground water feeding a Clay County, Minnesota calcareous fen, M.S. Thesis, University of Minnesota, Minneapolis, MN.

Rockware Inc., variously dated, Rockworks 17.

Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture, variously dated, Web Soil Survey, GIS dataset, retrieved December 2019 from https://websoilsurvey.sc.egov.usda.gov/

Summit Envirosolutions, Inc., 2015, Aquifer Test Report for Chisholm Farms, Gary, Minnesota, project 2227-0001.

Teller, J.T., 1987, Proglacial lakes and the southern margin of the Laurentide Ice Sheet, in Ruddiman, W.F., and Wright, H.E., Jr., eds., North America and adjacent oceans during the last deglaciation: Boulder, Colo., Geological Society of America, The Geology of North America, v. K– 3., p. 39–70.

Thompson, C.A., Bettis, E.A., Baker, & Baker, R.G., 1992, Geology of Iowa Fens, *Journal of the Iowa Academy of Science*, vol. 99, no 2-3, p. 53-59.

Thorleifson, L.H., 1992, Review of Lake Agassiz History, Geological Survey of Canada, Ottawa, ON.

Tibco, 2017, Statistica 13.3.

United States Department of Agriculture, 2017, National Agricultural Imagery Program air photos, GIS dataset, retrieved from https://datagateway.nrcs.usda.gov/GDGHome_DirectDownLoad.aspx

United States Geological Survey, 2016, National Land Cover Database, GIS dataset, retrieved from https://www.usgs.gov/centers/eros/science/national-land-cover-database?qt-science_center_objects=0#qt-science_center_objects

United States Geological Survey, 2019, GloVIS Landsat 8 imagery, GIS dataset, retrieved from https://glovis.usgs.gov

Appendix A: Well Construction Logs

244122 County Pennington Quad Viking SE Quad ID 395D	MINNESOTA DEI WELL AND Minnesota St	PARTMENT OF HEALTH Entry Date 07/27/1994 BORING REPORT atutes Chapter 1031 Chapter 1031 Entry Date 06/14/2018 Received Date
Well Name Township Range Dir S	ction Subsection	Well Depth Depth Completed Date Well Completed
DNR.OB 57003 153 44 W 6	DDDDDC	20 ft. 13 ft. 05/06/1992
Elevation 1105 Elev. Method LiDAR h	DEM (MINDNR)	Drill Method Auger (non-specified) Drill Fluid
Address		Use monitor well Status Active
		Well Hydrofractured? Yes No From To
		Casing Type Single casing Joint
Stratigraphy Information Geological Material From To (f) Color Hardman	Drive Shoe? Yes No Above/Below 0 ft.
	./ Color Thrubess	Casing Diameter Weight
SAND FINE-MED 3 5		2 III. 10 & III. 105./IL
SAND FINE 5 13		
CLAV DEBRIV 13 17	GRAV	
CLAY DEBRI VIUTH 17 30	OKAT	
		Open Hole From ft. To ft. Screen? X Type plastic Make Diameter Slot/Gauze Length Set 2 2 in. 5 ft. 8 ft. 13 ft.
		Static Water Level 2 ft. land surface Measure 05/06/1992
		Pumping Level (below land surface)
		Wellhead Completion Priless adapter manufacturer Model
		Cosing Protection 12 in. above grade At-grade (Environmental Wells and Borings ONLY)
		Grouting information Well Grouted? X Yes No Not Specified
		Material Amount From To
		pentonite 2 fl. / fl.
		Nearest Known Source of Contamination feet Direction Type Well disinfected upon completion? Yes X No
		Punnp 🕅 Not Installed Date Installed Manufacture's name
		Model Number HP 0 Volt
		Length of drop pipe fi Capacity g.p. Typ
		Abandoned
		Variance
		Was a variance granted from the MDH for this well? Yes No
		Miscellaneous First Bedrock Aquifer Quat. Water Last Strat pebbly sand/silt/clay Depth to Bedrock ft
Pamarla		Located by Minnesota Geological Survey
DNR OBWELL 57003.		Locate Mathod Digitization (Screen) - Map (1:12,000) (>15 meters) System UTM - NAD83, Zone 15, Maters X 250585 Y 5332138 Unique Number Verification Site Plan Input Date 06/12/2017
		Angled Drill Hole
		Well Contractor
		U.S. Geol Survey M0113 STARK, J.
		LICENSEE DUSINESS LIC. OF KEG. NO. PAINE OF DTURE
Minnesota Well Index Report	24	4122 Printed on 02/12/20 HE-01/205-1

276844 County Norman Quad Flaming Quad ID 308A	MINNESOTA DE WELL AND Minnesota S	BORING tatutes Chapter	REPORT 1031	Entry Date Update Date Received Date	02/05/2016 02/05/2016
Well Name Township Range Dir Section SP-1 145 45 W 1	Subsection BAAAAA	Well Depth 6 fi.	Depth Complete 5.3 ft.	d Date Wel	l Completed
Flevation 1051.5 Elev. Method Surround	West Gallery - St	Drill Method	Addamid.	Drill Fluid	
Address		Use ansiron h	ore hole		Status Sealed
		CHE ENVIRON O	ore note		Juites Jelecu
		Well Hydrofractur	red? Yes No	o From	To
		Casing Type		Joint	
Stratigraphy Information Seological Material From To (ft.) C SURFICAL DEPOSITS 0 6	olor Hardness	Drive Shoe?	YesNo	Above/Below	
		Open Hole Screen? X Diameter 51 in Static Water Le	From ft. Type ot/Gauze Length 2 ft. vel	To Make Set 3.3 ft	fi. 53 fi.
		Pumping Level	(below land surface)		
		Wellhead Comp Pitiest adapter man	Netion mfacturer tection 12	Mo in. above grade	del
		Nearest Known feet Wall disinfected	Source of Contamination Direction	ı □ V∞ □	Туре
		Pump [Manufacturer's na Model Number	Not Installed I	Date Installed Volt	
		A handowed	M II Capacity	g.p. 1	ур
		Does property has	e any not in use and not scale	d wall(s)?	Yes No
		Variance Was a variance	nated from the MDH for this .	voll?	Yes D Ma
		Miscellaneous First Bedrock		Aquifer	
		Located by	Minnesota Geological	Survey	
Remarks THIS UNIQUE NUMBER GIVEN TO MAY DAR TO TRACK T	HIS WELL	Locate Method System U Unique Number V	Digitization (Screen) - JTM - NAD83, Zone 15, Meter Verification Info/GP	Map (1:24,000) (15 rs X 24851) S from data Inp	meters or 9 Y 5256423 at Date 02/05/2016
		Well Contractor Minnesota Dej Licensee Busin	r pt. of Natural ness Lis	MNDNR or Reg. No.	Name of Driller
Minnesota Well Index Report	21	6844			Printed on 02/12/20 HE-01205

276845 Quad Flaming Quad ID 308A	WELL AND Minnesota	BORING I	REPORT	Entry Date Update Date Received Date	02/05/2016 02/05/2016	
Well Name Township Range Dir Section SP-2 146 45 W 25	Subsection ACCCCD	Well Depth 6 ft.	Depth Completed 5.5 ft.	d Date Well	l Completed	
Elevation 1004.0 Elev. Method Surveyed		Durin vremog	19 m m m	Drill Fluid	Plane and	
Address		Use environ bo	re hole		Status Act	ive
		Well Hydrofracture	d? Yes 🗌 No	From	To	
		Casing Type		Joint		
Strategraphy Information Geological Material From To (ft.) C SURFICIAL DEPOSITS 0 6	olor Hardness	Drive Sade? 1	es	Above/Below		
		Open Hole F Screen? X Diameter Slov in.	From ft. Type UGauže Length 2 ft.	To Make Set 3.5 ft	ft. 5.5 ft.	
		Static Water Lev	el			
		Pumping Level (I	oelow land surface)			
		Wellhead Compl Pitlest adapter man	etion ifacturer ction 12 i	Moo n. above grade	del	
		Nearest Known S	Source of Contamination Direction		IN	Гуре
		Pump Manufactures's nan Model Number] Not Installed I 20 HP	Lies L Date Installed Volt	140	
		Length of drop pip	a ft Capacity	g.p. T	УР	
		Does property have	any not in use and not sealed	wall(s)?	TYes T	No
		Variance Was a variance gra	, ated from the MDH for this w	•II?	Yes	No
64 m		Miscellaneous First Bedrock Last Strat Located by	Minnesota Geological	Aquifer Depth to Bedro Survey	odk	ft
Remarks THIS UNIQUE NUMBER GIVEN TO MIN DIR TO TRACK T	HIS WELL	Locate Method System U Unique Number Ve	Digitization (Screen) - IM - NAD63, Zone 15, Meter rification Info/GPS	Map (1:24,000) (15) X 248653 from data Inpu	meters or 3 Y 5258880 # Date 02/05/20	016
		Well Contractor Minnesota Dep Licensee Busin	of Nanural Ess Lic	MNDNR or Reg. No.	Name of Driller	
A-SA NA MANDANA DA MANA DA	2	76845				12/201

276847	County Norman Quad Flaming Quad ID 308A	WELL Min	AND BORIN mesota Statutes Chaj	G REPO	ORT	Entry Date Update Date Received Date	02/05/2016 02/05/2016
Well Name Townshi SP-3R 146 Elevation 1046.9 Elev	p Range Dir S 45 W 3 Method Serverse	Section Subsection 6 BACCBB	Well Depth 5 ft. Drill Methor	I 4 Bucket Au	Depth Completed .5 fl. zer	Date We 07/09/20 Drill Fluid	ell Completed 15
Address		ŝ	Use envi	on hore hole	57.		Status Activ
2012002			Wall Hedrof	notural?	Tra 🗖 🖬		
			Carine Tyr	a a a a a a a a a a a a a a a a a a a	ies No	Toint	10
Stratigraphy Information			Drive Shoe	Yes	No 🗌	Above/Below	
Geological Material PEAT, MOIST	From To () 0 1	ft.) Color Ha	rdness				
SAND, F-CKS	1 1	DK. BKN					
SAND & GRAVEL, WEI	2 3						
			Open Hole	From	ft. Type plactic	To	ft.
			Diameter	Slot/Gauze	Length	Set	
			2 in.	10	5 ft.	â.	4.5 ft.
			Static Wate	er Level		13-18-19-19-19-19-19-19-19-19-19-19-19-19-19-	201220102000
			3.I ft.	land surfa	ce	Measure	07/09/2015
			Pumping L	evel (below lar	id surface)		
			Wellhead (Completion			
			Pitless adapt	er mænufacturer	2010	M	odel
			Casing At-gra	Protection de (Environme	ntal Wells and Bo	above grade	
			Nearest Ki	iown Source of	f Contamination Direction		Ty
			Pump	Tected upon con	npienon: Installed D	1es	IN0
			Manufactur	e's name	nouner D	але шылшен	
			Model Num	ber	HP	Vol	I.
			Length of d	tob hibe	ff Capacity	g.p.	Гур
			Abandoned Does prope	ty have any not in	n use and not sealed t	will's)?	Ves D 1
			Variance		111		
			Was a varia	nce granted from	the MDH for this we	ur [Yes 🔲 🕽
			Miscellane	2BG		101121	6 622
			Last Strat	K cand⊥lan	-	Aquiter Denth to Ber	Quat. Water
00 000			Located by	Minn	esota Geological S	arvey	1
Remarks	N TO MALENT TO TR	ACK THIS INFLI	Locate Meti	od Digiti	ization (Screen) - I	Map (1:24,000) (1:	5 meters or
WELL CONSTRUCTED BY SU	rame Iownship Kange Dur Section Subsection k 146 45 W 36 BACCBB tion 10469 Elev. Method Surveyed ess igraphy Information spical Material From To (ft.) Color Hardr 0. F-CRS 1 2 DK. BRN D& GRAVEL, WET 2 5 arks UNQUE NUMBER GIVEN TO MN DNR TO TRACK THIS WELL LONSTRUCTED BY SUMATI ENVIROSCIUTIONS. LON KETTH CHISHOLM PROPERTY. nneesota Well Index Report Index Report Intersota Well Index Report	System Unime New	UTM - NAE	163, Zone 15, Meters Just (CDC)	X 2481	81 Y 5257764	
WELL ON KEITH CHISHOLM	PROPERTY.		Angled Dr	ll Hole	III0/0PS		02/03/201
			Well Contr	actor			
			Summit F	invirosolutions		1305	
			Licensee	Business	Lic	or Reg. No.	Name of Driller
learne et al.		0	276947				NO CONTRACTOR OF THE
Minnesota Well Ind	ex Report		2/0047				Printed on 02/12 HE-012

CONTRACTOR OF A

278583 County Norman Quad Flaming Quad ID 308A Minnesota	EPARTMENT OF HEALTH Entry Date 07/11/2018 DBORING REPORT Update Date 07/11/2018 Statutes Chapter 1031 Received Date
Vell Name Township Range Dir Section Subsection I-NELSON DEEP 146 45 W 36 BBADDA Jamping 1043 4 Flay Method	Well Depth Depth Completed Date Well Completed 5.75 ft. 5.75 ft. 06/21/2018 Drill Method Drill Third
ddress	Use nierometer Status Activ
	Wall Hydrofractured? You No. Theme T.
	Corine Type Cinels rating Loint Io
ratigraphy Information	Drive Shoe? Yes No Above/Below 3.25 ft.
eological Material From To (ft.) Color Hardness	Cauing Diameter Weight
ABRIC PEAT 0 2	1.2 in To 5.3 ft. Ibs./ft.
APRIC PEAT 2 3	
ED-CRS SAND SOME 3 0	
	Open Hole From ft. To ft.
	Screen? I Iype other Make JOHNSON
	1.2 in. 10 0.5 ft. 5.2 ft. 5.7 ft.
	Contraction by
	Static Water Level
	Pumping Level (below land surface)
	Wellhead Completion
	Pitlets adapter manufacturer Model
	Casing Protection X 12 in. above grade
	Nearest Known Source of Contamination feet Direction Ty
	Well disinfected upon completion? Yes No
	Pump Not Installed Date Installed
	Model Number HP Volt
	Length of drop pipe ft Capacity g.p. Typ
	Abandoned Does property have any not in use and not seeled wellfall?
	Variance
	Was a variance granted from the MDH for this well? Yes
	Miscellaneous Furt Bedrock Aquifer Quat. Water Last Strat sand +larger Depts to Bedrock fr
benels	Located by Minnesota Geological Survey
HIS UNIOUE NUMBER GIVEN TO DNR-KEYLOR ANDREWS TO TRACK THIS	Locate Method Digitization (Screen) - Map (1:24,000) (15 meters or
VELL	Jystem of Net Avalues, Long 17, nation X 248100 Y 525/921 Unique Number Verification Info/GPS from data Input Date 07/11/201 Angled Drill Hole
	Well Contractor
	Minnesota Dept. of Natural MNDNR SEE REMARKS Licensee Business Lic or Reg. No Name of Driller
	Minnesota Dept. of Natural MiNDNR SEE REMARKS Licensee Business Lic. or Reg. No. Name of Driller

58	0065		County Per Quad Vil Quad ID 39:	nnington king SE SD	WE	INNESOTA DI LL AND Minnesota S	BORING	REP 1031	ORT	Entry Date Update Date Received Dat	12/01/2000 05/08/2019 e
Well Name	_	Township	Range	Dir Sect	ion Subs	ection	Well Depth		Depth Completed	d Date W	ell Completed
PYLE, SCO	TT	153	44	W 8	DDA	BBA	224 ft.		24 fi.	10/09/1	998
Elevation	1118	Elev. A	lethod	LiDAR Im I	EM (MNDN	R)	Dema Viedpod	Non-speci	ned Kotary	Drill Fluid Oth	er
Address							Use domestic	2			Status Active
C/W	R	R 5 BOX	115-B THIE	EF RIVER F	ALLSMN	56701	Well Hydrofract	ured?	Yes 🗌 No	From	To
C4							Casing Type	Single cr	No 🗌	Joint	
Geological M	Material	manon	From	To (ft.)	Color	Hardness	Casing Diameter	We	ight	Above Below	Hole Diameter
CANTO			1		BLACK	SOFT	4 in To 2	22 ft.	Ibs./ft.		6.5 in To 224 ft.
TAV			6	75	GRAV	SOFT					
CDAUCT 6	CT AV		75	75	CRAV	HADD					
CANTO	CLAI		220	120	PED	SOFT					
SAND			220	224	RED	SUPI	Open Hole Screen? X Diameter S 4 in 3	From lot'Gauze 0	ft. Type stainle Length 4 ft.	To ss Malte Set 220 ft.	ft. JOHINSON 224 ft.
							Static Water L	evel land surfa	ce	Measure	10/06/1998
								20236222	334 l	SEXMANES	02030300405
							Pumping Level	(below las	nd surface)		
							75 fl.	0.5 hrs.	Pumping at	10 g	t p.m.
							Wellhead Com	pletion			
							Pitless adapter m	amfacturer	or the second	N	fodel
							Casing Pr	otection	X 12 i	n. above grade	
							AI-grade (Environme	mai wells and Be	orings ONLY)	
							Grouting infor	madon	well Grotted?	A res	10 1100 Specified
							Material	5	An	nount	From To
							nign souds oer	rome	3	SUCCES	0 H. 60 H.
							Nearest Know <u>78</u> feet Well disinfects	n Source o <u>W</u> ed upon cor	f Contamination est Direction upletion?	X Yes	Bamyard Type
							Pump	X Not	Installed I	Date Installed	
							Manufacturer's I	ume	TTD.		
							Longith of door a	-	ff Conscier	Ve	Tam
							Abandoned		II capacity	5-P-	Typ
							Does property h	any any not i	n use and not sealed	i well(s)?	X Yes No
							Variance				
							Was a variance ;	manted from	the MDH for this w	will? [Yes X No
							Miscellaneous	1			
							First Bedrock			Aquifer	Quat buried
							Last Strat	sand-red		Depth to Be	adrock ft
Dente							Located by	Min	asota Geological	Survey	
DRILLING F	THE S	THER CET	v				Locate Method	GPS	SA Off (averaged	l) (15 meters)	100 H2245-85255
Production of P.		or an order					System	UTM - NAL	J63, Zone 15, Meter	5 X 2520	015 ¥ 5330811
							Angled Thill L	venncation	Plat Bool	K h	aput Date 05/06/2019
							- angeste ser all fi				
							Well Contract	or			
							Enckson D. V Licensee Bus	well Co. iness	Lic	or Reg. No.	Name of Driller
							0-37803462324	10192	1940		学習にの分析がないでは
Minneso	ota W	ell Inde	ex Repor	rt -		5	80065				Printed on 02/12/202

Mannesota Unique Well Number	ounty Norman	MI	NNESOTA DE	PARTMENT O	F HEALTH	Í.	Entry Date	12/12/2012	
791080 Q	uad Flaming usd ID 308A	WEI	L L AND Minnesota Si	BORING	# REP(# 1031	ORT	Update Date Received Date	02/11/2016 e 10/15/2012	
Well Name Township CHISHOLM, 145 Electricity 1050.9 Electric	Range Dir S 45 W 1	ection Subsec ADAA	ction DC	Well Depth 101 ft. Drill Method	I I Non-mari	Depth Completed 01 ft. 5ed Rotary	Date W 09/13/2	ell Completed 012	
Address	etaloa Sarteyed			Use imigativ	on	In Indian y	Diminan Dell	Status A	ctive
ILAN 240TH AND	CARY NOT SECUE			Wall Hadachar	churad?	T			
Contact 2578 340TF	ST GARY MN 56	545		Coring Type	Single ci	ing No	Toint	10	
Stratigraphy Information				Drive Shoe?	Yes 🗌	No 🗌	Above/Below		
Geological Marenal TOPSOL CLAY SAND CLAY (SANDY) CLAY ROCKS SAND (SHARP) ROCK	From 16 (r) 0 3 20 34 34 38 38 60 60 70 70 101	I.) Color BLACK BROWN GRAY GRAY GRAY GRAY VARIED	Hardbess SOFT HARD MEDIUM HARD HARD HARD	Cacing Diamet 12 in To Open Hole Screen? X Diameter 12 in Static Water? 1 ft. Pumping Lev 71 ft. Wellhead Co	er We 71 ft. 50 From Slot Gauze 70 Level land surfa el (below lan 6 hrs. mpletion	gbt) Ibs./ft. Type stainless Length 30 ft. ce d surface) Pumping at	To Set 71 ft Measure 400 g	Hole Diameter 17. in. To 101 ft. JOHNSON 101 ft. 09/13/2012 sp.m.	I A
				Casing P At-grade Grouting Info Material other Nearest Know fee Well disinfee	rotection (Environme ormation was Source of et cted upon cor	X 12 in ntal Wells and Bor Well Grouted? Anx Contamination Direction mpletion?	Labove grade ings ONLY) Types No ount Yes	o ☐ Not Speci From To 0 ft. 50	fied ft. Type
				Pump Manufacture's Model Numbe Length of drop Abandoned Does property	name name pipe have any not i	installed Do HP fi Capacity n use and not scaled 1	tte Installed Vo g.p. well(s)?	lt Typ	No
				Variance Was a variance Miscellaneou	e graated from S	the MDH for this we	ar [Yes 🗴	No
Remarks DRILLERS: DON KLIMEN & JUSTIN KLIMEK. PRODUCTION WELL 5.				Last Strat Located by Locate Method System Unique Numbe	sand +laŋ Minn I Digit UTM - NAL ar Verification	ger esota Geological S ization (Screen) - M 163, Zone 15, Metary Info/GPS :	Aquiter Depth to Be Survey Map (1:24,000) (1 X 2492 from data h	drock 5 meters or 188 ¥ 525591 aput Data 02/11/.	1 8 2016
				Angled Drill Well Contrac Klimek Bro Licensee Bu	Hole tor s. Well Drill usiness	ing. Lic	1864 ar Reg. No.	SEE REMARJ Name of Drille	KS
Minnesota Well Inde	x Report		79	1080				Printed on 03 HE-	1/12/202 01205-1

Minnesota Unique Well Number 801345	County No Quad Fiz Quad ID 30	aman ³ uning WI SA	ELL AND Minnesota S	PARTMENT OF BORING tatutes Chapte	REPO	ORT	Entry Date Update Date Received Dat	03/31/201 02/11/201 te 02/19/203	4 6 14
Well Name Town CHISHOLM, 146 Electricity 1064.7 Electric	ship Range 45 5 Mathod	Dir Section Sub W 25 AC	section CCCD	Well Depth 102 ft. Drill Method	D 10 Non-specif	epth Completed 32 ft. ied Rotary	Date V 06/22/2	Vell Completed 1015	
Address	y. Metuou	Saneyed		Use antriton	hore hole	lea ranary	During De	Status	Active
11-11 200711	AU CARY MA	242.42		Wall Hadrofrag	00101010	N		-	Incure
Contact 2578 %	AV GART MEN	MNI 56545		Cosing Type	Single ca	Yes No	Loint	10	
Stratigraphy Informatio	1			Drive Shoe?	Yes	No 🗌	Above/Below		
Geological Material TOPSOIL CLAY (SANDY) CLAY SAND SHARP	From 0 2 10 78	To (ft.) Color 2 BLACK 10 BROWY 78 GRAY 102 GRAY	Hardness SOFT MEDIUM HARD MEDIUM	Cating Diameter 2 in To 8	r Wei 2 fi. 1	ght Ibs./ft.		Hole Diamete 6.2 in To	n 102 ft
				Open Hole Screen? X Diameter 2 in 3	From Not/Gauze 10	ft. Type plastic Length 20 ft.	To Malce Set 82 ft.	Ê. JET STREAM 102 Ê.	9
				Static Water L	evel land surfac	ie	Measure	06/22/2015	
		Pumping Leve 82 ft. Wellbead Con	2 hrs.	d surface) Pumping at	15	g.p.m.			
		Pitless adapter m	otection Transformer	12 in) L above grade	Model			
			Grouting Infor Material neat cement bentonite	mation	Well Grouted? Ann 1 12	Ves 1 ount Sacks Sacks	No Not S From To ft. ft. 72	pecified p ft. ft.	
				Nearest Know feet Well disinfect	n Source of ed upon con	Contamination Direction pletion?	X Yes	No No	Туре
				Pump Manufacturer's a Model Number Loogth of domain	X Not I	nstalled D HP ft Conscitu	ate Installed	olt	
				Abandoned Does property h Variance	ave any not in	n expansy	s-p. well(s)?	Typ Typ Yes	X No
				Was a variance Miscellaneous First Bedrock Last Strat Located by	granted from (sand-gray Minn	the MDH for this we	Aquifer Depth to B Survey	Quat buried edrock	£ No
Remarks THIS IS THE SECOND WELL RECONSTRUCTED IN THE SAME BOREHOLE. THE FISRT WELL HAS UNIQUE NO. 276843 AND WAS DRILLED 4-22-2013. NORTH MONITORING WELL.			DREHOLE. 4-22-2013.	Locate Method System Unique Number Angled Drill F	Digiti UTM - NAD Verification Sole	zation (Screen) - 1 63, Zone 15, Meters Info/GPS	Map (1:24,000) (X 248 from data 1	15 meters or 651 Y 525 Input Date 08	8877 /18/2014
				Well Contract Klimek Bros Licensee Bu	or Well Drilli	ng. Lic	1864 ar Reg. No.	KLIMES Name of D	ζ. D. niller
Minnesota Well I	idex Repor	t	80	1345	NI 127 05			Printed o	n 02/12/202 HE-01203-1

801346	er County N Quad Fl Quad ID 30	orman Janúng 18A	WE	NNESOTA DE LL AND Minnesota S	PARTMENT OF HEALTH BORING REPORT tatutes Chapter 1031			Entry Date Update Date Received Date	03/31/2014 02/11/2016 02/19/2014		
Well Name To CHISHOLM, 14	wuship Range 5 45	Dir Sect W 1	ion Subse BAAA	ction IAA	Well Depth 86 ft.	10 8	epth Completed 6 ft	Date W/	ell Completed)15		
Elevation 1051.8	Elev. Method	Surveyed			Drill Method	Non-specif	ied Rotary	Drill Fluid Bent	onite		
Address					Use environ	1 bore hole			Status A	ctive	
Well 280	TH AV GARY M	1 56545			Well Hydrofrac	tured?	Yes No	From	То		
Contact 257	8 340TH ST GARY	Y MIN 56545			Casing Type	Single ca	sing	Joint	2.75		
Stratigraphy Informs	tion		-		Drive Shoe?	Yes	No	Above/Below			
Heological Material	From	To (ft.)	Color	Hardness	Casing Diamet	er Wei	ght		Hole Diameter		
OPSOIL	0	2	BLACK	SOFT	2 in To	76 ft. 1.	l Ibs./ft.		6.2 in To 86	Ĥ.	
ANDY (CLAY)	2	8	BROWN	MEDIUM							
LAY	8	10	BROWN	MEDIUM							
LAY	10	51	GRAY	HARD							
AND	51	22	GRAY	MEDIUM	Open Hole	From	Ĥ	То	Ĥ		
LAY	55	00	GRAY	HARD	Screen?	1	Type plastic	Make	ET STREAM		
AND (FINE)	00	0.6	CRAI	MEDIUM	Diameter	Slot/Gauze	Length	Set			
AND	14	30	GRAI	MEDIUM	2 in	10	10 ft.	76 ft.	86 fi.		
	00				2						
					Static Water	Level			0603.0016		
					8 П.	tand surrad	ce	Measure	00/22/2015		
					Pumping Lev	el (below lar	d surface)				
					76 ft.	2 hrs.	Pumping at	10 g	p.m.		
					Wellbard Con	- Lifer					
					Pitless adorter t	manufacturar		м	laho		
					X Casing P	rotection	12 ir	above stade	ouer .		
					At-grade	(Environmer	ntal Wells and Bo	rings ONLY)			
					Grouting Info	rmation	Well Grouted?	X Yes N	Not Spec	ified	
					Material		Am	ount	From To		
					neat cement		16	Sacks	ft. 66	ft.	
					Nearest Knov fee Well disinfec	va Source of st ted upon cou	Contamination Direction upletion?	X Yes [No	Туре	
					Pump	X Not]	installed D	ate Installed	12		
					Manufacture's	name	30403				
					Model Number	5	HP	Vol	r .		
					Length of drop	bibe	ff Capacity	g.p.	Typ		
					Does property.	have any not ir	1 use and not sealed	wall(s)?	Yes X	No	
					Variance	8		315		1	
					Was a variance	granted from	the MDH for this w	402 F	Yes X	No	
					Miscellaneou	s	0.02000382,25588	n-c: 3 .	75 88200 0 1000		
					First Bedrock	10		Aquifer	Quat buried		
					Last Strat	sand		Depth to Be	trock	ft	
					Located by	Minn	esota Geological	Survey			
Kemarks TWO OTHER WELLS V	VERE DRILLED UN	DER THIS UN	TOQUE NUMB	ER THEY	Locate Method System	Digiti UTM - NAD	zation (Screen) - 1 63, Zone 15, Meters	Map (1:24,000) (1 X 2485	5 meters or 20 Y 525643	28	
NOW HAVE THEIR OWN UNQUE NUMBE 2015 BY 1864. 276841 WAS DRILLED N THE SAME HOLE.	RS. 276841 WAS D8 10-14-2015 IT FAILE	RILLED +-12- ED AND 8013	2013 AND SE 46 WAS REC	ALED 6-15- ONSTRUCTED	Unique Numbe Angled Drill I	r Verification Hole	Info/GPS	from data In	put Date 08/18/	2014	
SOUTH MONTFORIN W	TELL REPLACEMEN	T.									
					Well Contrac	tor					
					Klunek Bro	5. Well Drilli	ng.	1864	KLIMEK, I	2	
					Licensee Bt	COLUMN STREET	LIC	or reg. 190.	INALLS OF LATES	-	
Minnesota Wel	Index Report	rt		80	1346				Printed on 0	0/12/20	
The second state	- mara recipo								HE	-01205	
Minnesota Usigue Well Numb 804872	County N Quad F	lorman laming	WELI	ESOTA DEP	A DEPARTMENT OF HEALTH ND BORING REPORT Upd Upd Upd				e 12/3 te 01/1	0/2014 5/2016	
--	---------------------	---------------------------------	-------------------------------------	-----------------------------------	---	--	---	-----------------------------------	---	-----------------------	---------------------
Well Name	Quad ID 3	OSA Dir Sortion	Cubractio	nnesota sta	Well Denth	ar 1051	anth Completed	Received I	Date 06/2	9/2015	
CHISHOLM 14	15 44	W 6	BDBCAC		66 ft.	6	fit.	06/2	2/2015	eteu	
Elevation 1069.6	Elev. Method	Surveyed			Drill Method	Non-specif	ied Rotary	Drill Fluid E	Bentonite		
Address	Crista Watthers	277276877		1	Use environ	1. bore hole			Stat	us A	ctive
Contact 257	8 340TH ST GAR	V MNJ SASAS			Well Hydrofron	thursd?	Ver 🗌 🗜	T From	03305	T	10000
Well 350	TH ST GARY MA	1 56545			Caring Type	Cingle ca	ite [] NO	Toint	d d	10	
Stratigraphy Inform	ation				Drive Shoe?	Yes	No 🗌	Above/Belo	w		
Geological Material TOPSOIL CLAY CLAY	From 0 1 9	To(ft.) C 1 E 9 E 50 G	olor H LACK S ROWN M RAY H	lardness OFT IEDIUM IARD	Casing Diamet 2 in To	er We 59 ft. 1	ght Ibs./ft.		Hole Dia 6.2 in.	meter Fo 66	î.
SAND ROCK (SHAR	P) 50	66 V	ARIED N	EDIUM	0	12					
					Screen? X Diameter 2 in	From Slot/Gauze 10	ft. Type plastic Length 5 ft.	To Malo Set 59 ft	fi. e JET STRE t. 66	AM fl	
					Static Water 1 10 ft.	Level land surfa	ce	Measure	06/22/2	015	
					Pumping Lev 59 ft	el (below lau 2 hrs.	d surface) Pumping at	10	g.p.m.		
					Wellhead Con Pitless adapter :	mpletion nonufacturar kotochion	□ 134	a abara mada	Model		
					At-grade Grouting Info	(Environme ormation	ntal Wells and Bo Well Grouted?	rings ONLY)	No No	lot Speci	fied
					Material		An	ount	From	To	
					bentonite neat cement		9 1	Sacks Sacks	1	it. 49 it.	fi. fi.
					Nearest Know fee Wall disinfac	wa Source of et	Contamination Direction	Ver.	II No.	l	Type
					Pump Manufacture's	Not Not	installed I	ate Installed			
					Model Number Length of drop	r pipe	HP ft Capacity	g.p.	Volt Typ		
					Abandoned Does property	have any not i	1 use and not sealed	well(s)?		Yes 🗴	No
					Was a variance Miscellanger	e granted from	the MDH for this w	oll?	🗌 Yes	X	No
					First Bedrock Last Strat Located by	sand +lar Minn	ger esota Geological	Aquif Depth to Survey	fer Quat.bur Bedrock	ied	Î
Remarks					Locate Method System Unique Numbe	l Digiti UTM - NAE ar Verification	zation (Screen) - 63, Zone 15, Meter Info/GPS	Map (1:24,000 X 2 from data) (15 meters o 49766 3 Input Date	c 525585 12/30/	0 2014
					Angled Drill	Hole					
					Klimek Bro Licensee Br	s. Well Drill Isiness	ng, Lic	1864 or Reg. No.	KLI Name	MEK, D of Drille	r
Minnesota Wel	l Index Repo	rt		804	872				Pn	nted on 0' HE-	7/15/201 01205-1

806835 Quad Quad	y Norman Flaming D 308A	WE	NNESOTA DE LL AND Minnesota S	PARTMENT OF D BORING tatutes Chapter	REPO 1031	ORT	Entry Date Update Date Received Dat	11/12 02/11 te 10/02	/2014 /2016 /2014	
Well Name Township H	lange Dir Sec	tion Subsec	ction	Well Depth		Depth Complete	d Date W	vell Comple	ted	
CHISHOLM, 145 4	5 W 1	BAAA	AD	44 ft.	4	3 ft.	08/07/2	014		
Elevation 1051.4 Elev. Metho	d Surveyed			Drill Method	Auger (not	n-specified)	Drill Fluid			
Address				Use piezomete	er			Statu	is A	ctive
Contact 2489 350TH ST	GARY MN 56545	5		Well Hydrofractu	red?	Yes N	X From		Co.	
narowen kente aktoriatio	507983037470740			Casing Type	Single ca	sing	Joint	2		
Stratigraphy Information				Drive Shoe?	Yes	No X	Above/Below			
Geological Material	From To (ft.)	Color	Hardness	Cating Diameter	We	ight		Hole Dist	Deter	
TOP SOIL-FINE MED.	0 2	BLK/BRN	MEDIUM	2 in To 38	ft.	Ibs./ft		8.2 in T	0	ft.
MED. COARSE SAIND	2 6	BROWN	MEDIUM							
MED. COARSE SAND	6 8	BRNGRY	HARD							
CLAY	8 14	GRAY	HARD							
CLAY	14 26	GRAY	HARD	Open Hole	Emant	4	Ta	A		
CLAY	26 28	GRAY	MEDIUM	Screen?	FIGH	Type plastic	Make	TIMCO		
CLAY/SANDY SILT	28 30	GRAY	MEDIUM	Diameter Sl	ot/Gauze	Length	Set			
SANDY SILT	30 30	GRAY	HARD	2 in. 10	1	5 <u>f</u> l.	38 fi.	43	ft.	
FINE SAND	30 44	GRAY	HARD	8.						
				Static Water Le	vel	1944-19	NEX-100004	1090304	19.2	
				7 fl.	land surfa	ce	Measure	08/07/20	014	
				Pumping Level	(below lau	ud surface)				
				Wellhead Comp	pletion					
				Pitless adapter ma	mifacturer	1000	. N	fodel		
				X Casing Pro	tection	12	in above grade			
				Cranting Inform	notion	Wall Grouted?	orings ONLI)		or Coor	field
				Maturial	HAUVE	A.		- L - 19	To	1104
				bostonito		AL	Sacke	A 6	26	
				neat cement		2	Sacks	f	t. 4	fi.
				Nearest Known feet Well disinfected	Source of d upon cor	f Contamination Direction mpletion?	I □ Yes	X No		Туре
				Pump D	I Not	Installed I	Date Installed			
				Manufacturer's na	ame and					
				Model Number		HP	Ve	nla		
				Longth of drop pi	pe -	ft Capacity	g.p.	Тур		
				Abandoned			_	_	-	
				Does property has	ve any not i	n use and not sealed	s well(s)?		res X	No
				Variance		4.) (DIT 6. 4)		Ver		
				was a variance g	Miles I cui	the Miller for diff o	Vett	165	A	DAD D
				Miscellaneous			Amifar	0		
				Last Strat	sand-arm	2	Durth to B	edrock	eu.	ŧ
2.5 2.0				Located by	Min	esota Geological	Survey			1
Remarks				Locate Method	Digit	ization (Screen) -	Map (1:24,000) (15 meters or		
CASING PROTECTION: 6' PROTOP.				System U	JTM - NAL	083, Zone 15, Mete	n X 248	519 Y	52564	21
SHALLOW MONTORING WELL 1				Unique Number V	Ventication	Info/GP	S from data I	input Date	12/30	2014
SIALLOW MORITORIAS WILLS I.				Angled Drill Ho	ıle					
				Well Contracto	r					
				Thein Well Co	, Inc.		1337	WIE	BER, A	
				Licensee Busi	ness	Lie	or Reg. No.	Name o	of Drille	er 👘
Minnesota Well Index R	eport		80	6835				Priz	ated on 0 HE-	2/12/20

Minnesota Unique Well Number 806836 Qui Qua	mty Norman ad Flaming ad ID 308A		ESOTA DEI L AND innesota St	ARTMENT OF H BORING I atutes Chapter 1	EALTH REPOR 1031	T	Entry Date Update Date Received Date	11/12/2014 02/11/2016 10/02/2014	1 1 1
Well Name Township CHISHOLM, 146 Electrican, 1053.9, Elect. Mat	Range Dir S 45 W 2:	ection Subsection 5 ACCCCI	00	Well Depth 16 ft. Drill Method	Dept 16 ft.	h Completed	Date Wel 08/06/201	ll Completed 14	
Address	and ourseyed			Use niezometer	uper (non spr	A LINE AND	Lotal Links	Status	Active
Contact 3490 390TH S	T GARY MN SA	54		Well Hydrofracture	42 3	ler 🔲 🔤	V From		1201010
Connect 2405 560111 5	i Graci May 50			Cosing Type	Single casing	NO DA	Toint	10	
Stratigraphy Information	annon estetet	an a	Accession and	Drive Shoe? Y	les 🗌	No 🗌	Above/Below		
Geological Material	From To (f	t.) Color H	Hardness	Casing Diameter	Weight	1990	100000000000000000000000000000000000000	Hole Diameter	
TOP SOIL FINE-MED.	0 2	BLK/BRN 9	OFT	2 in To 11	fi.	lbs./ft.		8.2 in To	ît.
FINE MED, SAND	2 4	BKN/WHI M	MEDIUM						
STITY CLAY	6 8	GRAV N	VEDIUM						
SILTY CLAY	8 16	GRAY H	ARD						
			-	Open Hole F Screen? X Diameter Slov 2 in 10	rom Ty t/Gauze L 5	ft. pe plastic ength ft.	To Make T Set 11 ft	ft. IMCO 16 ft.	
				Static Water Lev	el		1953		
				8 ft 14	and surface		Measure	08/06/2014	
				Pumping Level (1	below land st	urface)			
				Wellhead Compl Pitless adapter man	etion ufacturar		Мо	vdel	
				Casing Prote At-grade (Er	ction ivironmental	U 12 in Wells and Bor	above grade ings ONLY)		
				Grouting Inform	ation 1	fell Grouted?	X Yes No	Not Sp	ecified
				Material		Amo	tauc	From To	
				bentonite		0.25	Sacks	4 ft. 10	fi.
				near centern		2	odulas	11. 7	11.
				Nearest Known S feet Well disinfected	Source of Co E upon comple	ntamination Arection tion?	Yes 🕅	[] No	Туре
				Pump IX	Not Insta	illed Da	ate Installed		
				Manufacturer's nan	ae				
				Model Number		HP	Volt	<u></u>	
				Length of drop pip	<u>.</u>	ff Capacity	g.p. 1	ур	
				Does property have	any not in use	and not sealed u	will(s)7	T Yes	X No
				Variance	0.0000000000000000000000000000000000000		1999, 1999, 1999 1999 - 1999		
				Was a variance gra	ated from the N	OH for this we	117	Yes 🚺	No
				Miscellaneous First Bedrock Last Strat s Located by	ilt+clay-gray Minnesot	a Geological S	Aquifer (Depth to Beds Survey	Quat. Water rock	f
Remarks				Locate Method	Digitizatio	on (Screen) - M	dap (1:12,000) (>1	5 meters)	
SMW-2.	5			System U	IM - NAD83, 2	Zome 15, Meters	X 24865	2 Y 5258	881
SOUTH MW-2.				Angled Drill Hol	e	Info/GPS:	from data imp	ur Dane 12/3	0/2014
				Well Contractor					
				Thein Well Co	Inc		1337	WIEBER	A
				Licensee Busine	ess.	Lic	or Reg. No.	Name of Dri	Ber
			-0						
Minnesota Well Index	Report		80	5836				Printed or F	02/12/202 E-01205-1

Minnesita Unique Well Number 806837	County N Quad F Quad ID 3	orman laming 08A	WEI	NNESOTA DE LL AND Minnesota S	BORING tatutes Chapt	F HEALTH F REPO	ORT	Entry Date Update Date Received Date	11/12/201 02/11/201 10/02/203	4 6 14
Well Name Towns CHISHOLM, 146	hip Range 45	Dir Sect W 25	ion Subsec ACCO	tion CD	Well Depth 38 ft.	I 3	epth Completed	Date W	ell Completed 014	
Elevation 1064.4 Elev	Method	LiDAR Im D	EM (MONDAR))	Drill Method	Auger (non	-specified)	Drill Fluid		
Address					Use piezom	seter			Status	Active
Contact 2489 380	TH ST GAR	Y MIN 56545			Well Hydrofrae	ctured?	Yes No	X From	To	
					Casing Type	Single ca	sing	Joint	1201	
Stratigraphy Information	-	T- (0.)	Color	The Asses	Drive Shoe?	Yes	No X	Above/Below		
Jeological Material	From	10 (IL)	COIOF DI MODEL	Hardness	Casing Diamet	ter Wei	ght		Hole Diameter	
TOP SOIL-FIRM MED.	2	4	DENDRUN	MEDITIM	2 m. To	33 A.	ibs./m.		8.2 m. To	π
FINE MED, SAUND OF TV	2	-	DROWNII DROWNI	MEDIUM						
THE MED. SAIND SILT I	7	0	CRAV	MEDIUM						
SILT I SAIND	0	16	CRAV	HARD						
SILLI I SAIND	16	10	CRAV	HARD	Open Hole	From	fî.	To	ft	
FINE SHIND	10	20	CRAV	HARD	Screen?	1	Type plastic	Make	TIMCO	
FINE SAND-SILTI CLAI	20	25	GRAI	HARD	Diameter	Slot Gauze	Length	Set		
FINE SAIND-SIL1	28	32	CRAY	HARD	2 in.	10	5 ft.	33 ft.	38 ft.	
FINE SAIND	52	30	CRAY	HARD	()					
FINE SAND-CLAT	30	20	URAI	HAND	7 ft.	Level land surfa	ce	Measure	08/06/2014	
					Pumping Lev	el (below lau	d surface)			
					Wellhead Co Philes a shapter A - grade Grouting Info Material bentomite neat cement Nearest Knou fee Well disinfee Pump Manifacture' Model Namba Length of drop Abandoned Does property Variance	mpletion manifacturer Protection (Environmen ormation we Source of et cted upon con X Not I i name se p pipe	Li 12 i ntal Wells and Bc Well Grouted? An 3 2 Contamination Direction pletion? installed I HP ft Capacity a use and not sealed	M n. above grade sings ONLY) Sourt Sacks Sacks Sacks Ves Ves Ure g.p. well(s)?	odel Prom Tc 4 fr. 32 fr. 4 X No It Typ Yes	recified fi. fi. Type
					Was a variance	e granted from	the MDH for this w	ъш? Г	Yes [X No
Remarks CASING PROTECTION: 6" P SMW-3.	ROTOP.				Miscellaneou First Bedrock Last Strat Located by Locate Method System Unique Numbe	s clay+sand Minn I Digiti UTM - NAD er Verification	-gray esota Geological zation (Screen) - 63, Zone 15, Meter Info/GDS	Aquifer Depth to Be Survey Map (1:12,000) (> X 2486 from data In	Quat. Water drock 15 meters) 54 Y 525 sput Date 122	ft 8881 30/2014
SOUTH MW-3.					Angled Drill Well Contrac Them Well Licensee Bu	Hole rtor Co., Inc. usiness	Lie	1337 or Reg. No.	WIEBEF Name of Di	ξA
Minnesota Well In	dex Repo	rt		80	06837				Printed o	n 02/12/20 HE-01205-

Appendix B: Full Chemistry and Isotopes Results

July Sampling				Sonde-Measured Properties			
	Samula Data	Samula Tima	Amount	Sonde Measurement	Water		
	Sample Date	Sample Time	Flushed	Location	Temp		
					°C		
LOD							
Sanders Fen							
580065	7/29/2019	9:10:00 PM	3 well vol	in cup	9.68		
580065 LD							
SC0	7/29/2019	7:25:00 PM	3 well vol	in cup	14.06		
SC1	7/29/2019	7:00:00 PM	dry+more	in hole	14.1		
SC4	7/29/2019	6:45:00 PM	dry+more	in hole	13.91		
SC7D	7/29/2019	4:55:00 PM	dry+more	in hole	10.05		
SC7S	7/29/2019	6:05:00 PM	dry+more	in hole	14.51		
SC9	7/29/2019	4:20:00 PM	dry+more	in cup	19.21		
SC9 LD							
SCF	7/29/2019	5:45:00 PM	3 well vol	in hole	20.36		
SNO	7/29/2019	1:00:00 PM	3 well vol	in hole	14.66		
SN2	7/29/2019	7:45:00 PM	dry+more	in hole	12.7		
SN6D	7/29/2019	3:22:00 PM	dry+more	in hole	9.15		
SN6S	7/29/2019	3:45:00 PM	dry+more	in hole	10.65		
Agassiz-Nelson Fen							
804872	7/30/2019	7:25:00 PM	3 well vol	in hole	8.47		
SMW1	7/30/2019	5:45:00 PM	3 well vol	in hole after 30 min refill	9.99		
SP1	7/30/2019	4:40:00 PM	dry+more	in cup	18.58		
NMW	7/30/2019	9:05:00 PM	3 well vol	in hole	8.89		
NMW FD	7/30/2019	9:10:00 PM					
SMW3	7/30/2019	8:25:00 PM	3 well vol	in hole	8.03		
SMW2	7/30/2019	9:20:00 PM	3 well vol	in hole	9.19		
SP2	7/30/2019	8:45:00 PM	3 well vol	in cup	16.32		
SP2 LD							
NSO	7/30/2019	3:00:00 PM	3 well vol	in hole	13.62		
NS3	7/30/2019	12:35:00 PM	dry+more	in cup	21.79		
NSF	7/30/2019	11:30:00 AM	3 well vol	in hole	17.35		
NCO	7/30/2019	2:25:00 PM	3 well vol	in hole	13.32		
NC0 FD	7/30/2019	2:30:00 PM					
NCSP3	7/30/2019	12:15:00 PM	3 well vol	in hole	16.06		
NCF	7/30/2019	11:05:00 AM	3 well vol	in hole	21.26		
NN0	7/30/2019	2:00:00 PM	3 well vol	in hole	17.15		
NN3	7/30/2019	10:35:00 AM	dry+more	in cup	17.7		
NNF	7/30/2019	10:00:00 AM	3 well vol	in hole	17.71		
NNF LD							

FD = Field Duplicate

LD = Lab Duplicate

LOD = Detection Limit

*Duplicates averaged for plotting and analyses

Specific ConductancepHDODOOxid-Red PotentialAladinity.1IOD%saturationmg/Lmg/Lmg/Lmg/Lmg/Lmg/Lmg/LSanders Fen1.001.011.022.00Ssonofs Lo1.00n1.022.002.00Ssonofs Lo1.011.022.012.01Sconofs Lo1.021.022.022.01Sconofs Lo7.031.061.062.02Sconofs Lo3.033.071.062.022.01Sconofs Lo3.032.073.032.012.01Sconofs Lo3.032.073.033.042.022.01Sconofs Lo3.032.073.033.042.022.01Sconofs Lo3.032.073.033.042.022.01Sconofs Lo3.022.012.012.012.012.01Sconofs Lo3.032.073.01 <t< th=""><th>July Sampling</th><th></th><th></th><th></th><th></th><th></th><th>Alkalinity</th></t<>	July Sampling						Alkalinity
μS/cm%saturationmg/LmVmg/L G203LODSanders FenSS0065666.37.52101.09183286S80065 LD282240SC14366.97S8.15.74258226SC4470.86.7810.71.06166242SC7D451.36.9331.63.42113251SC754576.930.32.6759245SC9469.67.32nn344262SC9 LD2.622.3162226SN0436.76.7429.32.86296228SN0436.76.7429.32.86206226SN65782.96.6858.16.21105417Agassiz-Netson Fen3.50.391.43297SNM359.07.196.86nn1.34384NMW55.77.120.70.883.1317NMW55.974.60.51117286SMW355.497.131.10.13134286SMW355.974.620.51117284SMW355.974.60.51117284SMW355.97.131.10.13134286SMW365.97.14 </td <td></td> <td>Specific Conductance</td> <td>рН</td> <td>DO</td> <td>DO</td> <td>Oxid-Red Potential</td> <td>Alkalinity 1</td>		Specific Conductance	рН	DO	DO	Oxid-Red Potential	Alkalinity 1
LODSanders Fen\$\$80065666.37.52101.09183286\$\$80065 L0 </td <td></td> <td>μS/cm</td> <td></td> <td>%saturation</td> <td>mg/L</td> <td>mV</td> <td>mg/L CaCO3</td>		μS/cm		%saturation	mg/L	mV	mg/L CaCO3
Sanders Fen\$800656.637.52101.091.832.86\$80065 LD2.82\$6005 LD463.67.08nn2.822.40\$C14366.975.8.15.742.582.26\$C243.66.975.8.15.742.582.26\$C4470.86.7810.71.061.662.42\$C7D451.36.9331.63.421.132.51\$C7S4576.930.32.97592.45\$C3459.67.32nn3.422.13\$C5628.56.68302.6668343\$SN0436.76.742.932.862.962.28\$N2447.86.92.2.62.31.622.26\$N6D520.66.941.2.81.422.222.56\$N6D520.66.941.2.81.422.222.56\$N6D520.66.941.2.81.422.222.56\$N6D520.66.941.2.81.422.222.56\$N6D520.66.937.583022.75\$P1776.26.86nn1.34384\$NMW55.97.131.10.13134286\$NWW55.97.44.60.511.172.84\$P2 LD7.741.7	LOD						
580065 666.3 7.52 10 1.09 183 286 SR0065 LD	Sanders Fen						
580065 LD SCO 463.6 7.08 n n 282 240 SC1 436 6.77 58.1 5.74 258 226 SC4 470.8 6.78 10.7 1.06 163 221 SC7D 451.3 6.93 30.3 2.97 59 245 SC9 469.6 7.32 n n 344 262 SC9 LD	580065	666.3	7.52	10	1.09	183	286
SCO 463.6 7.08 n n 282 240 SC1 436 6.97 58.1 5.74 258 226 SC4 470.8 6.78 10.7 1.06 166 242 SC7D 451.3 6.93 31.6 3.42 113 251 SC7S 457 6.9 30.3 2.97 59 245 SC9 469.6 7.32 n n 344 262 SC9 469.6 7.32 n n 344 262 SC9 469.6 6.74 29.3 2.86 296 228 SN0 436.7 6.74 29.3 2.86 296 226 SN6D 520.6 6.94 12.8 1.42 222 256 SN6D 520.6 6.92 7.58 302 275 SMW1 930.2 7.19 69.8 7.58 302 275 SP1	580065 LD						
SC1 436 6.97 58.1 5.74 258 226 SC4 470.8 6.78 10.7 1.06 166 242 SC7D 451.3 6.93 31.6 3.42 113 251 SC7D 451.7 6.9 30.3 2.97 59 245 SC9 469.6 7.32 n n 344 26 SC9 LD 5.86 226 6.8 343 SN0 436.7 6.74 29.3 2.86 296 228 SN2 447.8 6.9 22.6 2.3 162 226 SN6D 520.6 6.84 12.8 1.42 222 256 SN6D 520.6 6.94 12.8 1.42 222 256 SN6D 520.6 6.94 12.8 1.42 222 256 SN6D 520.6 7.19 6.75 0.39 143 297 <t< td=""><td>SC0</td><td>463.6</td><td>7.08</td><td>n</td><td>n</td><td>282</td><td>240</td></t<>	SC0	463.6	7.08	n	n	282	240
SC4 470.8 6.78 10.7 1.06 166 242 SC7D 451.3 6.93 31.6 3.42 113 251 SC7S 457 6.9 30.3 2.97 59 245 SC9 469.6 7.32 n n 344 262 SC9 LD	SC1	436	6.97	58.1	5.74	258	226
SC7D 451.3 6.93 31.6 3.42 113 251 SC7S 457 6.9 30.3 2.97 59 245 SC9 469.6 7.32 n n 344 262 SC9 LD SCF 628.5 6.68 30.3 2.66 68 343 SN0 436.7 6.74 29.3 2.86 226 228 SN2 447.8 6.9 2.26 2.3 162 226 SN6D 520.6 6.94 12.8 1.42 222 256 SN6S 782.9 6.68 58.1 6.21 105 417 Agassiz-Nelson Fen	SC4	470.8	6.78	10.7	1.06	166	242
SC7S 457 6.9 30.3 2.97 59 245 SC9 469.6 7.32 n n 344 262 SC9 LD 343 262 SCF 628.5 6.68 30 2.6 68 343 SN0 436.7 6.74 29.3 2.86 296 228 SN2 447.8 6.9 22.6 2.3 162 226 SN6D 520.6 6.94 12.8 1.42 222 256 SN6S 722.9 6.65 5.1 6.17 127 226 SN6S 722.0 6.65 n n 134 287 SMW1 930.2 7.19 69.8 7.58 302 275 SP1 776.2 6.86 n n 134 286 SMW2 556.7 7.12 0.7 0.08 31 317	SC7D	451.3	6.93	31.6	3.42	113	251
SC9 469.6 7.32 n n n 344 262 SC9 LD	SC7S	457	6.9	30.3	2.97	59	245
SC9 LD SCF 628.5 6.68 30 2.6 68 343 SN0 436.7 6.74 29.3 2.86 296 228 SN2 447.8 6.9 22.6 2.3 162 226 SN6D 520.6 6.94 12.8 1.42 222 256 SN6S 782.9 6.68 58.1 6.21 105 417 Agassiz-Nelson Fen 3.5 0.39 143 297 SMW1 930.2 7.19 69.8 7.58 302 275 SP1 776.2 6.86 n n 134 384 NMW 556.7 7.12 0.7 0.08 31 317 SMW3 554.9 7.13 1.1 0.13 134 286 SMW2 659 7 4.6 0.51 117 284 SP2 LD S82 6.63 0.9 <td>SC9</td> <td>469.6</td> <td>7.32</td> <td>n</td> <td>n</td> <td>344</td> <td>262</td>	SC9	469.6	7.32	n	n	344	262
SCF 628.5 6.68 30 2.6 68 343 SN0 436.7 6.74 29.3 2.86 296 228 SN2 447.8 6.9 22.6 2.3 162 226 SN6D 520.6 6.94 12.8 1.42 222 256 SN6S 782.9 6.68 58.1 6.21 105 417 Agassiz-Nelson Fen 3.5 0.39 143 297 SMW1 930.2 7.19 69.8 7.58 302 275 SP1 776.2 6.86 n n 134 384 NMW 556.7 7.12 0.7 0.08 31 317 NMW FD 713 1.1 0.13 134 286 SMW2 659 7 4.6 0.51 117 284 SP2 LD 653.7 6.62 17.7 1.77	SC9 LD						
SN0436.76.7429.32.86296228SN2447.86.922.62.3162226SN6D520.66.9412.81.42222256SN6S782.96.6858.16.21105417Agassiz-Nelson Fen804872635.37.293.50.39143297SMW1930.27.1969.87.58302275SP1776.26.86nn134384NMW556.77.120.70.0831317NMW FD74.60.51117284SP2652.96.928.12.65233237SP2 LD1.771.77298437NS0837.16.6217.71.77298437NS5680.56.630.90.0811324NC0563.76.8857.15.74283234NC0 FD5.91.46.8750.47179273NCF492.26.6617.41.4884364NN0631.86.836.73.4267245NN3708.97.11nn272271NNF725.16.5920.71.951350	SCF	628.5	6.68	30	2.6	68	343
SN2447.86.922.62.3162226SN6D520.66.9412.81.42222256SN6S782.96.6858.16.21105417Agassiz-Nelson Fen </td <td>SNO</td> <td>436.7</td> <td>6.74</td> <td>29.3</td> <td>2.86</td> <td>296</td> <td>228</td>	SNO	436.7	6.74	29.3	2.86	296	228
SN6D520.66.9412.81.42222256SN6S782.96.6858.16.21105417Agassiz-Nelson Fen804872635.37.293.50.39143297SMW1930.27.1969.87.58302275SP1776.26.86nn134384NMW556.77.120.70.0831317NMW FD1.110.13134286SMW3554.97.131.10.13134286SMW265974.60.51117284SP2 D65974.60.51117284SP2 LD309309309NS6837.16.6217.71.77298437NS7680.56.630.90.0811324NC0563.76.8857.15.74283234NC0 FD34364NN0631.86.8750.47179273NCF492.26.6617.41.4884364NN0631.86.836.73.4267245NN3708.97.11nn272271NNF725.16.5920.71.951350	SN2	447.8	6.9	22.6	2.3	162	226
SN6S 782.9 6.68 58.1 6.21 105 417 Agassiz-Nelson Fen	SN6D	520.6	6.94	12.8	1.42	222	256
Agassiz-Nelson Fen804872635.37.293.50.39143297SMW1930.27.1969.87.58302275SP1776.26.86nn134384NMW556.77.120.70.0831317NMW FD117284SMW3554.97.131.10.13134286SMW265974.60.51117284SP2652.96.928.12.65233237SP2 LD1.77298437NS36676.96nn201309NSF680.56.630.90.0811324NC0 FD57.15.74283234NC0FD591.46.8750.47179273NCF492.26.6617.41.4884364NN0631.86.836.73.4267245NN3708.97.11nn272271NNF725.16.5920.71.951350	SN6S	782.9	6.68	58.1	6.21	105	417
804872635.37.293.50.39143297SMW1930.27.1969.87.58302275SP1776.26.86nn134384NMW556.77.120.70.0831317NMW FD1.10.13134286SMW3554.97.131.10.13134286SMW265974.60.51117284SP2652.96.928.12.65233237SP2 LD309309NS36676.96nn201309NSF680.56.630.90.0811324NC0 FD574283234NCF492.26.6617.41.4884364NN0631.86.836.73.4267245NN3708.97.11nn272271NNF725.16.5920.71.951350	Agassiz-Nelson Fen						
SMW1930.27.1969.87.58302275SP1776.26.86nn134384NMW556.77.120.70.0831317NMW FD286SMW3554.97.131.10.13134286SMW265974.60.51117284SP2652.96.928.12.65233237SP2 LD309309NS36676.96nn201309NSF680.56.630.90.0811324NC0 FD574574283234NN0631.86.8750.47179273NN3708.97.11nn267245NN3708.97.11nn275271NNF725.16.5920.71.951350	804872	635.3	7.29	3.5	0.39	143	297
SP1776.26.86nn134384NMW556.77.120.70.0831317NMW FD </td <td>SMW1</td> <td>930.2</td> <td>7.19</td> <td>69.8</td> <td>7.58</td> <td>302</td> <td>275</td>	SMW1	930.2	7.19	69.8	7.58	302	275
NMW556.77.120.70.0831317NMW FDSMW3554.97.131.10.13134286SMW265974.60.51117284SP2652.96.928.12.65233237SP2 LD309NS0837.16.6217.71.77298437NS36676.96nn201309NSF680.56.630.90.0811324NC0563.76.8857.15.74283234NC0 FD364NN0631.86.836.73.4267245NN3708.97.11nn272271NNF725.16.5920.71.951350	SP1	776.2	6.86	n	n	134	384
NMW FDSMW3554.97.131.10.13134286SMW265974.60.51117284SP2652.96.928.12.65233237SP2 LD1.77298437NS36676.96nn201309NSF680.56.630.90.0811324NC0563.76.8857.15.74283234NC0 FD179273NCF492.26.6617.41.4884364NN0631.86.836.73.4267245NN3708.97.11nn272271NNF725.16.5920.71.951350	NMW	556.7	7.12	0.7	0.08	31	317
SMW3554.97.131.10.13134286SMW265974.60.51117284SP2652.96.928.12.65233237SP2 LD </td <td>NMW FD</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	NMW FD						
SMW265974.60.51117284SP2652.96.928.12.65233237SP2 LD </td <td>SMW3</td> <td>554.9</td> <td>7.13</td> <td>1.1</td> <td>0.13</td> <td>134</td> <td>286</td>	SMW3	554.9	7.13	1.1	0.13	134	286
SP2652.96.928.12.65233237SP2 LD </td <td>SMW2</td> <td>659</td> <td>7</td> <td>4.6</td> <td>0.51</td> <td>117</td> <td>284</td>	SMW2	659	7	4.6	0.51	117	284
SP2 LD NS0 837.1 6.62 17.7 1.77 298 437 NS3 667 6.96 n n 201 309 NSF 680.5 6.63 0.9 0.08 11 324 NC0 563.7 6.88 57.1 5.74 283 234 NC0 FD V V V V V V NCF 492.2 6.66 17.4 1.48 84 364 NN0 631.8 6.8 36.7 3.4 267 245 NN3 708.9 7.11 n n 272 271 NNF 725.1 6.59 20.7 1.9 51 350	SP2	652.9	6.9	28.1	2.65	233	237
NS0837.16.6217.71.77298437NS36676.96nn201309NSF680.56.630.90.0811324NC0563.76.8857.15.74283234NC0 FD </td <td>SP2 LD</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	SP2 LD						
NS36676.96nn201309NSF680.56.630.90.0811324NC0563.76.8857.15.74283234NC0 FD </td <td>NS0</td> <td>837.1</td> <td>6.62</td> <td>17.7</td> <td>1.77</td> <td>298</td> <td>437</td>	NS0	837.1	6.62	17.7	1.77	298	437
NSF680.56.630.90.0811324NC0563.76.8857.15.74283234NC0 FD </td <td>NS3</td> <td>667</td> <td>6.96</td> <td>n</td> <td>n</td> <td>201</td> <td>309</td>	NS3	667	6.96	n	n	201	309
NC0563.76.8857.15.74283234NC0 FDNCSP3591.46.8750.47179273NCF492.26.6617.41.4884364NN0631.86.836.73.4267245NN3708.97.11nn272271NNF725.16.5920.71.951350	NSF	680.5	6.63	0.9	0.08	11	324
NC0 FDNCSP3591.46.8750.47179273NCF492.26.6617.41.4884364NN0631.86.836.73.4267245NN3708.97.11nn272271NNF725.16.5920.71.951350	NC0	563.7	6.88	57.1	5.74	283	234
NCSP3591.46.8750.47179273NCF492.26.6617.41.4884364NN0631.86.836.73.4267245NN3708.97.11nn272271NNF725.16.5920.71.951350	NC0 FD						
NCF492.26.6617.41.4884364NN0631.86.836.73.4267245NN3708.97.11nn272271NNF725.16.5920.71.951350	NCSP3	591.4	6.87	5	0.47	179	273
NN0631.86.836.73.4267245NN3708.97.11nn272271NNF725.16.5920.71.951350	NCF	492.2	6.66	17.4	1.48	84	364
NN3708.97.11nn272271NNF725.16.5920.71.951350	NN0	631.8	6.8	36.7	3.4	267	245
NNF 725.1 6.59 20.7 1.9 51 350	NN3	708.9	7.11	n	n	272	271
	NNF	725.1	6.59	20.7	1.9	51	350

FB = Field Blank

FD = Field Duplicate

LD = Lab Duplicate

July Sampling					Cations/	Metals
	Alkalinity 2	Alkalinity 3	Alkalinity Avg	Alkalinity Standard Dev	AI	As
	mg/L CaCO3	mg/L CaCO3	mg/L CaCO3	mg/L CaCO3	mg/L	mg/L
LOD					<0.011	<0.021
Sanders Fen						
580065	283	290	286	3.5	0.039	<0.021
580065 LD						
SCO	236	242	239	3.1	0.079	<0.021
SC1	218	223	222	4.0	0.069	<0.021
SC4	240	236	239	3.1	0.064	<0.021
SC7D	256	259	255	4.0	0.073	<0.021
SC7S	249	251	248	3.1	0.078	<0.021
SC9	251	247	253	7.8	0.085	<0.021
SC9 LD					0.094	<0.021
SCF	337	333	338	5.0	0.081	<0.021
SNO	224	231	228	3.5	0.082	<0.021
SN2	227	230	228	2.1	0.080	<0.021
SN6D	266	255	259	6.1	0.095	<0.021
SN6S	449	426	431	16.5	0.067	<0.021
Agassiz-Nelson Fen						
804872	296	304	299	4.4	0.081	0.030
SMW1	272	271	273	2.1	0.071	<0.021
SP1	383	380	382	2.1	0.066	<0.021
NMW	319	321	319	2.0	0.058	0.024
NMW FD					0.058	0.026
SMW3	299	296	294	6.8	0.070	<0.021
SMW2	296	290	290	6.0	0.101	<0.021
SP2	235	241	238	3.1	0.062	<0.021
SP2 LD						
NSO	440	452	443	7.9	0.055	<0.021
NS3	296	303	303	6.5	0.087	<0.021
NSF	321	322	322	1.5	0.068	<0.021
NC0	231	232	232	1.5	0.063	<0.021
NC0 FD					0.071	<0.021
NCSP3	269	273	272	2.3	0.068	<0.021
NCF	364	359	362	2.9	0.077	<0.021
NNO	236	245	242	5.2	0.067	<0.021
NN3	276	272	273	2.6	0.079	<0.021
NNF	347	354	350	3.5	0.064	<0.021

FB = Field Blank

FD = Field Duplicate

LD = Lab Duplicate

luly Samplina									
sury sumpring									
	В	Ва	Be	Са	Cd	Со	Cr	Cu	Fe
	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
LOD	<0.016	<0.003	< 0.001	<0.124	<0.003	<0.003	<0.002	<0.003	<0.002
Sanders Fen									
580065	0.339	0.082	<0.001	30.635	<0.003	<0.003	<0.002	<0.003	0.426
580065 LD									
SC0	0.023	0.060	< 0.001	74.499	<0.003	<0.003	<0.002	<0.003	0.011
SC1	0.028	0.039	< 0.001	68.363	<0.003	<0.003	<0.002	<0.003	0.020
SC4	0.025	0.036	< 0.001	73.543	<0.003	<0.003	<0.002	<0.003	0.233
SC7D	0.022	0.056	< 0.001	72.928	<0.003	<0.003	<0.002	<0.003	0.107
SC7S	0.032	0.060	< 0.001	73.491	<0.003	<0.003	<0.002	<0.003	0.023
SC9	0.025	0.066	< 0.001	69.205	<0.003	<0.003	<0.002	0.005	0.016
SC9 LD	0.060	0.068	<0.001	68.653	<0.003	<0.003	<0.002	0.005	0.011
SCF	<0.016	0.106	<0.001	104.899	<0.003	<0.003	<0.002	<0.003	0.924
SNO	<0.016	0.049	<0.001	73.401	<0.003	<0.003	<0.002	<0.003	<0.002
SN2	<0.016	0.039	< 0.001	74.069	<0.003	<0.003	<0.002	<0.003	0.065
SN6D	<0.016	0.064	<0.001	81.125	<0.003	<0.003	<0.002	<0.003	0.110
SN6S	<0.016	0.114	<0.001	137.677	<0.003	<0.003	<0.002	<0.003	0.033
Agassiz-Nelson Fen									
804872	0.379	0.044	<0.001	49.274	<0.003	<0.003	<0.002	<0.003	0.346
SMW1	0.518	0.094	<0.001	84.142	<0.003	<0.003	<0.002	<0.003	0.010
SP1	<0.016	0.086	<0.001	143.929	< 0.003	0.004	<0.002	< 0.003	1.496
NMW	0.109	0.121	< 0.001	102.596	<0.003	<0.003	<0.002	<0.003	1.656
NMW FD	0.117	0.123	< 0.001	104.847	< 0.003	< 0.003	< 0.002	< 0.003	1.685
SMW3	0.073	0.386	< 0.001	89.739	< 0.003	<0.003	<0.002	< 0.003	0.849
SMW2	<0.016	0.386	< 0.001	115.211	< 0.003	< 0.003	< 0.002	< 0.003	0.548
SP2	<0.016	0.096	<0.001	109.536	< 0.003	<0.003	<0.002	< 0.003	0.148
SP2 LD									
NS0	0.038	0.057	< 0.001	140.063	<0.003	<0.003	<0.002	<0.003	<0.002
NS3	0.036	0.083	< 0.001	110.201	<0.003	0.005	<0.002	<0.003	0.228
NSF	0.035	0.058	< 0.001	107.792	<0.003	<0.003	<0.002	< 0.003	1.166
NC0	<0.016	0.040	< 0.001	91.567	<0.003	<0.003	<0.002	<0.003	<0.002
NC0 FD	<0.016	0.040	<0.001	89.600	<0.003	<0.003	<0.002	<0.003	0.002
NCSP3	<0.016	0.032	<0.001	97.643	<0.003	<0.003	<0.002	0.004	0.024
NCF	<0.016	0.071	<0.001	134.801	<0.003	<0.003	<0.002	<0.003	1.554
NN0	<0.016	0.054	<0.001	110.080	<0.003	<0.003	<0.002	<0.003	0.003
NN3	<0.016	0.081	<0.001	124.096	<0.003	<0.003	<0.002	0.003	0.025
NNF	0.035	0.059	< 0.001	117.671	<0.003	<0.003	<0.002	<0.003	0.606

FB = Field Blank

FD = Field Duplicate

LD = Lab Duplicate

July Sampling									
	к	Li	Mg	Mn	Мо	Na	Ni	Ρ	Pb
	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
LOD	<0.094	<0.005	<0.007	<0.001	<0.002	<0.030	<0.004	<0.009	<0.008
Sanders Fen									
580065	2.717	0.022	27.869	0.012	0.002	101.509	<0.004	0.220	<0.008
580065 LD									
SC0	2.754	0.009	27.714	0.043	<0.002	1.516	<0.004	<0.009	<0.008
SC1	1.848	0.008	22.638	0.024	<0.002	1.275	<0.004	<0.009	<0.008
SC4	1.679	0.006	25.352	0.063	<0.002	1.364	<0.004	<0.009	<0.008
SC7D	2.274	0.007	25.281	0.022	<0.002	1.577	<0.004	0.010	<0.008
SC7S	2.408	0.007	25.284	0.015	<0.002	1.596	<0.004	0.016	<0.008
SC9	2.940	0.011	25.408	0.180	0.003	2.449	<0.004	0.016	<0.008
SC9 LD	3.340	0.014	25.025	0.189	0.002	2.468	0.008	0.027	<0.008
SCF	4.855	0.009	32.618	0.357	<0.002	1.584	<0.004	0.036	<0.008
SNO	2.677	0.008	23.912	0.107	<0.002	1.397	<0.004	<0.009	<0.008
SN2	2.093	0.006	20.870	0.376	<0.002	1.307	<0.004	<0.009	<0.008
SN6D	2.806	0.010	27.085	0.658	<0.002	1.810	< 0.004	0.010	<0.008
SN6S	4.103	0.011	34.137	0.091	<0.002	2.386	< 0.004	0.050	<0.008
Agassiz-Nelson Fen									
804872	5.967	0.042	24.544	0.111	0.012	87.131	< 0.004	0.125	<0.008
SMW1	8.253	0.037	28.899	0.413	0.020	112.886	<0.004	0.047	<0.008
SP1	1.277	0.006	31.321	0.407	<0.002	2.996	0.015	<0.009	<0.008
NMW	4.335	0.044	38.247	0.166	0.004	23.166	<0.004	0.063	<0.008
NMW FD	4.490	0.044	38.797	0.169	0.004	23.564	< 0.004	0.063	<0.008
SMW3	5.067	0.031	27.692	0.103	0.003	12.809	< 0.004	0.070	<0.008
SMW2	4.917	0.015	32.284	0.311	0.005	24.668	< 0.004	0.035	<0.008
SP2	0.258	0.008	27.166	0.017	<0.002	3.512	< 0.004	<0.009	<0.008
SP2 LD									
NS0	1.294	0.008	49.153	0.006	<0.002	1.942	< 0.004	0.010	<0.008
NS3	1.885	0.006	36.576	1.767	<0.002	2.539	0.006	0.017	<0.008
NSF	0.404	0.006	36.169	0.151	<0.002	2.428	< 0.004	0.013	<0.008
NCO	1.458	0.008	29.970	0.020	<0.002	4.713	< 0.004	0.010	<0.008
NC0 FD	1.516	0.009	28.540	0.028	<0.002	4.482	< 0.004	<0.009	<0.008
NCSP3	1.139	0.008	31.326	0.095	<0.002	3.742	< 0.004	0.012	<0.008
NCF	0.759	0.009	40.501	0.219	<0.002	4.611	< 0.004	0.034	<0.008
NN0	1.048	<0.005	31.083	0.038	<0.002	5.111	<0.004	<0.009	<0.008
NN3	4.014	0.007	34.009	0.218	<0.002	4.976	< 0.004	0.116	<0.008
NNF	0.398	0.008	42.883	0.098	<0.002	5.936	<0.004	0.016	<0.008

FB = Field Blank

FD = Field Duplicate

LD = Lab Duplicate

July Sampling								Anions
	Rb	S	Si	Sr	Ti	v	Zn	HCO3 (from Alk)
	mg/L							
LOD	<0.004	<0.020	<0.005	<0.003	<0.001	<0.001	<0.001	< 2.5
Sanders Fen								
580065	<0.004	15.006	11.531	0.378	0.002	<0.001	0.007	349
580065 LD								
SC0	<0.004	2.245	10.276	0.094	0.002	<0.001	0.008	292
SC1	<0.004	1.221	10.091	0.079	0.002	<0.001	0.010	271
SC4	<0.004	1.739	9.785	0.086	0.002	0.002	0.008	292
SC7D	<0.004	1.977	11.206	0.101	0.002	0.002	0.012	312
SC7S	<0.004	1.133	12.058	0.105	0.002	<0.001	0.009	303
SC9	<0.004	3.260	11.068	0.107	0.002	<0.001	0.015	309
SC9 LD	<0.004	3.324	11.543	0.111	0.005	<0.001	0.017	
SCF	<0.004	0.698	21.113	0.145	0.002	<0.001	0.012	412
SNO	<0.004	2.142	11.008	0.086	0.002	0.001	0.007	278
SN2	<0.004	1.656	13.273	0.080	0.002	<0.001	0.012	278
SN6D	<0.004	3.037	13.732	0.118	0.002	<0.001	0.022	316
SN6S	<0.004	1.327	14.293	0.165	0.002	<0.001	0.014	525
Agassiz-Nelson Fen								
804872	<0.004	19.988	16.942	0.350	0.002	<0.001	0.016	365
SMW1	<0.004	88.639	13.256	0.535	0.002	0.010	0.012	333
SP1	<0.004	5.807	7.113	0.162	0.001	<0.001	6.587	466
NMW	<0.004	23.726	17.103	0.490	0.002	<0.001	0.008	389
NMW FD	<0.004	23.852	17.331	0.499	0.002	<0.001	0.009	
SMW3	<0.004	4.084	17.308	0.678	0.002	<0.001	0.010	358
SMW2	<0.004	27.920	15.342	0.489	0.003	0.003	0.017	354
SP2	<0.004	9.422	11.774	0.182	0.002	<0.001	2.479	290
SP2 LD								
NSO	<0.004	2.646	10.218	0.186	0.001	<0.001	0.006	540
NS3	<0.004	5.952	15.405	0.147	0.002	0.001	0.014	369
NSF	<0.004	0.754	12.168	0.144	0.002	<0.001	0.009	393
NC0	<0.004	13.179	11.710	0.157	0.002	<0.001	0.008	283
NC0 FD	<0.004	12.612	11.839	0.152	0.002	<0.001	0.009	
NCSP3	<0.004	7.439	12.372	0.146	0.002	<0.001	0.013	331
NCF	<0.004	12.348	15.987	0.175	0.002	<0.001	0.020	442
NN0	<0.004	13.730	12.429	0.150	0.002	<0.001	0.009	295
NN3	<0.004	12.924	14.642	0.160	0.002	0.001	0.106	333
NNF	<0.004	9.510	15.198	0.151	0.001	<0.001	0.019	427
NNF LD								

FD = Field Duplicate

LD = Lab Duplicate

July Sampling							
	Bromide	Chloride	Fluoride	Nitrate- N	Nitrite-N	Phosphate- P	Sulfate-S
	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
LOD	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Sanders Fen							
580065	< 0.1	23.6	< 0.1	< 0.1	< 0.1	< 0.1	17.8
580065 LD	< 0.1	23.5	< 0.1	< 0.1	< 0.1	< 0.1	18.2
SCO	< 0.1	1.4	< 0.1	0.4	< 0.1	< 0.1	1.7
SC1	< 0.1	1.2	< 0.1	0.2	< 0.1	< 0.1	1.4
SC4	< 0.1	1.3	< 0.1	< 0.1	< 0.1	< 0.1	1.5
SC7D	< 0.1	1.4	< 0.1	0.1	< 0.1	< 0.1	1.6
SC7S	< 0.1	1.4	< 0.1	< 0.1	< 0.1	< 0.1	0.3
SC9	< 0.1	2.1	< 0.1	0.1	< 0.1	< 0.1	2.8
SC9 LD	< 0.1	2.1	< 0.1	0.1	< 0.1	< 0.1	2.8
SCF	< 0.1	2.2	< 0.1	< 0.1	< 0.1	< 0.1	0.2
SNO	< 0.1	1.2	< 0.1	0.1	< 0.1	< 0.1	1.7
SN2	< 0.1	1.4	< 0.1	< 0.1	< 0.1	< 0.1	1.2
SN6D	< 0.1	1.6	< 0.1	0.1	< 0.1	< 0.1	2.6
SN6S	< 0.1	1.1	< 0.1	< 0.1	< 0.1	< 0.1	0.5
Agassiz-Nelson Fen							
804872	< 0.1	5.6	< 0.1	< 0.1	< 0.1	< 0.1	19.2
SMW1	< 0.1	7.8	< 0.1	< 0.1	< 0.1	< 0.1	86.3
SP1	< 0.1	21.5	< 0.1	1	< 0.1	< 0.1	5
NMW	< 0.1	4.2	< 0.1	< 0.1	< 0.1	< 0.1	22.4
NMW FD	< 0.1	4.3	< 0.1	< 0.1	< 0.1	< 0.1	22.7
SMW3	< 0.1	0.8	< 0.1	< 0.1	< 0.1	< 0.1	3.9
SMW2	< 0.1	19.1	< 0.1	< 0.1	< 0.1	< 0.1	27.4
SP2	< 0.1	14.2	< 0.1	13.9	< 0.1	< 0.1	6.8
SP2 LD	< 0.1	14.1	< 0.1	14.2	< 0.1	< 0.1	6.8
NSO	< 0.1	10.4	< 0.1	1.5	< 0.1	< 0.1	2.3
NS3	< 0.1	13	< 0.1	1.4	< 0.1	< 0.1	5.3
NSF	< 0.1	18.9	< 0.1	< 0.1	< 0.1	< 0.1	0.3
NC0	< 0.1	18	< 0.1	5.6	< 0.1	< 0.1	12
NC0 FD	< 0.1	15.6	< 0.1	4.9	< 0.1	< 0.1	10.7
NCSP3	< 0.1	16.8	< 0.1	< 0.1	< 0.1	< 0.1	6.5
NCF	< 0.1	31.7	< 0.1	< 0.1	< 0.1	< 0.1	3.5
NNO	< 0.1	21.4	< 0.1	5.8	< 0.1	< 0.1	12.5
NN3	< 0.1	24.8	< 0.1	4.2	< 0.1	< 0.1	10.7
NNF	< 0.1	24.2	< 0.1	< 0.1	< 0.1	< 0.1	2
NNF LD	< 0.1	24.2	< 0.1	< 0.1	< 0.1	< 0.1	2

FD = Field Duplicate

LD = Lab Duplicate

July Sampling	Stable Isotopes							
	δ ¹⁸ 0	δ²Η	δ ¹⁸ Ο Precision	δ ² H Precision				
	per mil	per mil	per mil	per mil				
LOD								
Sanders Fen								
580065	-15.36	-114.36	0.01	0.13				
580065 LD								
SC0	-12.27	-88.45	0.02	0.13				
SC1	-13.16	-95.24	0.05	0.33				
SC4	-12.50	-89.62	0.02	0.25				
SC7D	-11.60	-82.87	0.05	0.54				
SC7S	-11.92	-85.79	0.04	0.30				
SC9	-11.97	-86.33	0.03	0.19				
SC9 LD								
SCF	-10.97	-79.56	0.02	0.10				
SNO	-12.22	-88.38	0.01	0.10				
SN2	-13.67	-99.54	0.04	0.38				
SN6D	-12.16	-87.96	0.07	0.64				
SN6S	-11.70	-84.86	0.04	0.34				
Agassiz-Nelson Fen								
804872	-16.48	-121.83	0.05	0.34				
SMW1	-15.12	-111.97	0.02	0.32				
SP1	-10.04	-70.79	0.02	0.13				
NMW	-12.32	-91.12	0.02	0.18				
NMW FD	-12.29	-90.75	0.03	0.18				
SMW3	-13.78	-101.58	0.01	0.03				
SMW2	-13.87	-101.95	0.04	0.14				
SP2	-12.94	-93.28	0.06	0.54				
SP2 LD								
NS0	-12.14	-87.55	0.05	0.35				
NS3	-10.42	-73.66	0.04	0.11				
NSF	-11.01	-79.64	0.01	0.15				
NC0	-14.23	-104.90	0.03	0.16				
NC0 FD	-13.46	-98.78	0.03	0.15				
NCSP3	-13.76	-102.37	0.02	0.22				
NCF	-10.82	-79.22	0.02	0.11				
NNO	-12.35	-90.71	0.02	0.16				
NN3	-11.72	-85.20	0.02	0.02				
NNF	-11.24	-83.36	0.02	0.09				

FB = Field Blank

FD = Field Duplicate

LD = Lab Duplicate

October Sampling				Sonde-Measured Proper	ties
	Sample Date	Sample Time	Amount Flushed	Sonde Measurement Location	Water Temp
LOD					C
Sanders Fen					
580065	10/19/2019	11:00:00 AM	3 well vol	flowing into bucket	8.17
580065 LD				-	
SC0	10/19/2019	11:45:00 AM	3 well vol	in hole	11.22
SC1	10/19/2019	2:15:00 PM	dry+more	in hole	11.77
SC4	10/19/2019	1:50:00 PM	dry+more	in hole	12.38
SC4 FD	10/19/2019	2:00:00 PM			
SC7D	10/19/2019	3:15:00 PM	dry+more	in hole	9.35
SC7D FB	10/19/2019	6:00:00 PM			
SC7S	10/19/2019	3:00:00 PM	dry+more	in hole	9.48
SC9	10/19/2019	3:30:00 PM	dry+more	in hole	8.72
SCF	10/19/2019	1:00:00 PM	3 well vol	in hole	10.34
SNO	10/19/2019	12:00:00 PM	3 well vol	in hole	11.65
SN0 LD					
SN2	10/19/2019	4:00:00 PM	dry+more	in hole	11.79
SN6S	10/19/2019	4:15:00 PM	dry+more	in hole	9.9
Agassiz-Nelson Fen					
804872	10/20/2019	9:50:00 AM	3 well vol	in hole	10.53
SMW1	10/20/2019	9:00:00 AM	dry+more	in hole	8.21
SMW1 LD					
SP1	10/20/2019	8:35:00 AM	3 well vol	in cup	8.94
NMW	10/20/2019	11:30:00 AM	3 well vol	in hole	8.17
NMW LD					
SMW3	10/20/2019	10:45:00 AM	3 well vol	in hole	8.44
SMW2	10/20/2019	11:45:00 AM	dry+more	in hole	11
SP2	10/20/2019	10:55:00 AM	3 well vol	in cup	11.78
NSO	10/20/2019	2:40:00 PM	3 well vol	in hole	11.76
NS3	10/20/2019	1:25:00 PM	3 well vol	in hole	10.6
NC0	10/20/2019	3:00:00 PM	3 well vol	in hole	11.52
NCSP3	10/20/2019	1:55:00 PM	3 well vol	in hole	10.17
NNO	10/20/2019	3:20:00 PM	3 well vol	in hole	12.55
NN0 LD	10/20/2019	3:35:00 PM			
NN3	10/20/2019	12:35:00 PM	3 well vol	in hole	10.41
NNF	10/20/2019	12:50:00 PM	3 well vol	in hole	9.09

FD = Field Duplicate

LD = Lab Duplicate

LOD = Detection Limit

*Duplicates averaged for plotting and analyses

October Sampling				Alkalinity			
	Specific Conductance	рН	DO	DO	Alkalinity 1	Alkalinity 2	
	μS/cm		% saturation	mg/L	mg/L CaCO3	mg/L CaCO3	
LOD							
Sanders Fen							
580065	658.6	8.58	1.1	0.13	289	288	
580065 LD							
SC0	412	8.28	85.1	8.91	213	214	
SC1	436.5	8.33	45.2	4.68	242	242	
SC4	415.2	8.24	17.3	1.77	242	234	
SC4 FD					232	236	
SC7D	423.4	8.34	31.8	3.48	229	229	
SC7D FB					<2	<2	
SC7S	448.1	8.42	23.2	2.55	243	242	
SC9	445	8.93	82.1	9.01	236	237	
SCF	578.7	8.23	9.8	1.06	281	285	
SNO	424.7	8.39	73.6	7.62	231	233	
SN0 LD							
SN2	428.1	8.67	30.1	3.12	230	230	
SN6S	706.3	8.11	15.6	1.7	405	398	
Agassiz-Nelson Fen							
804872	635.6	8.43	12.3	1.31	300	304	
SMW1	898.7	8.18	42	4.73	251	251	
SMW1 LD							
SP1	721.4	7.55	22.1	2.44	386	388	
NMW	686.1	8.19	0.6	0.07	315	312	
NMW LD							
SMW3	539.2	8.26	16.3	1.82	285	288	
SMW2	699.1	8.18	40.6	4.27	294	289	
SP2	545.5	7.96	22.7	2.34	261	258	
NS0	618	8.25	12.8	1.32	287	285	
NS3	654.2	8.47	36.2	3.73	318	321	
NC0	709.9	8.29	37.1	3.86	297	304	
NCSP3	795.7	8.38	1.2	0.12	310	306	
NNO	737.4	8.36	43.3	4.38	290	290	
NN0 LD					<2	<2	
NN3	889.1	8.57	5.5	0.59	394	398	
NNF	661.6	8.01	47.7	5.26	284	290	

FD = Field Duplicate

LD = Lab Duplicate

October Sampling				Cations/Metals	
	Alkalinity 3	Alkalinity Avg	Alkalinity Standard Dev	AI	As
	mg/L CaCO3	mg/L CaCO3		mg/L	mg/L
LOD				<0.009	<0.010
Sanders Fen					
580065	291	289	1.5	0.071	<0.010
580065 LD				0.076	<0.010
SC0	213	213	0.6	0.063	<0.010
SC1	242	242	0.0	0.058	<0.010
SC4	240	239	4.2	0.087	<0.010
SC4 FD	233	234	2.1	0.069	<0.010
SC7D	229	229	0.0	0.058	<0.010
SC7D FB	<2	<2	0.0	0.069	<0.010
SC7S	243	243	0.6	0.065	<0.010
SC9	233	235	2.1	0.07	<0.010
SCF	282	283	2.1	0.053	<0.010
SNO	233	232	1.2	0.069	<0.010
SN0 LD					
SN2	232	231	1.2	0.065	<0.010
SN6S	396	400	4.7	0.07	<0.010
Agassiz-Nelson Fen					
804872	300	301	2.3	0.062	0.026
SMW1	256	253	2.9	0.07	<0.010
SMW1 LD				0.067	<0.010
SP1	379	384	4.7	0.068	<0.010
NMW	316	314	2.1	0.069	0.021
NMW LD					
SMW3	289	287	2.1	0.194	0.015
SMW2	296	293	3.6	0.062	<0.010
SP2	257	259	2.1	0.061	<0.010
NS0	289	287	2.0	0.066	<0.010
NS3	321	320	1.7	0.078	<0.010
NC0	302	301	3.6	0.077	0.011
NCSP3	307	308	2.1	0.064	<0.010
NNO	294	291	2.3	0.068	<0.010
NN0 LD	<2	<2	0.0	0.063	<0.010
NN3	400	397	3.1	0.061	<0.010
NNF	287	287	3.0	0.075	<0.010

FD = Field Duplicate

LD = Lab Duplicate

October Sampling								
	В	Ва	Ве	Са	Cd	Со	Cr	Cu
	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
LOD	<0.011	<0.001	<0.001	<0.105	<0.005	<0.003	<0.002	<0.001
Sanders Fen								
580065	0.409	0.082	<0.001	30.861	<0.005	0.1	<0.002	0.002
580065 LD	0.416	0.086	<0.001	32.549	<0.005	0.109	<0.002	<0.001
SCO	0.017	0.047	<0.001	68.747	<0.005	0.106	<0.002	0.003
SC1	0.023	0.042	<0.001	73.056	<0.005	0.097	<0.002	0.003
SC4	0.016	0.033	<0.001	71.169	<0.005	0.133	<0.002	0.005
SC4 FD	0.016	0.032	<0.001	71.418	<0.005	0.142	<0.002	0.004
SC7D	0.018	0.049	<0.001	71.024	<0.005	0.1	<0.002	0.002
SC7D FB	<0.011	< 0.001	<0.001	0.618	<0.005	0.113	<0.002	0.002
SC7S	0.015	0.055	<0.001	76.612	<0.005	0.1	<0.002	0.003
SC9	0.017	0.068	<0.001	72.969	<0.005	0.11	<0.002	0.005
SCF	<0.011	0.056	<0.001	88.146	<0.005	0.093	<0.002	0.002
SNO	0.017	0.038	<0.001	73.723	<0.005	0.097	< 0.002	0.004
SN0 LD								
SN2	0.014	0.036	<0.001	74.988	<0.005	0.096	<0.002	0.003
SN6S	0.019	0.105	<0.001	132.96	<0.005	0.093	<0.002	0.002
Agassiz-Nelson Fen								
804872	0.446	0.043	<0.001	49.058	<0.005	0.128	<0.002	0.003
SMW1	0.509	0.077	<0.001	84.128	<0.005	0.138	<0.002	0.003
SMW1 LD	0.51	0.079	<0.001	86.225	<0.005	0.146	< 0.002	<0.001
SP1	<0.011	0.039	<0.001	133.29	<0.005	0.127	< 0.002	0.003
NMW	0.182	0.119	< 0.001	102.53	<0.005	0.132	< 0.002	0.003
NMW LD								
SMW3	0.125	0.291	<0.001	89.429	<0.005	0.122	<0.002	0.018
SMW2	0.054	0.209	<0.001	115.97	<0.005	0.137	<0.002	0.003
SP2	0.016	0.082	< 0.001	100.49	<0.005	0.126	< 0.002	0.003
NS0	0.017	0.042	<0.001	107.53	<0.005	0.138	< 0.002	0.005
NS3	0.02	0.053	<0.001	117.73	<0.005	0.129	<0.002	0.005
NCO	0.018	0.042	<0.001	120.39	<0.005	0.119	<0.002	0.005
NCSP3	<0.011	0.047	<0.001	121.66	<0.005	0.12	<0.002	0.006
NNO	0.029	0.046	<0.001	128.62	<0.005	0.128	< 0.002	0.004
NN0 LD	<0.011	< 0.001	<0.001	0.839	<0.005	0.13	< 0.002	0.003
NN3	<0.011	0.061	<0.001	129.31	<0.005	0.132	<0.002	0.004
NNF	0.012	0.053	< 0.001	107.89	<0.005	0.119	<0.002	0.008

FD = Field Duplicate

LD = Lab Duplicate

October Sampling								
	Fe	к	Li	Mg	Mn	Мо	Na	Ni
	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
LOD	<0.001	<0.094	<0.002	<0.007	< 0.001	<0.001	<0.015	<0.001
Sanders Fen								
580065	0.408	2.641	0.023	25.051	0.019	0.003	100.75	<0.001
580065 LD	0.415	2.712	0.027	27.531	0.019	0.002	108.53	<0.001
SCO	0.006	1.513	0.007	20.885	0.008	<0.001	1.185	<0.001
SC1	0.01	1.883	0.007	22.989	0.033	<0.001	1.465	0.001
SC4	0.251	2.047	0.006	22.998	0.071	<0.001	1.895	0.004
SC4 FD	0.198	1.865	0.007	22.928	0.066	<0.001	1.699	0.002
SC7D	0.013	2.238	0.01	23.254	0.011	<0.001	1.594	0.001
SC7D FB	0.007	<0.094	<0.002	0.035	0.008	<0.001	0.155	0.001
SC7S	0.004	2.432	0.006	24.226	0.017	0.001	1.841	0.002
SC9	0.012	3.32	0.009	25.122	0.165	0.004	2.913	0.003
SCF	0.499	1.323	0.009	28.122	0.213	<0.001	1.429	0.001
SNO	0.006	1.542	0.006	22.807	0.012	<0.001	1.27	<0.001
SN0 LD								
SN2	0.215	2.393	0.007	21.501	0.187	<0.001	1.297	0.002
SN6S	0.026	3.324	0.01	33.301	0.072	< 0.001	2.083	<0.001
Agassiz-Nelson Fen								
804872	0.337	5.555	0.042	22.636	0.119	0.014	85.988	0.002
SMW1	0.141	7.812	0.022	30.61	0.495	0.018	103.46	0.001
SMW1 LD	0.129	8.045	0.025	30.327	0.523	0.023	106.54	<0.001
SP1	1.008	0.358	0.004	30.533	0.369	<0.001	2.31	0.006
NMW	1.923	4.371	0.045	36.589	0.164	0.005	23.205	0.002
NMW LD								
SMW3	0.764	6.784	0.029	27.809	0.113	0.004	13.588	0.003
SMW2	0.238	4.038	0.019	33.53	0.239	0.004	11.52	0.002
SP2	0.136	0.249	0.009	25.05	0.494	0.002	2.943	0.002
NSO	0.022	0.991	0.007	32.087	0.019	<0.001	2.005	0.001
NS3	0.005	0.748	0.007	34.396	0.015	<0.001	1.977	0.002
NCO	<0.001	1.434	0.009	36.525	0.017	<0.001	3.31	0.002
NCSP3	0.048	0.766	0.009	47.235	0.064	<0.001	4.5	0.002
NNO	0.006	0.954	0.008	36.457	0.021	<0.001	4.373	0.001
NN0 LD	0.058	<0.094	<0.002	0.043	0.009	<0.001	0.186	0.001
NN3	0.036	0.326	0.008	47.437	0.038	0.001	4.274	0.003
NNF	0.04	0.914	0.008	35.267	0.015	<0.001	6.8	0.001

FD = Field Duplicate

LD = Lab Duplicate

October Sampling	

	Р	Pb	Rb	S	Si	Sr	Ti	v
	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
LOD	<0.004	< 0.003	<0.002	<0.027	<0.004	< 0.001	<0.001	<0.002
Sanders Fen								
580065	0.512	<0.003	<0.002	14.263	11.371	0.365	0.002	<0.002
580065 LD	0.532	<0.003	<0.002	14.756	12.427	0.394	0.003	<0.002
SC0	0.314	<0.003	<0.002	0.881	9.402	0.078	0.002	<0.002
SC1	0.279	<0.003	<0.002	1.271	10.718	0.082	0.002	<0.002
SC4	0.393	<0.003	<0.002	1.748	10.016	0.079	0.002	0.003
SC4 FD	0.429	<0.003	<0.002	1.737	9.951	0.079	0.002	<0.002
SC7D	0.297	<0.003	<0.002	1.977	11.723	0.097	0.002	0.007
SC7D FB	0.289	<0.003	<0.002	0.061	0.029	0.001	<0.001	<0.002
SC7S	0.313	<0.003	<0.002	0.593	12.175	0.101	0.002	<0.002
SC9	0.328	<0.003	<0.002	3.108	12.54	0.112	0.002	<0.002
SCF	0.295	<0.003	<0.002	0.702	12.897	0.104	0.002	<0.002
SN0	0.288	<0.003	<0.002	1.263	9.262	0.077	0.002	<0.002
SN0 LD								
SN2	0.282	<0.003	<0.002	1.61	10.728	0.077	0.002	<0.002
SN6S	0.285	<0.003	<0.002	1.492	13.938	0.159	0.002	<0.002
Agassiz-Nelson Fen								
804872	0.482	<0.003	<0.002	18.995	16.712	0.335	0.002	<0.002
SMW1	0.474	<0.003	<0.002	94.501	11.592	0.516	0.002	<0.002
SMW1 LD	0.525	<0.003	<0.002	93.595	12.191	0.547	0.005	0.002
SP1	0.394	<0.003	<0.002	3.295	6.407	0.15	0.001	<0.002
NMW	0.466	< 0.003	<0.002	23.363	16.76	0.472	0.002	< 0.002
NMW LD								
SMW3	0.489	0.005	<0.002	4.238	17.151	0.638	0.008	< 0.002
SMW2	0.45	< 0.003	<0.002	27.501	16.632	0.483	0.001	0.002
SP2	0.382	<0.003	<0.002	11.778	10.151	0.164	0.002	<0.002
NSO	0.422	<0.003	<0.002	8.948	10.31	0.138	0.001	<0.002
NS3	0.408	<0.003	<0.002	6.56	15.989	0.169	0.002	<0.002
NC0	0.372	<0.003	<0.002	12.816	12.329	0.179	0.001	<0.002
NCSP3	0.372	< 0.003	<0.002	19.811	13.92	0.175	0.002	< 0.002
NNO	0.395	< 0.003	<0.002	13.485	12.397	0.167	0.001	< 0.002
NN0 LD	0.371	<0.003	<0.002	0.073	0.041	0.002	< 0.001	< 0.002
NN3	0.42	<0.003	<0.002	5.2	16.46	0.164	0.002	<0.002
NNF	0.396	<0.003	<0.002	11.503	11.576	0.13	0.002	<0.002

FD = Field Duplicate

LD = Lab Duplicate

October Sampling	Anions						
	Zn	HCO3- (from Alk)	Bromide	Chloride	Fluoride	Nitrate- N	Nitrite- N
	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
LOD	<0.002	<2.5	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Sanders Fen							
580065	0.016	353	< 0.1	21.5	1.2	< 0.1	< 0.1
580065 LD	0.015		< 0.1	21.7	1.2	< 0.1	< 0.1
SC0	0.01	260	< 0.1	1	< 0.1	0.3	< 0.1
SC1	0.018	295	< 0.1	1.2	< 0.1	0.3	< 0.1
SC4	0.02	291	< 0.1	1.5	1.2	0.2	< 0.1
SC4 FD	0.014	285	< 0.1	1.4	1.2	0.2	< 0.1
SC7D	0.012	279	< 0.1	1.3	< 0.1	0.2	< 0.1
SC7D FB	0.01	<2.5	< 0.1	< 0.1	< 0.1	0.2	< 0.1
SC7S	0.015	296	< 0.1	1.5	< 0.1	0.2	< 0.1
SC9	0.022	287	< 0.1	1.9	1.2	0.3	< 0.1
SCF	0.011	345	< 0.1	1.2	< 0.1	0.2	< 0.1
SNO	0.013	283	< 0.1	1	< 0.1	0.3	< 0.1
SN0 LD			< 0.1	1	< 0.1	0.3	< 0.1
SN2	0.017	281	< 0.1	1.2	< 0.1	0.2	< 0.1
SN6S	0.012	488	< 0.1	1.4	< 0.1	< 0.1	< 0.1
Agassiz-Nelson Fen							
804872	0.011	368	< 0.1	3.8	1.2	< 0.1	< 0.1
SMW1	0.016	308	< 0.1	6.3	1.1	< 0.1	< 0.1
SMW1 LD	0.019						
SP1	3.005	469	< 0.1	8.4	< 0.1	0.3	< 0.1
NMW	0.019	383	< 0.1	3.1	< 0.1	< 0.1	< 0.1
NMW LD			< 0.1	3.1	< 0.1	< 0.1	< 0.1
SMW3	0.239	351	< 0.1	1.1	< 0.1	0.3	< 0.1
SMW2	0.017	357	< 0.1	18	1.1	< 0.1	< 0.1
SP2	3.274	316	< 0.1	7.6	1.2	2.3	< 0.1
NS0	0.013	350	< 0.1	11.7	< 0.1	2.1	< 0.1
NS3	0.02	390	< 0.1	8.1	< 0.1	< 0.1	< 0.1
NC0	0.016	367	< 0.1	21.2	< 0.1	5.6	< 0.1
NCSP3	0.018	375	< 0.1	30.5	< 0.1	4.8	< 0.1
NN0	0.013	355	< 0.1	14.4	< 0.1	< 0.1	< 0.1
NN0 LD	0.012	<2.5	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
NN3	0.036	485	< 0.1	3.8	1.1	1	< 0.1
NNF	0.034	350	< 0.1	14.3	< 0.1	< 0.1	< 0.1

FD = Field Duplicate

LD = Lab Duplicate

October Sampling	Stable Isotopes						
	Phosphate- P	Sulfate- S	δ ¹⁸ Ο	δ²Η	δ ¹⁸ Ο Precision	δ ² H Precision	
	mg/L	mg/L	per mil	per mil	per mil	per mil	
LOD	< 0.1	< 0.1					
Sanders Fen							
580065	< 0.1	14.2	-15.04	-112.24	0.03	0.27	
580065 LD	< 0.1	14.3					
SC0	< 0.1	0.5	-11.79	-84.13	0.02	0.22	
SC1	< 0.1	0.8	-12.29	-88.19	0.04	0.52	
SC4	< 0.1	1	-12.76	-92.36	0.01	0.11	
SC4 FD	< 0.1	1	-12.70	-92.01	0.02	0.06	
SC7D	< 0.1	1	-12.08	-87.27	0.01	0.08	
SC7D FB	< 0.1	< 0.1					
SC7S	< 0.1	0.5	-11.72	-84.32	0.03	0.11	
SC9	< 0.1	1.7	-11.79	-84.82	0.02	0.12	
SCF	< 0.1	0.5	-11.88	-84.27	0.02	0.12	
SN0	< 0.1	0.8	-10.83	-76.37	0.03	0.23	
SN0 LD	< 0.1	0.8					
SN2	< 0.1	0.9	-11.57	-82.58	0.01	0.11	
SN6S	< 0.1	0.9	-11.39	-82.54	0.02	0.10	
Agassiz-Nelson Fen							
804872	< 0.1	18.7	-16.54	-122.21	0.03	0.32	
SMW1	< 0.1	85.1	-15.17	-112.33	0.04	0.19	
SMW1 LD							
SP1	< 0.1	2.8	-13.02	-94.30	0.02	0.21	
NMW	< 0.1	22.8	-12.22	-90.52	0.03	0.11	
NMW LD	< 0.1	22.9					
SMW3	< 0.1	2.7	-13.70	-100.53	0.03	0.32	
SMW2	< 0.1	27	-13.70	-100.67	0.01	0.15	
SP2	< 0.1	9.5	-11.03	-73.61	0.03	0.24	
NS0	< 0.1	6.9	-12.45	-90.17	0.04	0.08	
NS3	< 0.1	6	-10.36	-71.80	0.03	0.25	
NC0	< 0.1	9.5	-11.24	-84.14	0.05	0.25	
NCSP3	< 0.1	16.1	-11.77	-85.22	0.01	0.06	
NN0	< 0.1	31.7	-11.20	-80.70	0.03	0.21	
NN0 LD	< 0.1	< 0.1					
NN3	< 0.1	3.4	-9.61	-64.58	0.03	0.35	
NNF	< 0.1	11.2	-11.95	-86.71	0.05	0.31	

FD = Field Duplicate

LD = Lab Duplicate

September Samples	Stable Isotop	es			
	δ ¹⁸ Ο	δ²H	δ ¹⁸ O Precision	δ ² H Precision	amt in 15mL vial
	per mil	per mil	per mil	per mil	mL
Rain Samples					
PR1	-9.66	-63.82	0.02	0.44	14.00
PR2	-11.97	-88.81	0.03	0.28	14.50
PR3	-11.91	-87.23	0.04	0.50	14.00
PR4	-7.03	-42.89	0.01	0.23	6.00
PR5	-9.64	-62.29	0.03	0.17	14.00
PR6	-11.87	-88.61	0.06	0.71	15.00
PR7	-11.29	-82.82	0.01	0.17	14.00
PR8	-11.46	-84.19	0.04	0.21	15.00
PR9	-11.85	-89.16	0.00	0.11	12.50
Snow Samples					
PS1	-16.70	-116.06	0.02	0.29	15.00
PS2	-16.15	-112.49	0.03	0.20	15.00
PS3	-16.79	-116.03	0.01	0.09	15.00
PS4	-16.68	-115.17	0.02	0.25	15.00

*Collected near Agassiz-Nelson Fen

September Samples	Tritium	
	TU	TU Error
580065	0.04	0.09
SC0	8.06	0.27
SC7D	7.39	0.24
804872	-0.01	0.09
NMW	1.89	0.09
NC0	8.61	0.28
NCSP3	7.63	0.25

*Error is 1 standard deviation

QA/QC

Major Ion Charge Balance

Ca, Mg, Na, K, Cl, SO4, HCO3, NO3

	July				October			
	Sum Cations	Sum Anions	Difference	Charge Balance Error	Sum Cations	Sum Anions	Difference	Charge Balance Error
	meq/L	meq/L	meq/L	%	meq/L	meq/L	meq/L	%
Sanders F	en							
580065	8.31	7.51	0.79	5.0	8.37	7.28	1.08	6.9
SC0	6.13	4.95	1.18	10.7	5.24	4.34	0.90	9.4
SC1	5.38	4.57	0.80	8.1	5.65	4.94	0.71	6.7
SC4	5.86	4.92	0.94	8.7	5.58	4.85	0.73	7.0
SC7D	5.85	5.25	0.60	5.4	5.58	4.69	0.89	8.7
SC7S	5.88	5.02	0.86	7.8	5.96	4.95	1.01	9.3
SC9	5.70	5.30	0.40	3.7	5.92	4.88	1.04	9.6
SCF	8.11	6.84	1.27	8.5	6.81	5.74	1.07	8.5
SN0	5.76	4.71	1.05	10.1	5.65	4.74	0.91	8.8
SN2	5.52	4.68	0.84	8.3	5.63	4.72	0.91	8.8
SN6D	6.43	5.39	1.03	8.8	6.03	6.50	-0.47	-3.7
Average			0.9	7.7			0.8	7.3
Agassiz-N	elson Fen							
804872	8.42	7.34	1.08	6.9	8.19	7.30	0.89	5.8
SMW1	11.70	11.08	0.62	2.7	11.53	10.55	0.98	4.4
SP1	9.92	8.63	1.30	7.0	9.27	8.11	1.16	6.7
NMW	9.48	7.91	1.56	9.0	9.25	7.80	1.45	8.5
SMW3	7.44	6.15	1.29	9.5	7.52	5.96	1.56	11.6
SMW2	9.60	8.05	1.55	8.8	9.15	8.06	1.09	6.4
SP2	7.86	6.60	1.26	8.7	7.21	6.15	1.06	7.9
NS0	11.15	9.40	1.75	8.5	8.12	6.65	1.47	10.0
NS3	8.67	6.86	1.81	11.7	8.81	7.01	1.80	11.4
NSF	8.47	7.00	1.47	9.5				
NC0	7.17	6.20	0.97	7.2	9.19	7.61	1.59	9.4
NCSP3	7.64	6.32	1.32	9.4	10.17	8.37	1.81	9.7
NCF	10.28	8.36	1.92	10.3				
NN0	8.30	6.64	1.66	11.1	9.63	8.21	1.42	8.0
NN3	9.31	7.13	2.18	13.3	10.55	8.33	2.22	11.8
NNF	9.67	7.81	1.86	10.6	8.61	6.85	1.76	11.4
Average			1.5	9.0			1.4	8.8
Overall Av	verage		1.2	8.5			1.2	8.1

*Duplicates averaged for calculation; some only have duplicates of cations or anions

QA/QC

Duplicate Sample Agreement

Percent error in duplicates from original

	July						October				
	580065	NC0	NMW	NNF	SC9	SP2	580065	SC4	NMW	SMW1	SN0
	LD	FD	FD	LD	LD	LD	LD	FD	LD	LD	LD
Al		11.5	0.8		11.6		7.0	-20.7		-4.3	
As		LOD	7.3		LOD		LOD	LOD		LOD	
В		LOD	7.3		142.4		1.7	0.0		0.2	
Ва		0.4	1.6		3.4		4.9	-3.0		2.6	
Be		LOD	LOD		LOD		LOD	LOD		LOD	
Са		-2.1	2.2		-0.8		5.5	0.3		2.5	
Cd		LOD	LOD		LOD		LOD	LOD		LOD	
Со		LOD	LOD		LOD		9.0	6.8		5.8	
Cr		LOD	LOD		LOD		LOD	LOD		LOD	
Cu		LOD	LOD		13.9		LOD	-20.0		LOD	
Fe		LOD	1.7		-32.9		1.7	-21.1		-8.5	
К		4.0	3.6		13.6		2.7	-8.9		3.0	
Mg		-4.8	1.4		-1.5		9.9	-0.3		-0.9	
Mn		43.1	2.0		5.0		0.0	-7.0		5.7	
Mo		LOD	8.2		-18.3		-33.3	LOD		27.8	
Na		-4.9	1.7		0.8		7.7	-10.3		3.0	
Ni		LOD	LOD		LOD		LOD	-50.0		LOD	
Р		LOD	-0.1		68.1		3.9	9.2		10.8	
Pb		LOD	LOD		LOD		LOD	LOD		LOD	
Rb		LOD	LOD		LOD		LOD	LOD		LOD	
S		-4.3	0.5		2.0		3.5	-0.6		-1.0	
Si		1.1	1.3		4.3		9.3	-0.6		5.2	
Sr		-3.1	1.9		3.8		7.9	0.0		6.0	
Ti		1.3	0.0		95.4		50.0	0.0		150.0	
V		LOD	LOD		LOD		LOD	LOD		LOD	
Zn		16.1	14.8		14.8		-6.3	-30.0		18.8	
Fluoride	LOD	LOD	LOD	LOD	LOD	LOD	0.0	0.0	LOD		LOD
Chloride	-0.4	-13.3	2.4	0.0	0.0	-0.7	0.9	-6.7	0.0		0.0
Nitrite-N	LOD	LOD	LOD	LOD	LOD	LOD	LOD	LOD	LOD		LOD
Bromide	LOD	LOD	LOD	LOD	LOD	LOD	LOD	LOD	LOD		LOD
Sulfate-S	2.2	-10.8	1.3	0.0	0.0	0.0	0.7	0.0	0.4		0.0
Nitrate-N	LOD	-12.5	LOD	LOD	0.0	2.2	LOD	0.0	LOD		0.0
Phosphate-P	LOD	LOD	LOD	LOD	LOD	LOD	LOD	LOD	LOD		LOD
Overall Average	0.9	1.9	3.0	0.0	16.7	0.5	5.0	-6.4	0.2	13.3	0.0

*Calculated by subracting duplicate from original and dividing by original

QA/QC

Field Blank Samples

Comparison to minimum concentration from all other samples

October					
	NN0 FB	SC7D FB	Minimum	LOD	
Al	0.063	0.069	0.053	<0.009	mg/L
As	<0.010	<0.010	LOD	<0.010	mg/L
В	<0.011	<0.011	LOD	<0.011	mg/L
Ва	< 0.001	<0.001	0.032	<0.001	mg/L
Be	<0.001	<0.001	LOD	<0.001	mg/L
Ca	0.839	0.618	30.861	<0.105	mg/L
Cd	<0.005	<0.005	LOD	<0.005	mg/L
Со	0.13	0.113	0.063	<0.003	mg/L
Cr	<0.002	<0.002	LOD	<0.002	mg/L
Cu	0.003	0.002	LOD	<0.001	mg/L
Fe	0.058	0.007	LOD	<0.001	mg/L
К	<0.094	<0.094	0.249	<0.094	mg/L
Li	<0.002	<0.002	0.004	<0.002	mg/L
Mn	0.009	0.008	0.008	<0.001	mg/L
Мо	<0.001	<0.001	LOD	<0.001	mg/L
Na	0.186	0.155	1.185	<0.015	mg/L
Ni	0.001	0.001	LOD	<0.001	mg/L
Р	0.371	0.289	0.258	<0.004	mg/L
Pb	<0.003	<0.003	LOD	<0.003	mg/L
Rb	<0.002	<0.002	LOD	<0.002	mg/L
S	0.073	0.061	0.593	<0.027	mg/L
Si	0.041	0.029	6.407	<0.004	mg/L
Sr	0.002	0.001	0.077	<0.001	mg/L
Ti	<0.001	<0.001	0.001	<0.001	mg/L
V	<0.002	<0.002	LOD	<0.002	mg/L
Zn	0.012	0.01	0.01	<0.002	mg/L
Fluoride	< 0.1	< 0.1	LOD	<0.1	mg/L
Chloride	< 0.1	< 0.1	1	<0.1	mg/L
Nitrite-N	< 0.1	< 0.1	LOD	<0.1	mg/L
Bromide	< 0.1	< 0.1	LOD	<0.1	mg/L
Sulfate-S	< 0.1	< 0.1	0.5	<0.1	mg/L
Nitrate-N	< 0.1	0.2	LOD	<0.1	mg/L
Phosphate-P	< 0.1	< 0.1	LOD	<0.1	mg/L
Alk Avg	<2	<2	213	<2	mg/L C

Analytes where blank has noticibly higher concentration than lowest of other samples

*Most Samples higher than blank for Fe

**Deionized water was used for blank samples

Appendix C: Detailed Multivariate Statistics Results

Table C1. Factor loadings for varimax-normalized principal component analysis of water chemistry data from July and October sampling trips.

Variable	Fact.											
Vallable	1	2	3	4	5	6	7	8	9	10	11	12
Oct_Al	-0.03	-0.06	0.94	0.07	0.02	-0.15	0.00	0.08	-0.01	0.00	0.01	-0.11
Oct_As	0.22	-0.06	0.14	0.91	0.06	0.03	0.09	-0.04	0.04	0.02	0.25	0.01
Oct_B	0.81	-0.12	0.05	0.30	0.05	-0.13	0.43	-0.01	0.00	0.07	0.06	-0.13
Oct_Ba	0.12	0.07	0.88	-0.03	0.00	0.31	0.11	-0.14	0.03	0.02	0.23	-0.01
Oct_Ca	-0.15	0.80	0.08	-0.14	-0.16	0.13	-0.36	0.10	-0.12	-0.01	0.00	0.25
Oct_Co	0.41	0.44	0.22	0.14	-0.10	-0.25	0.01	0.07	0.29	-0.07	-0.03	0.56
Oct_Cu	-0.21	0.08	0.85	0.10	0.11	-0.20	-0.16	0.07	0.00	-0.12	-0.05	0.05
Oct_Fe	0.11	0.07	0.22	0.35	-0.22	-0.06	0.02	-0.01	0.00	0.02	0.81	0.00
Oct_K	0.69	-0.22	0.45	0.24	0.13	0.21	0.04	-0.13	0.09	-0.08	0.11	-0.29
Oct_Li	0.50	-0.03	0.31	0.61	0.13	0.02	0.27	-0.13	0.02	0.03	0.39	0.03
Oct_Mg	0.04	0.80	0.04	-0.05	0.22	0.00	-0.01	0.04	-0.36	-0.12	0.08	0.32
Oct_Mn	0.42	-0.08	-0.02	-0.05	-0.66	0.42	-0.09	0.03	-0.28	-0.02	0.10	-0.13
Oct_Mo	0.92	-0.06	0.05	0.30	-0.04	0.09	0.05	0.00	0.11	-0.10	-0.06	-0.08
Oct_Na	0.78	-0.10	-0.02	0.19	0.05	-0.17	0.53	-0.02	-0.04	0.07	0.03	-0.12
Oct_P	0.55	0.29	0.40	0.20	-0.02	-0.27	0.42	0.07	0.04	0.05	0.14	0.29
Oct_S	0.97	0.13	0.01	-0.07	0.00	0.02	-0.07	-0.03	-0.10	-0.02	0.00	0.10
Oct_Si	0.12	0.24	0.40	0.41	0.46	0.49	0.22	0.11	-0.20	-0.02	0.12	0.10
Oct_Sr	0.62	0.11	0.65	0.16	0.03	0.08	0.22	-0.05	-0.05	0.04	0.28	0.07
Oct_Zn	-0.10	0.08	-0.01	-0.02	-0.95	-0.08	0.03	0.05	0.01	0.04	0.06	0.17
Oct_Fluoride	0.40	-0.07	-0.03	0.05	-0.20	0.20	0.61	-0.15	0.18	-0.24	-0.20	0.29
Oct_Chloride	0.04	0.11	-0.05	-0.14	-0.01	0.04	0.06	0.05	-0.88	0.03	-0.03	-0.06
Oct_Sulfate- S	0.95	0.15	-0.01	-0.08	0.03	0.02	-0.07	-0.03	-0.08	0.01	0.01	0.17
Oct_Nitrate-	-0.12	0.24	0.00	0.10	-0.05	-0.25	-0.20	-0.20	-0.60	-0.15	-0.31	0.31
N Oct Temp	-0.33	-0.07	-0.22	0.03	0.01	0.02	_0.25	-0.09	0.10	0.27	_0 53	0.47
Oct_remp	0.33	0.07	0.22	0.03	0.01	0.02	0.25	0.05	-0.23	0.27	0.55	0.47
Oct_pH	-0.09	-0.35	-0.06	0.07	0.62	0.00	0.32	0.07	-0.07	-0.41	-0.27	0.03
Oct_DO	0.05	-0.38	-0.05	-0.33	0.02	0.02	-0.34	0.07	0.31	-0.42	-0.25	0.02
Oct Alk Avg	-0.08	0.83	0.05	0.05	-0.15	0.02	0.26	0.12	-0.07	0.05	0.12	-0.04
	-0.05	-0.19	0.00	-0.02	0.10	0.77	-0.25	0.31	0.05	-0.23	-0.12	-0.03
lul As	0.24	-0.05	-0.11	0.90	0.04	0.04	0.16	-0.02	0.11	0.02	0.12	0.01
Jul B	0.85	-0.11	-0.02	0.23	0.04	-0.15	0.37	0.02	0.02	0.03	-0.02	-0.16
lul Ba	0.11	0.12	0.80	-0.12	-0.05	0.41	0.09	-0.07	0.11	0.07	0.23	0.05
lul Ca	-0.17	0.83	0.07	-0.14	-0.28	0.12	-0.35	0.06	0.08	0.10	0.04	0.04
Jul_Ca	-0.17	0.83	0.07	-0.14	-0.28	0.12	-0.35	0.06	0.08	0.10	0.04	0.04

Jul_Co	-0.09	0.20	0.00	-0.02	-0.17	-0.07	-0.01	0.92	0.07	0.04	0.05	0.02
Jul_Cu	-0.09	-0.04	-0.03	-0.02	0.06	0.03	0.04	-0.03	-0.05	-0.95	-0.07	-0.04
Jul_Fe	0.01	0.21	0.22	0.21	-0.29	-0.05	0.02	0.10	0.11	0.06	0.84	-0.02
Jul_K	0.67	0.00	0.21	0.21	0.18	0.44	0.14	-0.06	0.20	-0.05	0.12	-0.25
Jul_Li	0.66	-0.06	0.30	0.55	0.07	0.01	0.16	-0.10	0.04	-0.04	0.31	-0.09
Jul_Mg	0.00	0.81	0.05	-0.02	0.14	-0.20	-0.13	0.07	0.02	0.11	0.12	-0.05
Jul_Mn	0.06	0.10	-0.01	-0.04	0.03	0.28	-0.05	0.92	-0.08	0.05	0.02	-0.06
Jul_Mo	0.95	-0.02	-0.03	0.21	-0.02	0.11	-0.02	0.02	0.10	-0.02	-0.09	-0.07
Jul_Na	0.82	-0.08	-0.01	0.16	0.04	-0.11	0.50	-0.02	-0.02	0.07	0.03	-0.10
Jul_P	0.25	0.08	0.12	0.21	0.17	-0.07	0.88	-0.08	-0.02	0.07	0.13	-0.08
Jul_S	0.97	0.11	0.00	-0.07	-0.02	0.08	0.00	-0.01	-0.03	-0.01	0.03	0.12
Jul_Si	0.11	0.22	0.24	0.36	0.38	0.52	0.06	0.08	0.00	0.18	0.27	-0.03
Jul_Sr	0.60	0.11	0.66	0.17	0.00	0.08	0.20	-0.09	-0.01	0.07	0.30	0.02
Jul_Ti	0.17	-0.27	0.15	0.02	0.07	0.55	0.08	-0.18	0.06	-0.66	-0.14	-0.03
Jul_Zn	-0.09	0.18	-0.08	-0.07	-0.88	-0.17	0.00	0.17	0.05	-0.04	0.23	-0.01
Jul_Chloride	0.08	0.56	-0.06	-0.24	-0.13	-0.21	0.36	0.12	-0.25	0.03	0.03	0.45
Jul_Sulfate-S	0.98	0.08	0.01	-0.07	-0.01	0.08	0.04	0.00	-0.04	-0.01	0.03	0.11
Jul_Nitrate-N	-0.11	0.12	-0.02	0.03	-0.50	0.03	0.05	-0.11	-0.16	0.13	-0.35	0.58
Jul_Temp	-0.38	0.28	-0.34	-0.25	-0.10	-0.08	-0.12	0.44	0.18	-0.28	-0.11	0.26
Jul_SpC	0.51	0.76	0.01	-0.08	-0.24	-0.06	0.14	0.08	0.02	0.15	-0.11	-0.15
Jul_pH	0.40	-0.35	0.17	0.18	0.04	0.01	0.63	0.10	-0.08	-0.36	0.11	0.06
Jul_ORP	0.16	-0.13	-0.08	-0.17	-0.07	-0.14	-0.02	0.06	-0.09	-0.39	-0.69	0.15
Jul_Alk avg	-0.02	0.75	0.06	0.11	-0.11	-0.11	0.01	-0.01	0.19	0.12	0.14	-0.51
Expl.Var	12.7	6.81	5.17	3.85	3.75	2.84	3.87	2.38	2.03	2.47	3.50	2.32
Prp.Totl	0.23	0.12	0.09	0.07	0.07	0.05	0.07	0.04	0.04	0.04	0.06	0.04

Well	Fact.											
Case	1	2	3	4	5	6	7	8	9	10	11	12
580065	0.47	-0.68	-0.06	-1.05	0.43	-1.66	3.94	-0.24	-0.86	0.52	0.68	-0.52
SC0	-0.24	-1.20	-0.23	-0.44	0.23	-0.60	-0.61	-0.01	0.91	-0.06	-0.32	0.00
SN0	-0.34	-1.13	-0.24	-0.28	0.26	-0.19	-0.78	-0.05	0.73	-0.06	-0.58	-0.10
SC1	-0.42	-1.19	-0.44	-0.21	0.22	-0.41	-0.40	-0.24	0.37	0.30	-0.30	0.03
SN2	-0.48	-1.29	-0.50	-0.10	0.26	0.48	-0.35	0.15	0.10	0.49	-0.05	-0.03
SC4	-0.42	-0.89	-0.15	-0.14	0.00	-0.69	-0.06	-0.42	1.18	0.50	-0.19	0.86
SC7D	-0.41	-1.02	-0.47	-0.40	0.43	-0.18	-0.30	-0.45	0.22	0.50	0.45	-0.41
SN6D	-0.32	-1.05	-0.32	-0.09	-0.47	1.66	-0.34	0.51	-2.97	0.41	-0.06	-1.88
SC7S	-0.52	-0.84	-0.41	-0.38	0.53	0.08	-0.15	-0.26	0.30	0.42	0.42	-0.29
SN6S	-0.59	1.87	-0.06	0.07	0.02	1.05	0.12	-1.15	0.66	0.52	-0.74	-2.32
SC9	-0.36	-0.59	-0.04	-0.20	-0.01	0.47	0.43	0.00	0.77	-4.47	-0.36	-0.44
SCF	-0.59	0.48	-0.92	-0.08	0.38	1.51	-0.16	-0.07	0.69	0.60	1.10	-0.62
804872	1.04	-0.42	-0.58	3.96	-0.04	0.34	1.12	0.12	0.61	0.21	-0.83	-0.31
NMW	0.57	0.37	-0.02	1.82	0.56	-0.25	-0.71	-0.52	-0.12	-0.20	3.44	0.82
SMW1	4.47	0.02	-0.19	-1.04	-0.20	0.02	-0.73	0.19	0.14	-0.09	-0.56	-0.49
SMW2	0.67	0.52	1.05	-1.25	0.12	2.59	0.28	-0.57	0.37	0.20	0.66	1.27
SMW3	-0.27	-0.43	4.58	0.44	-0.02	-0.24	-0.04	-0.01	0.10	0.14	0.13	-0.56
SP1	-0.34	1.02	-0.44	-0.44	-3.38	-1.10	-0.15	1.17	0.38	-0.44	1.58	-0.72
SP2	-0.34	-0.37	0.05	0.25	-3.09	0.49	0.31	-0.74	-0.33	0.66	-1.07	1.76
NN0	0.05	0.48	-0.29	-0.48	0.49	-0.26	-0.44	-0.16	-0.04	0.34	-0.50	1.72
NC0	-0.14	0.20	0.15	0.43	0.19	-0.75	-0.82	-0.47	-1.87	-0.18	-0.98	1.16
NS0	-0.21	1.77	0.13	0.25	0.19	-1.64	-0.71	-0.74	0.47	0.39	-1.52	-1.03
NN3	-0.55	1.80	-0.40	-0.19	0.60	1.02	1.76	-0.08	0.18	-0.30	-0.65	1.32
NCSP3	-0.23	0.93	-0.28	0.17	0.75	-0.77	-0.63	-0.35	-2.49	-1.19	0.04	0.52
NS3	-0.34	0.54	0.20	0.11	0.79	0.15	0.02	4.40	0.20	0.43	-0.54	0.46
NNF	-0.19	1.13	-0.11	-0.76	0.73	-1.12	-0.62	-0.02	0.27	0.37	0.75	-0.19

Table C2. Factor scores for varimax-normalized principal component analysis of water chemistry data from July and October sampling trips.

Variable Name	Variable Meaning	Gather Method
L8_190109_TIR	Landsat 8 Thermal Infrared raster	Landsat tiles that had less than 1% cloud cover over
	value for January 9, 2019 (winter)	entire study area selected. Pixels are 30x30m. Values
L8_170824_B1red	Landsat 8 red color raster value	were calculated by running ArcGIS's zonal statistics
	for August 24, 2017 (summer)	as table on all fen polygons.
L8_170824_B2grn	Landsat 8 green color raster value	
	for August 24, 2017 (summer)	
L8_170824_B3blu	Landsat 8 blue color raster value	
	for August 24, 2017 (summer)	
L8_170824_TIR	Landsat 8 Thermal Infrared raster	
	value for August 24, 2017	
	(summer)	
NAIP17_Av_B1red	NAIP 17 aerial photography red	NAIP imagery with a 1m resolution. Values were
	color raster value	calculated by running ArcGIS's zonal statistics as
NAIP17_Av_B2grn	NAIP 17 aerial photography green	table on all fen polygons.
	color raster value	
NAIP17_Av_B3blu	NAIP 17 aerial photography green	
	color raster value	
Pit_NEAR_DIST	Distance to nearest gravel pit (in	Use ArcGIS near tool to find the distance to the
	m)	nearest pit/stream/road from each fen polygon
Stream_NEAR_DIST	Distance to nearest stream (in m)	border
Road_NEAR_DIST	Distance to nearest road (in m)	
SHAPE_Area	Fen Area (sq m)	Area of each polygon in GIS
Len_Parallel_BR	Fen length parallel to beach ridge	Measure polygon widest lengths parallel &
	axis (m)	perpendicular to beach ridge in GIS
Len_Perp_BR	Fen length perpendicular to	
	beach ridge axis (m)	
Aspect_Ratio_Len	Aspect ratio-length parallel over	Divide length parallel to ridge by length
	perpendicular	perpendicular
BR_CrossSecArea	Area of a cross section through	Generate profile across beach ridge using 1m DEM.
	the beach ridge (sq m)	Start and stop profile at upgradient and
		downgradient edges of ridge. Generate line (regional
		slope) between endpoints. Subtract regional slope
		from profile. Calculate area in each 1m increment
		and sum total area.
BR_Volume	Volume of beach ridge (cu m)	Multiply cross sectional area by length of fen parallel
		to beach ridge axis.
Regional_Slope	Regional slope of till surface	Slope of regional slope line generated in cross
	(m/m)	sectional area calculation
ksat_inten	Saturated hydraulic conductivity	In GIS, rasterize NRCS soil survey data for study area
	ot soil in the fen (um/s)	at 2m resolution. Values calculated by zonal statistics
		as table on each ten polygon
ksat_DG100	Saturated hydraulic conductivity	In GIS, create lines, all from south to north on
	of soil within 100m downgradient	upgradient and downgradient sides of all fen
1	of ten (um/s)	polygons. Butter lines on right side for upgradient

Table C3. Landscape description factors extracted for statistical analysis of beach ridge fens.

ksat_DG300	Saturated hydraulic conductivity	and left side for downgradient at 100 and 300m. Clip
	of soil within 300m downgradient	rasterized 2m resolution NRCS soil survey data by
	of fen (um/s)	buffers. Values calculated by zonal statistics as table
ksat_UG100	Saturated hydraulic conductivity	on each buffer polygon (for each fen)
	of soil within 100m upgradient of	
	fen (um/s)	
ksat_UG300	Saturated hydraulic conductivity	
	of soil within 300m upgradient of	
	fen (um/s)	
BR_avg_ksat	Saturated hydraulic conductivity	In GIS, rasterize NRCS soil survey data for study area
	of soil in the beach ridge (um/s)	at 2m resolution. Create polygon for each fen that
		encompasses only the beach ridge upgradient.
		Values calculated by zonal statistics as table on each
		beach ridge polygon
NLCD16_Per_Wood_	Percent of beach ridge covered	In GIS, use zonal histogram to count each land use
Shrub	by woods or shrubs.	type in the NLCD16 land use layer (30m resolution,
NLCD16_Per_Grass_	Percent of beach ridge covered	Landsat based) for each fen's beach ridge polygon.
Pasture_EmWetl	by grass, pasture, or emergent	Divide land use counts by total count to get percent
	wetland	area. Combine similar land uses.
NLCD16_Per_	Percent of beach ridge covered	
CultivCrops	by cultivated crops	
UTM15N_Easting	Easting (m) of fen center point in	GIS-generated coordinates of center point of all fen
	UTM Zone 15N coordinates (used	polygons.
	by MN)	
UTM15N_Northing	Northing (m) of fen center point	
	in UTM Zone 15N coordinates	
	(used by MN)	
Av_Surf_Elev	Average surface elevation of fen	Based on 1m DEMs. Values were calculated by
	(m)	running ArcGIS's zonal statistics as table on all fen
		polygons.
Avg_Dep_to_ConfAq	Average depth to confined	Identify 3 closest wells to each fen that penetrate a
	aquifer (ft)	confined aquifer. Use MN County Well Index
		stratigraphic logs to find depth to first confined sand
		greater than 5 ft thick. Average 3 depths.

Factor Factor Factor Factor Factor Factor Factor Factor Factor Variable 4 6 8 9 1 2 3 5 7 -0.19 -0.81 -0.13 L8_190109_TIR 0.00 0.20 -0.05 -0.13 -0.21 0.18 L8 170824 B1red 0.31 0.00 0.15 -0.05 -0.04 0.04 0.01 -0.01 0.83 0.05 -0.11 0.08 -0.23 0.04 -0.27 L8_170824_B2grn -0.23 0.02 -0.45 L8_170824_B3grn 0.14 0.06 0.38 0.00 0.06 -0.09 -0.23 -0.05 0.69 L8 170824 TIR 0.03 -0.14 -0.16 0.11 0.27 0.18 0.80 0.21 -0.05 -0.02 NAIP17_av_B1red 0.91 0.03 0.10 0.10 -0.01 -0.02 -0.10 0.21 NAIP17_av_B2grn 0.77 0.05 -0.12 0.04 -0.01 -0.05 -0.26 0.02 0.30 NAIP17 av B3blu 0.03 0.08 0.13 0.08 0.01 0.19 0.87 -0.01 -0.06 Pit NEAR DIST -0.28 -0.02 -0.22 0.15 0.34 0.05 0.56 0.11 -0.14 Stream_NEAR_DIST -0.12 0.55 0.08 -0.09 -0.27 0.34 0.01 -0.32 0.11 Road_NEAR_DIST 0.02 -0.31 -0.18 0.24 -0.09 0.18 -0.10 0.09 0.07 -0.02 0.02 -0.05 SHAPE_Area 0.04 -0.19 0.01 -0.06 -0.94 0.06 Len_Parallel_BR -0.08 0.21 -0.05 0.09 -0.07 -0.64 0.51 0.23 0.00 Len_Perp_BR -0.02 -0.02 -0.14 0.01 0.01 -0.90 -0.25 -0.07 -0.08 0.19 0.77 0.08 Aspect Ratio Len -0.19 0.19 0.11 -0.17 0.20 -0.01 BR CrossSecArea -0.09 0.13 -0.13 0.17 -0.04 0.01 -0.06 0.89 -0.03 0.00 0.03 -0.06 **BR Volume** -0.09 0.18 -0.11 0.13 -0.11 0.92 -0.30 Regional_Slope 0.04 -0.37 -0.13 0.40 -0.14 -0.06 0.05 0.33 ksat infen 0.72 -0.01 0.00 0.13 0.04 -0.10 0.09 0.13 0.18 ksat_DG100 0.07 0.15 0.11 0.12 0.87 0.03 -0.16 -0.14 0.03 ksat DG300 0.04 0.07 0.12 0.10 0.87 0.02 -0.16 -0.08 -0.03 ksat UG100 0.77 0.28 -0.05 0.21 0.16 0.29 0.07 0.07 -0.02 ksat UG300 -0.07 0.92 -0.01 -0.01 0.03 0.01 -0.06 0.18 -0.01 BR_avg_ksat 0.03 0.92 0.08 0.06 0.13 0.01 -0.04 0.10 0.09 NLCD16 Per Wood 0.53 0.18 -0.02 0.02 0.10 -0.07 -0.35 0.12 -0.26 Shrub NLCD16 Per Grass 0.19 -0.11 -0.03 0.88 0.06 -0.05 0.05 0.21 -0.05 Pasture EmWetl NLCD16_Per_CultivC 0.00 -0.15 -0.94 -0.09 0.04 -0.07 0.12 -0.02 -0.08 rops UTM15N Easting 0.40 -0.21 0.44 -0.13 0.13 -0.06 0.53 -0.21 -0.17 UTM15N Northing 0.04 0.31 0.79 -0.05 0.16 0.08 0.04 -0.08 0.21 0.15 Av_Surf_Elev 0.53 -0.30 0.22 0.10 -0.24 0.48 -0.01 -0.16 Avg_Dep_to_ConfAq 0.03 0.10 0.59 0.14 0.13 0.23 0.24 -0.16 -0.01 Expl.Var 3.25 2.84 2.00 2.69 2.07 2.27 2.33 3.60 2.49 Prp.Totl 0.12 0.10 0.09 0.06 0.09 0.08 0.07 0.07 0.08

Table C4. Factor loadings for varimax-normalized principal component analysis of all beach ridge calcareous and non-calcareous fens.

Factor Factor Factor Factor Factor Factor Factor Factor Factor Fen Case Calcareous? 8 9 1 2 3 4 5 6 7 -0.45 -1.40 CW01 -0.22 -0.17 0.59 -0.55 -0.94 -0.19 0.25 no CW02 1.40 -0.84 -0.05 -0.12 -0.96 0.27 -0.43 -0.11 -0.10 no CW03 0.65 2.41 -0.54 0.22 -1.07 -0.33 0.91 -1.63 -0.08 no -0.58 2.16 CW04 1.58 0.13 -0.30 0.04 -2.35 -0.03 1.13 no CW05 0.10 -0.74 1.02 -0.50 0.87 0.58 -0.05 -2.59 no -0.09 CW06 -0.22 -0.22 -0.79 -0.27 1.36 -2.58 -0.37 -0.18 0.32 no CW07 -1.12 -0.11 -0.84 -1.33 0.39 -2.07 -0.08 -0.48 1.52 no 0.75 CW08 -0.99 -0.84 -0.77 1.71 0.18 0.37 no -0.48 0.13 CW09 -0.09 -0.99 -4.22 -0.61 0.80 1.17 -0.67 -0.44 -0.61 no CW10 1.06 -0.41 0.21 0.05 -0.80 0.31 -1.21 0.17 -0.03 no CW11 no -0.11 -1.14 -0.81 -0.26 0.14 0.84 0.87 -0.20 -1.28 -0.53 CW12 -0.77 1.36 -1.50 -0.11 -0.21 0.46 -0.58 -0.58 no CW13 1.01 4.33 -0.60 -0.61 -0.85 -0.45 -0.66 0.89 -0.13 no CW14 -0.06 -0.22 -0.04 -0.69 -0.90 0.57 -0.42 -1.07 -1.07 no CW15 -0.39 -1.04 0.19 -0.14 -0.81 -0.89 1.00 -0.86 0.33 no CW16 -0.61 -0.61 -1.16 -1.61 3.98 0.49 0.17 0.29 2.81 no CW17 -0.42 -0.56 0.73 0.19 -1.33 -0.80 -0.46 -0.61 -0.28 no -1.12 CW18 0.52 0.68 0.69 1.72 -0.87 1.06 -0.48 -1.81 no CW19 3.78 no 0.14 -1.71 0.23 -0.75 -0.16 0.36 0.36 0.19 CW20 -2.10 -0.81 0.56 0.66 -0.42 0.13 -0.52 -0.32 -1.52 no CW21 1.93 -0.93 -0.66 0.77 2.60 0.95 0.30 -0.24 -0.19 no CW22 -0.21 -0.21 0.51 -0.25 -0.67 -0.92 -0.57 -0.13 0.09 no -0.39 CW23 -0.08 0.10 -1.49 1.62 1.00 -1.23 -0.50 -1.01 no CW24 -0.08 -0.52 0.96 -1.26 -0.10 -0.47 0.09 0.22 0.78 no CW25 0.21 -0.85 0.40 -1.15 -0.94 0.78 -0.05 0.67 no -1.04 CW26 -0.26 -0.18 -1.39 1.02 -0.51 1.12 -1.00 -0.37 -0.50 no Agassizyes -2.10 0.49 -0.38 0.31 -0.43 0.53 2.72 -1.06 -0.98 Nelson Agassiz-Olson yes -0.80 -0.28 0.15 1.10 -0.45 0.53 -0.58 -0.65 -0.23 WMA 0.14 -0.12 -0.01 -0.59 -2.32 2.20 0.43 -0.56 -1.01 Anna yes Gronseth Prairie -Akron 10 **CBS** Norman yes -1.10 -0.45 0.30 -0.89 -0.67 0.30 -0.43 0.03 -0.12 1 CBS Polk 1 1.63 0.40 0.57 -1.02 -0.54 0.41 1.21 -0.04 -1.00 yes CBS Polk 10 0.93 0.16 0.16 1.21 -0.30 0.46 0.39 -0.28 0.79 yes CBS Polk 11 1.29 -0.01 0.06 0.40 -0.63 0.50 0.67 -0.38 1.10 yes

Table C5. Factor scores for varimax-normalized principal component analysis of all beach ridge calcareous and non-calcareous fens.

CBS Polk 12	yes	0.36	-0.17	0.54	-0.83	-0.63	0.66	0.53	0.20	0.95
CBS Polk 2	yes	-0.77	0.59	-0.30	1.05	-0.72	0.25	2.80	-0.93	1.01
CBS Polk 3	yes	0.75	-0.35	0.36	1.09	-0.29	0.57	-0.04	0.16	0.50
CBS Polk 4	yes	1.92	-0.34	0.13	0.19	0.13	0.26	0.24	0.08	0.94
CBS Polk 5	yes	1.92	-0.55	1.09	-0.58	-0.67	0.35	0.07	0.31	0.31
CBS Polk 6	yes	1.18	0.07	0.37	-0.53	-0.75	0.61	-0.35	0.05	-0.45
CBS Polk 7	yes	1.56	0.17	0.24	-0.98	-0.80	0.59	-0.71	-0.05	-1.04
CBS Polk 8	yes	1.45	0.21	0.54	-0.76	-0.69	0.70	1.14	-0.04	0.61
CBS Polk 9	yes	0.80	-0.08	0.19	1.54	-0.95	0.73	0.60	0.07	0.62
CBS Red Lake	yes	0.61	-0.38	0.82	-0.94	-0.45	0.66	-0.33	-0.37	-0.87
1										
Chicog WMA	yes	-0.77	0.19	-0.40	-0.09	1.30	-0.83	0.09	-0.95	0.18
East-Central		0.20	0.22	0.10	0.65	0.11	0.27	0.27	0.19	0.62
Fast-North	yes	-0.59	0.25	0.10	-0.05	0.11	0.57	-0.57	0.18	-0.02
Chicog WMA	yes	0.15	0.36	-0.49	1.03	0.68	0.34	-0.77	-0.96	0.08
East-South										
Chicog WMA	yes	-0.04	4.32	-0.28	-0.19	0.60	-0.66	0.68	2.42	-0.99
West										
Felton Prairie	yes	-0.53	-0.81	-1.40	2.35	0.43	0.27	-0.54	1.95	0.96
Eelton Prairie	Ves	-0.45	1.83	-1 77	-0.16	-0.34	0.70	-0.96	-0.03	-0.03
County Land	, , , , , , , , , , , , , , , , , , , ,	0.15	1.00	1.77	0.10	0.01		0.50	0.00	0.00
Felton Prairie	yes	-0.05	0.24	-1.43	-0.86	0.01	0.28	-1.62	0.24	0.02
Felton WMA										
Felton Prairie	yes	-0.82	-0.93	-0.49	0.66	0.10	0.06	-0.27	7.00	-0.23
Flowing 24		1 46	0.15	0.80	0.02	0.02	0.11	0.21	0.60	0.83
Prairie	yes	1.40	-0.15	0.89	0.95	-0.05	0.11	0.51	0.00	-0.85
Green	yes	-0.73	-0.80	0.88	2.09	-0.77	0.84	-1.32	-0.12	-0.34
Meadow 22										
Green	yes	-1.11	-0.57	0.34	-0.71	-0.81	0.69	0.48	0.54	0.06
Meadow 26		0.65	0.47		0.62	0.04	0.05	0.40	0.45	0.00
Green Meadow 35	yes	-0.65	-0.47	0.03	-0.63	-0.24	0.05	-0.10	-0.45	0.23
Kertsonville	ves	-0.88	2.04	0.52	0.84	0.35	-0.52	-1.79	-1.52	0.07
WMA	,									
Kittleson	yes	0.41	0.05	-0.14	-0.41	0.52	-1.59	-0.01	-0.56	-0.44
Creek Mire										
Norden 18	yes	0.66	1.36	1.50	1.68	4.30	0.37	-0.13	-0.87	1.09
Onstad WMA	yes	-1.21	0.66	0.35	0.08	-0.34	0.15	2.65	-0.84	0.24
Pankratz	yes	-0.01	0.12	0.55	1.05	-0.97	-0.54	-1.16	-0.56	1.19
Prairie South		1.21	0.21	0.10	1.40	0.55	0.84	0.70	0.20	0.12
Trail:	yes	1.21	0.21	0.18	-1.49	-0.55	0.84	0.78	-0.26	0.12
Crookston										

Pembina	yes	0.78	-0.09	0.55	1.17	-0.85	0.72	1.54	0.15	0.46
Trail: TNC										
Rothsay	yes	0.59	-0.24	-1.54	1.55	-0.50	0.51	-0.07	-0.41	-0.82
Prairie -										
Prairie View										
33										
Rothsay	yes	0.97	-0.75	-1.80	-0.23	-0.32	-3.63	0.41	0.14	0.21
Prairie										
Tanberg 16										
Rothsay	yes	1.04	-0.65	-1.86	-0.26	-0.16	-1.32	0.03	-0.36	-0.44
Prairie										
Tanberg 9										
Rothsay	yes	-0.22	-0.42	-1.76	-0.86	-0.10	-2.39	0.05	0.21	-0.61
WMA - Akron										
4										
Sanders Fen	yes	-1.41	0.03	2.35	-0.65	0.60	-0.24	1.07	0.85	-0.77
North-a										
Sanders Fen	yes	-0.45	0.04	1.64	1.90	0.69	0.12	1.28	0.71	-0.40
North-b										
Sanders Fen	yes	-0.74	0.27	1.97	-0.46	0.28	-0.58	1.27	0.94	-0.54
South										
Spring Creek	yes	-2.19	-1.05	0.36	-1.25	-0.16	0.70	0.99	0.02	-0.82
25										
Tamarac	yes	-0.36	0.02	2.91	0.49	-0.96	-1.27	-2.67	0.59	1.21
River										
Thorson	yes	0.02	0.82	-0.16	-0.29	-0.28	0.63	-0.49	-0.38	0.42
Prairie WMA										
South -a		0.00	0.55	0.40	0.70	0.50	0.50	0.12	0.07	0.65
Inorson	yes	0.36	0.55	-0.42	-0.72	0.53	0.59	-0.12	0.27	0.65
South -b		0.67	1.20	0.12	0.50	0.67	0.57	0.52	0.64	1.00
Thorson	yes	-0.67	1.26	-0.13	0.59	-0.67	0.57	-0.52	-0.64	1.96
South a										
South -c		1 21	1.24	0.50	0.42	0.42	0.95	0.56	0.16	0.22
Drairio M/MA	yes	-1.21	1.34	-0.50	-0.42	-0.42	0.85	0.50	-0.10	0.22
South ad										
Town Hall	Ves	0.46	-0.61	-2.36	-0 50	0.34	0.60	0.05	0.33	-1.67
	yes	0.40	-0.01	-2.50	-0.59	0.54	0.00	0.05	0.35	-1.07
Viking 19	Ves	-0.33	0.17	1 /7	0.99	1 1 /	0.00	_2 1/	-0 58	-0.63
	yes	-0.32	0.1/	1.47	0.35	1.14	1.00	-2.14	-0.30	-0.03
VIKING 20	yes	-0.28	0.34	1.15	-0.56	-0.61	-1.94	-1.06	-0.32	-0.36
Viking Strip 4	yes	-0.11	1.71	0.63	0.22	0.04	-0.18	0.47	0.12	-0.03

Appendix D: Daily Water Level Fluctuations Analysis

Background and Methods

The water levels collected from the fen sites in this study have low-amplitude (~1 inch), high frequency fluctuations (ex. Figure 9, Figure 14, Figure 16Figure 17). To determine the source of these fluctuations, a multivariate principal component analysis was performed on the data.

The hydrograph data were analyzed as an average daily (midnight to midnight) signal. Records from the June/July transducer installations through the last day of August (growing season) were used. To find the average daily signal for each well, first the hydrograph signal from rainfall was subtracted. The rainfall signal was generated by taking a 24-hour moving average centered on each 15-minute observation. This moving-average hydrograph was subtracted from the raw hydrograph, leaving only non-rainfall-related fluctuations. After averaging this data from 15-minute time steps to hourly time steps, the resulting data were averaged for each hour of the day. This resulted in an average daily water level pattern given by 24 observations, one for each hour of the day, for each of 24 included wells. After the principal component multivariate analysis with a varimax normalized rotation (Davis, 2011), the resulting factors describe groups of wells that respond similarly on a daily basis, such as if they respond to evapotranspiration.

Results

The hydrographs were analyzed for patterns in their daily fluctuations during the growing season (pre-September 1). After removing the rainfall hydrograph signal and performing a principal component factor analysis on the average daily response for each well, three factors
(patterns) emerged (Figure D1, details in Table D1 at end of this appendix). Factor 1 describes 46% of the variance and is loaded by the wells in the sand apron just upgradient of the fen at both sites, the fen surface water at Sanders Fen, the beach ridge aquifer wells at Agassiz-Nelson Fen, the sand beneath the fen at Agassiz-Nelson Fen, and the surficial sands at the two off-fen nests at Agassiz-Nelson Fen. Factor 2 describes 27% of the variance and is loaded by the deep and intermediate wells at the off-fen nests at Agassiz-Nelson Fen. Factor 3 describes 25% of the variance and is loaded by the beach ridge aquifer wells at Sanders Fen and the wells in the sand below the fen and at the base of the peat at Sanders Fen. These high factor 3 loadings are negative.

Figure D1. Factor loadings for wells based on daily water level fluctuation analysis. Plot shows only factor 2 vs factor 1, but factor 3 wells make a distinct cluster as well.

The factor scores give an idea of the daily water level pattern experienced by each group of wells described by each factor (Figure D2, details in Table D2 at the end of this appendix). Since factor 3 variables loaded negatively onto the factor, a line describing negative factor 3's pattern is also included as this better matches the water level pattern followed by these wells. Factor 1 wells fluctuate with a period of 24 hours. Factor 2 and 3 wells fluctuate with both a 24 hour period and a shorter (approximately 12 hour) period.

Figure D2. Factor scores showing the daily pattern followed by each factor group of wells.

Power spectrums generated using a Fast Fourier Transform (FFT) on one well from each of the three factor groups are presented in Figures D3-D5. Well SC4, used for factor 1, has one major peak with a 24 hour period (frequency 0.04 hr⁻¹). Wells SC7D and w804872, used for factors 2 and 3 respectively, have 2 major peaks with periods of 12 and 24 hours (0.04 and 0.08 hr⁻¹ frequencies).

Figure D3. Fast Fourier Transform analysis for well SC4, representing factor 1.

Figure D4. Fast Fourier Transform analysis for well SC7D, representing factor 2.

Figure D5. Fast Fourier Transform analysis for well 804872, representing factor 3.

The daily water level fluctuations of the wells at Sanders Fen respond during the growing season to either to an evapotranspiration signal with a period of 24 hours and peaking in the early morning hours or a different mechanism potentially related to earth tides. Earth tides result in a twice-daily cycle from the Earth swelling and contracting because of the moon's pull. The wells described by factor 1 are near the surface or within the expected rooting zone and follow a daily pattern of high water levels in the morning and low water levels in the late afternoon, as expected for evapotranspiration. In the FFT power analysis, there is only one major peak with a period of 24 hours (Figure D3). Factor 3 describes the wells at the base of the peat and in the sand below the peat at Sanders Fen as well as those in the beach ridge at Sanders Fen. This factor follows the pattern that you would expect for the earth tides with two cycles per day and one cycle being larger in amplitude (Figure D4). However, these wells are seemingly too shallow for feeling earth tides. They also are deeper and less likely to see an evapotranspiration signal. These factor 3 wells also follow a statistically different pattern than

the deeper wells at Agassiz-Nelson Fen described by factor 2 which are more likely to see earth tides. However, both factor 2 and 3 wells have high magnitude peaks in the power spectrums (Figures D4-D5) for both 12 and 24 hour period cycles, typical of earth tides.

At Agassiz-Nelson Fen, all of the surface wells, described by factor 1, respond on a daily basis to evapotranspiration with a 24-hour period cycle (Figure D3), while all of the deep/intermediate wells at the nests, described by factor 2, respond differently with a two-cycle pattern likely related to earth-tides or pumping (Figure D4). This two-cycle pattern has one cycle with larger amplitude and the following with a smaller amplitude every day.

Well	Factor1 Factor2		Factor3
SC0	-0.28	-0.38	-0.88
SC1	0.84	0.27	0.44
SC4	0.98	-0.10	0.16
SC7S	-0.14	-0.54	-0.83
SC7D	-0.23	-0.52	-0.82
SC9	-0.56	-0.11	-0.81
SCF	0.93	-0.17	-0.22
SN0	-0.43	-0.35	-0.83
SN2	0.94	0.15	0.23
SN6S	-0.21	-0.55	-0.81
SN6D	0.03	-0.61	-0.78
NS0	0.89	0.33	0.29
NS3	0.93	-0.27	0.02
NC0	0.96	0.14	0.21
NCSP3	0.94	0.08	0.32
NN0	0.89	0.38	0.22
NN3	0.86	0.22	0.42
SP1	0.94	0.30	0.11
SMW1	0.10	0.91	0.36
w804872	-0.03	0.89	0.44
SP2	0.70	0.65	0.18
SMW2	0.35	0.87	0.27
SMW3	0.12	0.93	0.33
NMW	-0.15	0.94	0.31
DNRDeep3	0.96	-0.03	0.21
Expl.Var	11.61	6.68	6.21
Prp.Totl	0.46	0.27	0.25

Table D1. Factor loadings. Varimax normalized, principal component extraction.

Hour (Case)	Factor1	Factor2	Factor3	NegFactor3
0	-0.43	0.25	1.06	-1.06
1	-0.05	0.64	0.72	-0.72
2	0.26	0.88	0.43	-0.43
3	0.51	1.05	0.20	-0.20
4	0.80	1.28	-0.11	0.11
5	1.03	1.41	-0.35	0.35
6	1.21	1.35	-0.44	0.44
7	1.32	0.99	-0.23	0.23
8	1.29	0.24	0.29	-0.29
9	1.11	-0.68	0.78	-0.78
10	1.00	-1.26	0.84	-0.84
11	0.74	-1.74	0.87	-0.87
12	0.50	-1.97	0.32	-0.32
13	0.23	-1.68	-0.20	0.20
14	0.08	-1.30	-1.03	1.03
15	-0.07	-0.65	-2.15	2.15
16	-0.44	-0.14	-2.19	2.19
17	-0.81	0.16	-1.79	1.79
18	-1.31	0.14	-0.88	0.88
19	-1.66	0.17	-0.04	0.04
20	-1.74	0.20	0.58	-0.58
21	-1.49	0.17	1.05	-1.05
22	-1.23	0.19	1.18	-1.18
23	-0.84	0.29	1.09	-1.09

Table D2. Factor Scores. Varimax normalized, principal component extraction.