Today’s topic:
feedback in amplifiers



Feedback in amplifiers allows to construct almost ideal
amplifiers from the poorly controlled and very non-ideal
transistors.



5.1 Model of negative feedback
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“loop gain,”
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Bandwidth and linearity
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When considering 3dB bandwidth, that of the Aci(f) is usually much larger than
that of the open-loop gain A(f). Note that it requires that feedback coefficient
remains constant over the entire frequency range of consideration.

The previous model is linear, hence requires that the amplifiers in the linear range
. . u . . . .

of operation. Note * =[ , soin feedback amplifier A is exposed to signal that are

L times smaller than would the case without feedback, which makes it linear.



5.2.1 Stability criteria

Stability can be tested by checking that all poles of the closed loop system,

ACL(S} = AAEL
1+ A(s)p

are in the left-half plane. However, this method is not often used because obtaining A(s) with accuracy is diffi cult.

Fortunately, stability can be check by using the loop gain L(s)= A(s)B, which can be
obtained readily from circuit simulation.
Assuming the feedback amplifier has a constant and well-controlled gain, P=1.

Magnitude of L(s) L) = |A(o)B
Phase of L(s) Zl(w) = ZA(@)+ ZB = ZA(w)+0° = ZA(®)

A typical plot is shown in the next slide: please note the

IL(wy)| = 1 “unity-gain frequency™, @,

If ZL{w)>-180° , then the feedback amplifier is stable.
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5.2.2 Phase margin

Phase margin provides a quantitative measure of how close a feedback system is to
instability. It also gives the designer important information on the frequency and transient
response of the feedback amplifier.

Definition of PM:  PM = ~L(w,) + 180°

We generally require a large phase margin between 45 and 90 degrees so that the
feedback amplifier will not exhibit undesirable dynamic behavior. In fact, >60 degrees is
preferred to avoid large frequency peaking and transient ringing. (see example 5.5 page

212) N\

A

|A(w)]

|Ac (@] > 1/

(/) - —

|A(oy)| = 1/B
|A(@)] » (1/B) |A(@)] « (1/B)

= [Acu(®)| = (1/P) = [Ac(@)] = [A(o)|
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5.3 First and second order feedback system

A practical amplifier has many poles and zeros, but it is often sufficient to model it with a
simple first or second order transfer function.

Also, it is most important to accurately understand the amplifier’s response for frequencies
w<=wt, which determines the amplifier’s stability and in-band performance. Any
zeros/poles at frequencies w>>wt may be neglected.

In the plot of next slide, it can be seen that a first-order model is sufficient to model the
behavior of feedback amplifiers when wt << wp2, Wp3s, Wz, ...

A second-order model is preferred when wt is close to wp2, wWps, Wz, ...
For cases where wtis even larger than wpz2, wps, Wz, ..., even the second order model is not

accurate. But fortunately, these cases will have little phase margin and therefore are NOT
of interest in practical designs.
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5.3.1 First order feedback systems

A simple first-order model for the transfer function of a dominant-pole feedback amplifier, A(s) with dc gain L,
and dominant pole frequency ®m,, is given by

L(s) = — 0 (5.22)

C(1+8/m,)

It is clear that first order feedback systems are absolutely stable with 90 degrees of PM

for any Lo or wpa.

A
IL(w)| [dB )
(@) 14B] assuming m,>>my,,: IL{m)| =1 = L,
L, = | M/ g
| the unity-gain frequency o, is the frequency at which |L(w,)| = 1
: oy = Lyoyg,
0 dB wlpl NG > » for the case in which ® » m,,, L(s) = O
O
ZL() , | . .
0° I » o transfer function of the closed-loop amplifier
1== o B(1+S/m)
IPM . The —3dB frequency of the closed-loop amplifier is given by
ssoe Tl T T T v ® = ®
—idr = Uy
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Settling time

The settling time performance of integrated amplifiers is often an important design
parameter, which defines how fast the output settles to the steady-state and is related to

the step response.

Settling time is defined to be the time it takes for an amplifier to reach a specified
percentage of the steady-state value when a step input is applied.

-the step response of any first-order circuit is given by

L ] 1
Vﬂulf\t) = Vstap(l —-e t) T = = —
®_34n (4

Here, Ve, 1s the size of the voltage step. With this exponential relationship, the time required for the first-order
closed-loop circuit to settle with a specified accuracy can be found. For example, if 1% accuracy is required, then
one must allow e " to reach 0.01, which is achieved at a time of t = 4.67. For settling to within 0.1% accuracy,
the settling time needed becomes approximately 71. Also, note that just after the step input, the slope of the output
will be at its maximum, given by

d V -
—V,(t = Si=p 5.31
It () - (5.31)

t=10

May be subject to slew rate



Example 5.6 (page 216)

One phase of a switched-capacitor circuit is shown in Fig. 5.9, where the input signal can be modelled as a voltage
step and 0.1% accuracy 1s needed in 0.1 ps. Assuming linear settling, find the required unity-gain frequency in
terms of the capacitance values, C, and C,. For C, = 10C,, what is the necessary unity-gain frequency of the
opamp? What unity-gain frequency is needed in the case C, = 0.2C,?

assume the opamp has a dominant pole response with unity gain frequency o, (different

from the unity gain frequency of L(s), defined as w,) and large dc gain. Hence, its frequency response at midband
frequencies is well approximated by “®ia’
1 S_f

L(s) = (mj)( C, ) o = 0,C./(C, + C,).
- S C] + Cg

For 7t settling within 0.1 ps, we see that © must be less than 14.2 ns. Since 1 = 1/w,

W= IG](;GIIIM.I nsI

For the case in which C, = 10C,, a unity-gain frequency of 2m - 12.3 MHz is needed, whereas in the case of
C, = 0.2C,, m,, should be larger than 2w - 66.8 MHz.
i N
C,
I I
r& > e
I
= = I S/O)ia C1 I
I

(a) (b)
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The unconditional stability, predictable bandwidth, and predictable settling time of first-order systems are
strong incentives to ensure feedback circuits have a dominant pole and, therefore, may be approximated by the
single-pole model L

gic-p L(s) = 0

C(1+5/m,)



5.3.2 Second order feedback systems

Although first-order feedback system is best, practical feedback amplifiers generally have
more than one pole, as multiple single-stage amplifiers are usually needed to achieve a
large DC gain.

A general second-order feedback loop transfer function is,

L{S] - LU (5.34)

T (1+8/m,)(1 +5/ @)

It is assumed here that weq>Wp1.

A second order system is unconditionally (or absolutely) stable since a phase shift of -180
degrees is never reached. However, the Phase Margin may be so close to 0 depending on
LO, Wp1 and Weg.

At frequencies much greater than the dominant pole frequency, @ >> w,,, we see
that 1 + jo/m,, = jo/m,,, and so (5.34) can be accurately approximated by

(5.36) L(s) =

= As wi=Lowp1=AoBwp1 = Wtafd
S(1 +8/wgq)  S(1+5/my) /\

Dominant pole

Valid for first order

model Unity gain frequency of OpAmp




5.3.2 Second order feedback systems

The unity-gain frequency, o;, can now be found by setting the magnitude of (5.36) equal to unity after substituting
S = jm,. Once this is done and the equation is rearranged, one can write,

2
B(ﬂ'ta — 0O ]+(ﬂ] {53?)

Weq  Megq e

For the dominant pole special case in which the unity-gain frequency i1s much less than the equivalent nondomi-
nant pole frequency (i.e., m; « wgy), (5.37) may be simplified to

Oy = % i +[i)z ~ %‘ (5.38)

From (5.36), the phase shift, ZL(®), is found.
ZL(w) = —90° —tan ' (®/ meq) (5.39)
This equation implies that at the unity-gain frequency, @ = m,, we have
PM = ZL(m,)—(—180°) = 90° — tan~'(0;/ ¢,) (5.40)
and, therefore,
01/ Wgq = tan(90° - PM)

(5.41)
tan(90° - PM)w,,

= 0y



5.3.2 Second order feedback systems

Aci(s) = et His) = —Ke K
| 4 S 0o+ 170cg) & $2+(m—ﬂj5+mﬁ 1+ =2 +5—?
I+L, (1+ Lo)(@p0eq) l Q ®Q o
1+ L)/ o0 Ly O 0y SO
0 ALt , Lo i [ [
1/ @ + 1/ ®eq Oeq Meq jmeq kﬂ:u:,.q] See (5.36)
and (5.37)

Table 5.1 The relationship betw een PM, v,/ 0., Q fact or,
and percentage overshoot

Percentage
PM overshoot for a
(Phase margin) 0/ Meq Q factor step input
35° 0.700 0.925 13.3%
60° 0.580 0.817 8.7%
65° 0470 < 0.717 4.7% No freq. peaking
70° 0.360 0.622 1.4%
75° 0.270 < 0527 0.008% No overshoot
80° 0.175 0.421 -
85° 0.087 0.296 -

phase margin

should be at least 75°, again, given both process and temperature variations. Hence, a nominal phase margin of
80° to 85° is often targeted to account for these variations.



5.4 Finding loop gain

From what we learned before, we can now analyze feedback amplifiers represented in
small-signal models. In order to do so, we must cast the circuit of interest to the model
below.

- mm = o =
I
I
I
I
I
I
I
L
I

Chapter 5 Figure 16

Chapter 5 Figure 01

Unfortunately, this is often very difficult to do. The main difficulty is to identify the open-
loop forward amplifier A and sometime feedback network is difficult to discern as well,
especially some components are simultaneously involved in both forward amplifier and
feedback network.

For the inverting/non-inverting amplifier, where the OpAmp is not ideal, it is tempting to
conclude that A is simplify the voltage gain of the OpAmp, but when A=0, the close-loop
output is not 0 (due to division of Vs, Z1, Z2 and Zo, Z1). In fact, the real A depends on not
only OpAmp but also the above components.



5.4 Finding loop gain

Relatively speaking, find B is easier, as it is simply the inverse of the closed-loop gain.

Whereas there may be some ambiguity in defining A, the loop gain L is unique.

[f L is known and 3 is taken by definition to be the reciprocal of the desired closed-loop gain, rather than
trying to perform a rigorous analysis for A we can infer it from A = L/[. Therefore, our analysis of feedback
circuits will be based on a knowledge of [3, ours either by design or by inspection of a relatively simply circuit,
and from a knowledge of L which can be estimated using a systematic procedure described in Section 5.4.1.

In addition, the closed-loop frequency response can be obtained using loop gain only
without referencing to A as follows:

1 L(s
A 1. _Hs
au(S) B 1+L(s)



5.4.1 A generalized method to find loop gain

To find the loop gain of a feedback circuit, we break the loop, insert a test signal (either voltage or current) and see
what signal the loop returns to the other side of the break. The procedure is illustrated in Fig. 5.11. Specifically, for
any (small-signal) feedback circuit,

1. Set any independent sources in the circuit equal to zero, including the input source. Zeroing a voltage
source means replacing it will a short circuit. (A short circuit is an ideal voltage source of 0 V) Zeroing a
current source means replacing it with an open circuit. (An open circuit is an ideal current source with a
value of 0 A.)

2. Break the loop. Find the impedance at the break point, Z,, and terminate the loop with this impedance as
shown in Fig. 5.11.

3. Insert a test signal (either voltage, v,, or current, i,) into the loop at the break and find the returned signal:
either the voltage across Z,, v,, or the current through Z,, i,. The loop gain is then

L = Y (voltage test signals) or —!—r (current test signals). (5.53)
Vi i

The key step 1s 2. Although the loop may be broken anywhere, it 1s conve-
nient to do so right at an ideal voltage or current source so that the termi-
nating impedance plays no role in the result, and hence may be omitted.
Alternatively, one may chose a point in the loop where the terminating
impedance is easily found.

The loop gain obtained this way is an approximation as it neglects the possibility of signals
circulating in the opposite direction around the loop. It is reasonable as long as the forward
gain is much greater, which is generally the case for our feedback amplifiers to have large gain.
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Example 5.8 (page 223)

Find the loop gain, L(s), and closed-loop gain, Ag.(S), of the inverting opamp configuration shown in Fig. 5.10
where the load impedance, Z,, is infinite. Assume the opamp has a voltage gain A,, and an infinite input
impedance.

—L

Vout

+ |
s

-

N.

Chapter 5 Figure 10

1. The input source is zeroed by setting v, to ground.
2. The loop is broken at the opamp input terminals. This point is chosen because the input impedance there
is infinite, so finding Z, is trivial.

3. The test signal v, is injected into the new circuit, Fig. 5.12(b). The returned voltage is determined by
nodal analysis,

Z| v Z|
v, = “A(§)——vV L(s) = —— = A,(8)———
( }Z]+23+20 1 .'J| Z|+ZE+ZU

1 _Ls) _ _Z_ A.s)Z, -
B 1+L(s) Z, AUSZ +Z +Z,+Z,

Z,
Acu(s) = _Z—]

As long as A, » (£, + 2.+ Z,)/Z,,



Example 5.8 (page 223)

Vv, v,V
_l T_|_
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Vout



5.4.2 Non-inverting amplifier

As in the inverting amplifier, the voltage gain of the OpAmp Av(s) is generally NOT to be
considered as the open loop gain A(s) of the feedback amplifier, as the loading and non-
idealities of the OpAmp all have effects, especially the loading.

_|_
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Example 5.10 (page 227)

In order to determine the loop gain, we must analyze the circuit in Fig. 5.17. The loop 1s broken at the output
of the controlled-source A,, which models the opamp voltage gain. Since the termination impedance, Z,, is
inserted across an ideal voltage source, its value will have no effect on the analysis. The redrawn schematic at the
bottom of Fig. 5.17 clearly shows

. Z |4,
Ve = AlS)v = —Au{S}é[ L|| }[ Z, j|1'“"t

Z, ZL||ZQ+23+Z]||(ZS+Zi} Z.+Z+2Z,
(5.58)
. Z||Z,
L) = A2 | | < |
Lo\ Z||Zo+ Lo+ L)||(Zs+ £) |2+ £+ Z,
Z
L(s) = AlS)=—— = A/S)P If Z,»Z,,Z, and Z, « Z,, Zs
Z +2Z,
z, Opamp  Z,

I
+ | I @ Vout
Vs v, | Z |:| A, (s)v, | Z
r— - I S I Zout

Chapter 5 Figure 16



Z, v, = AfS)V, Zo
— 1 n Vout
e “\
Ve = 0 |, v, Zi[] Z, Vi 2,
e Z, - — — — 1
—1 ]
Z, ‘ \ Z,
Vi
- i v, = As)V,

Z;
QZ] &g @ Zﬁ(arbitrary)
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Example 5.14 (page 233)

I, o

—iE

Q. Q, —
Chapter 5 Figure 22
’\N\, break loop here \
Vgs,z
gm,lvgs,l : gm gs,2 % gm gs,3 r'ds,3

gm, ]Vgs, 1 rds, 1

gm,zvgs,z
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Amplifier negative feedback types

(¢) Parallel voltage feedback
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(d) Parallel current feedback



Some practical feedback network in amplifiers

In practice, negative feedback network consists of resistor or capacitors , whose
value is much more precise and stable than active devices (such as transistors).
Then amplifier characteristics mainly depends on feedback network, thereby

achieving precision and stability.

28

(c) Parallel voltage B= — = —-—
Ry



An example of feedback voltage amplifier

Amplifier
R, R,
AW—o Wy o—
2kQ 100 Q '
2F Rl‘ §5 kQ A,_.' Lo
= A,,=10*
v,
R,
R
CS
—O—@ O
=0 4 X; R,
Z e A o] =
~ O - O
et

Btregt

Real input and
output impedance
is different from
what is predicted
from the formula in
the ideal case. But
it is always a good
initial guess.

You might need to
try out multiple
iterations to
achieve a good
design.

29



