Basic OpAmp Design and
Compensation



6.1 OpAmp applications

Typical applications of OpAmps in analog integrated circuits:

(a) Amplification and filtering
(b) Biasing and regulation
(c) Switched-capacitor circuits
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The classic Two-State OpAmp

The two-stage circuit architecture has historically been the most popular approach to
OpAmp design.

It can provide high gain and high output swing.

It is an excellent example to illustrate many important design concepts that area also
directly applicable to other designs.

The two-stage refers to the number of gain stages in the OpAmp. The output buffer is
normally present only when resistive loads needs to be driver. If the load is purely
capacitive, it is not needed.
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The classic Two-State OpAmp

The load is assumed capacitive.

The first stage is a pMOS differential pair with nMOS current mirrors. Second stage
is @a common-source amplifier.

Shown in the diagram are reasonable widths in 0.18um technology (length all
made 0.3um). Reasonable sizes for the lengths are usually 1.5 to 10 times of the
minimum length (while digital circuits usually use the minimum).
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6.1.1 OpAmp gain

For low-frequency applications, the gain is one of the most critical parameters.
Note that compensation capacitor Cc can be treated open at low frequency.

gain of the first stage  Ayy = —Qmi(Faes || OFucs)  Gmi = /Zup{:m(¥] I, - fz“pcm[‘e“f’] Loias
A . h'i

2

The second gain stage is simply a common-source gain stage with a p-channel active load, Q, Its gain is given by

Avg = _gm'?(rdaﬁ ” rdST)
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(6.3)

Overall gain Av=Avi*Av2



Example 6.1 (page 244)

Find the gain of the opamp shown in Fig. 6.3. Assume the power supply is Vgp = 1.8V
and a purely capacitive load. Assume the process parameters for the 0.18-pm process in
Table 1.5.

Ing = EU MA l[}[ = lDz = l[}_'s, = ID4 = I[}se";z = {ij’ZWs)IDH = IUD HA
(Wh”'r(wj)-[[!_‘; = 300 ’.l:ﬂl

IDa = IDT-‘

g =g ,=130mA/N, and gy, = 3.12 mA/V.

.IL"1-|:|_,.- .l".l[.

Aul = _gml{rdsz ” rd54} = —244 VX"‘F? Av? = _ng{rdst rUE._'} = _195 V({,z‘v

It should be noted again that the hand
calculation using the approximate equations
above is of only moderate accuracy, especially
the output resistance calculation on ras.
Therefore, later they should be verified by
simulation by SPICE/SPECTRE.

However, the benefit of performing a hand

Bias circuitry Differential-input Common-source

first stage second stage calculation is to give an initial (hopefully good)
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design and also see what parameters affect the
gain.



6.1.2 Frequency response: first order model

At frequencies where the comp. capacitor Cc has caused the gain to decrease, but
still at frequencies well below the unity-gain frequency of the OpAmp. This is
typically referred to as Midband frequencies for many applications.

At these frequencies, we can make some simplifying assumptions. First, ignore all
other capacitors xcept Cc, which typically dominates in these frequencies. Second,
temporarily neglect Rc, which has an effect only around the unity-gain freq. of the
OpAmp. The resulting simplified circuit is shown below.
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6.1.2 Frequency response: first order model

The second stage introduces primarily a capacitive load on the first stage due to the compensation capacitor, Ce.
Using Miller’s theorem (Section 4.2.3), one can show that the equivalent load capacitance, C.,, at node v, is given by

Ceq = CG(I + Auz) =~ CCAV’: {64}

The gain in the first stage can now be found using the small-signal model of Figure 4.37, resulting in

V4

A'ul = U_ = —gmzuun {6-5}
1
Zoui = Tasa || s ll
eq
Viias 0—[* Qs For midband frequencies, the impedance of C,, dominates, and we can write
Vin+C ZUU‘H = : = |
1 Eceq SCCAUI
Vi o[C Q Q - v
I: :I A(s) = = =A, A, = A, 9 _ Om
v v, Vin sCcA,,  sCg
Using the above equation, we can approximate the
Unity-Gain frequencyv as follows:
¢ ¢ » Ay Vout .. ~ Om _ 2o _los
ta = = =
Qs_E“ I'ELQ4 L ) Cc Velncc Verncc
eq

- For a fixed wt, power consumption is minimized by
Chapter 6 Figure 04
small lo, therefore small Ve.



6.1.2 Frequency response: second order model

In the second-order model, it is assumed that any parasitic poles in the first stage are at frequencies much higher
than the wta and can therefore be ignored (except at the node V1).

R = rgesll Fae
Ci = Cao:+ Cavs+ G Cga2 and Cgas may be included
H: = lgsa ” Mas7

C, = Cur+Cas+ G Cgds may be included (Cegd7 may be lumped to Cc)

Assume Rc=0 at first, then gmlgm?H]HE(l _ S_Cf:j

A\r(s) — — Qm:‘
Vin l+sa+s’b

a=(C,+CR,+(C,+C-)R, +gn-RR.C;. b =RR(C,C,+C,C;+C,Cp)

Assume that the two poles are widely separated, |
then the denom. of Au(s) is D(s) = [1 N i) (1 N ij ~ 148 ,_S
v, Re Cc Mg g2 Wy Mg My
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6.1.2 Frequency response: second order model

The dominant pole, w,,, is given by o 1
"7 R,[C, + Co(1 +g.sR,)] + Ra(Cs + C)

|

I:qllclf}'“ + grn'-‘HE)
]

Jm-R,R.Cc

gm?CG
C,C,+C,C-+C,Ce

~ —Gm1
C,+C,
Zero, ,, 1s located in the right half plane and is given by @, = —Om;

1t

I

1]

o~

nondominant pole, ®,., is given by ®,, =

c

From the two poles, increasing gm7 is good to separate them more; also increasing Cc
makes wp1 smaller. Both make the OpAmp more stable.

However, a problem arises from the zero, as it gives negative phase shift in the transfer
function, which makes stability difficult. Making Cc large does not help as w: will reduce

too. Increasing gm7 helps at the cost of power. Wt<0.5wp2 for 65 degrees of phase margin.
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6.1.3 Slew rate

The maximum rate at which the output of an OpAmp can change is limited by the finite
bias current.

When the inputs change too quickly the OpAmp’s output voltage changes at its maximum
rate, called slew rate. In this case, the OpAmp’s response is nonlinear until it is able to
resume linear operation without exceeding the slew rate.

Such transient behavior is common in switched-capacitor circuits, where the slew rate is a
major factor determining the circuit’s setting time.

the step response that would be
expected from a linear system

A
-_— e e
the actual response to large steps is at first slew-rate
limited, with linear settling observed only at the end

A

Step
response -

slew rate

a small step response exhibits
Ck/ exponential (linear) settling

>

time
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Example 6.4 (page 249)

Consider a closed-loop feedback amplifier with a first-order linear settling time constant of T = 0.2 ps and a
slew rate of 1 V/ps. What is the time required for the output to settle when generating to a 10-mV step output
with 0.1 mV accuracy? What about a 1-V step output?

The amplifier will slew-rate limit whenever the slope demanded by linear settling exceeds the maximum imposed
by slew-rate limiting. For a step height V., linear settling is exponential.

Vo = Vaep(1—€77) (6.22)

The highest rate of change 1s observed right at the time of the step.

= Vaiep (6.23)

T

dv,
dt

_ dve
dt

max =1

So long as this maximum slope 1s less than the slew rate, slew-rate limiting is avoided. Hence, the maximum
step size that can be tolerated without slew-rate limiting is

Viiep.max < SR -1 =0.2V (6.24)
VoA
Case 1: 4.6t = 0.92 ps.
Y Case 2: note that linear settling starts

0.8V

when output Vo reaches 0.8V. Initially
| slew rate for (1-0.2)/SR=0.8us, then it
| ~In(0.1/1000)t = 1.84 ps. needs another —In(0.1/200) = 7.6 time
I
1

If no slew rate limiting constants. So total
> 0.8 us+ 7.6t = 2.32 us.

0.8 ps
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6.1.3 Slew rate

When the opamp of Fig. 6.3 is limited by its slew rate because a large input signal is present, all of the bias
current of Q; goes into either Q, or Q,, depending on whether v, is negative or positive. When v, is a large posi-
tive voltage, the bias current, I 55, goes entirely through Q, and also goes into the current-mirror pair, Q,, Q,. Thus,
the current coming out of the compensation capacitor, Cg, (i.e., [p4) is simply equal to I5s since Q, is off. When v;,
is a large negative voltage, the current-mirror pair Q, and Q, is shut off because Q, is off, and now the bias cur-
rent, [5s, goes directly into Cg. In either case, the maximum current entering or leaving Cg, is simply the total bias

current, Ios.”  (In fact, it requires the loe>Ios) Voo
SH = d"'u"'{,ut _ ]-GG||'|‘|EIP: _ ll:lf'! — 2]_|:.'| Vin O J
d t max CC CG CG Vm_o‘l Q1 QZ
vy Cl3lc vy
. 2l @ Il
From first 0p = 9w —— gR = £9% ~
order model © Gemi > 0Vou
Qa‘%|__|%f)4l =Om1 Vin
Wh = = |
ngll = JZHDCUN(_J TDI 2IDI Chapter 6 Figure 04
L/, —> SR = (e = Vefflmm

J21,Co (W /L), I,

v _ ’\/ 2ID|_
affl =
1, Co (WL,

Since stability demands that ®,; be lower than w., the only ways of improving the slew
rate for a properly-compensated two-stage CMOS opamp is to increase V gy, 0F 0.

Assuming a fixed power consumption, and hence fixed bias currents, increasing Vi, improves the slew rate (6.30)
and helps to minimize distortion, but also lowers the transconductance of the input stage which decreases the dc

gain (6.1), and increases the equivalent input thermal noise (see Chapter 9).



6.1.4 nMOS or pMOS input stage?

The choice depends on a number of tradeoffs.

First, the gain does not seem to be affected much to first order.

Second, have pMOS input stage allows the second stage be nMOS common-source
amplifier to that its gm can be maximized when high frequency operation is important, as
both wp2 and wta are proportional to gm. (gm of nMOS is larger under the same current and
size).

Third, if the third stage of source follower is needed, then an nMOS version is preferable as
this will have less voltage drop. (but it is not used when there is only capacitive load).

Fourth, noise is a concern. Typically, pMOS helps reduce the noise.

In summary, when using a two-stage OpAmp, the pMOS input stage is preferred to
optimize wta and minimize noise.



6.1.5 Systematic offset voltage

When designing two-stage OpAmp, the sizes of transistor has to be carefully set to avoid
inherent or systematic input offset voltage.

When input differential voltage is 0, Ves7 should be what is required to make Io7 equal to

]
ID6. EIDn

Vas, =
S | iaCox(W /L),

+ Vi,

Also, note that Ves: = Vps; = Vgas

Vess = | 2loq + Vi
Af HnGox(W/ L),
Bias circuitry Differential-input Common-source
first stage second stage
J 2 I D4 — ’\/ 2 l Dé ID4 _ IDn Chapter 6 Figure 03
1, G (W/L), U, Co (W /L) (W/L), (W/L)-

Also oo o o _ _(W/L),
oo Toe/2  (W/L)/2

Finally we see that the necessary condition to ensure that no input-offset voltage is present is

(W/L), _ ,(W/L)
(W/L),  (W/L)s

By meeting these constraints, one can achieve a smaller offset voltage (it may still exist
due to mis-match of transistors).



6.2 OpAmp compensation

Optimal compensation of OpAmps may be one of the most difficult parts of design. Here a
systematic approach that may result in near optimal designs are introduced that applies to
many other OpAmps.

Two most popular approaches are dominant-pole compensation and lead compensation.

IL(w)|
Ap S oo A further increase in phase
margin is obtained by lead
compensation which introduces
a left half plane zero at a
frequency slightly greater than
the unity gain frequency wt. If
done properly, this has minimal
| | Dominant-pole + effect on wt but gives an
49 | 0, Lead compensation additional 20-30 degrees of
_\ T > phase margin.
N I — R nase margin ater
% Idominant—pole and
180° r‘.‘ _____ lead compensation
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6.2.2. Dominant pole compensation

Z,
= L(s)= A[S)
{ ¢ 2+ 24,
The capacitor, Cg, controls the dominant first pole, (i.e., @), and
= Z Z, thereby the loop’s unity-gain frequency, ;.
my = I-umpl = Bgm:/Cc (6.42)

Hence, by properly selecting the value of C¢ dominant-pole compensation can be achieved.

Especially if the load capacitor C. dominants so that the second pole wp:
is relatively constant when Cc changes (see slide 10).

M, = ! O = 9m:Co o, = 9w
ol R,[C, + Ca(l +gm:R2)] + RA(C, + Cp) C,C,+C.C.+C,C, Co
= l —~ gm‘?
HICC{I + ngHg) = C1 + C:
|

¢

~ gm:R,R.Ce



6.2.2. Lead compensation

Wy = ] Wy = gm?CC W, = =L
R/[C, + Co(1 +gmR.)] + Ry(C, + Co) CiC;+C;Cc +CiCe Ce
o~ l — gm?
R, Co(1 + gm:R:) - C,+0GC,
- ]
~ gmiRR.Co

Lead compensation is achieved using Re. If the small-signal model of Fig. 6.5 is reanalyzed with a nonzero
Rc, then a third-order denominator results. The first two poles are still approximately at the frequencies given by
(6.19) and (6.20). The third pole is at a high frequency and has almost no effect. However, the zero 1s now deter-
mined by the relationship |

T Co(1/gm - Ro)
This results in a number of design opportunities:
1. One could take R; = 1/9,.-
2. One can make Rc larger so that w: cancels the non-dominant pole (pole-zero
canceling), this requires: HG::—L(I+C‘+Cﬂ
Om? Ce
Unfortunately, C, is often not known a priori, especially when no output stage is present.
3. The third way is to take Rc even larger so that it is slightly larger than the unity gain
frequency that would results if the lead resistor were not present. For example, if the
new w: is 70% higher than wt ®, = 1.7a, it will introduce a phase lead of tan"'(1/1.7) = 30°.

Assuming Rg>> (1/gn), then o, = 1/(RcC¢).  Recall ®;, = Bgm/Ce.,
|

L.7Bgm,

choose R according to R =




6.2.2. Lead compensation

Finally, the lead compensation resistor R may be replaced by a transistor operating in the triode region, as
illustrated in Fig. 6.10. Transistor Q, has V5 = 0 since no dc bias current flows through it, and therefore Q, is

deep in the triode region. Thus, this transistor operates as a resistor, Rg, with a value given by

Rc = rgew = ] (6.48)
UHCQx(%) Vaffu
4
QG QB
pr o— pr o—
*—0 Vout Vgg ¥—0 Vout
RC CC Qgi CC
Q7 QT

[t should be noted here that r,, indicates the drain-source resistance of Q, when it
is in the triode region as opposed to the finite-output impedance of Q, when it is
in the active mode. The same notation, ry., 1s used to indicate the drain-source
resistance in both cases—whether the transistor is in the active or the triode
region. One simply has to check which region a transistor is operating in to
ensure that the correct equation is used to determine ..



6.2.2. Summary of Lead compensation

This approach leads to the following design procedure for compensation of o = 9m:Ce
a two-stage CMOS opamp: P2 = C,C,+C,C.+C,C,
o, = Lywy = Pgmi/Ce ~ 7
C, +G,

1. Start by choosing, somewhat arbitrarily, Gt = (BQm:/9m:)C.. This initially places the loop’s unity gain
frequency (6.42) approximately at the frequency of the second pole (6.20), where 1t has been assumed that
the load capacitance G, is dominant.

2. Using SPICE, find the frequency at which a —125° phase shift exists. Let the gain at this frequency be
denoted A'. Also, let the frequency be denoted ;. This is the frequency that we would like to become the
unity-gain frequency of the loop gain.

3. Choose a new C so that », becomes the unity-gain frequency of the loop gain, thus resulting in a 55°
phase margin. (Obtaining this phase margin is the reason we chose —125° in step 2.) This can be achieved
by taking C¢ according to the equation

This make w: smaller while wp2

relatively constant if C. dominates

It might be necessary to iterate on C: a couple of times using SPICE.

Ce = CLA" <— (6.49)

4. Choose R according to

Re = ——
1.?{1)105

(6.50)

This choice will increase the phase margin approximately 30° resulting in a total phase margin of approx-
imately 85°. It allows a margin of 5° to account for processing variations without the poles of the closed-loop
response becoming real. This choice is a lso almost optimum lead compensation for almost any opamp
when a resistor is placed in series with the compensation capacitor. It might be necessary to iterate on Rg



5.

If, after step 4, the phase margin is not adequate, then increase Cg while leaving Ry constant. This will
move both m; and the lead zero to lower frequencies while keeping their ratio approximately constant,
thus minimizing the effects of higher-frequency poles and zeros which, hopefully, do not also move to
lower frequencies. In most cases, the higher-frequency poles and zeros (except for the lead zero) will not
move to significantly lower frequencies when Cg is increased.

The final step is to replace R by a transistor. The size of the transistor can be chosen using equation
(6.48), which is repeated here for convenience:

Ro = fee = ‘ (6.51)

Finally, SPICE can be used again to fine-tune the device dimensions to optimize the phase margin to that
obtained in steps 4 and 5.



Example 6.7 (page 258)

An opamp has an open-loop transfer function given by

Ayl +8/m,)
(I +s/ o, )(1+s/m,)

A(s) =

(6.52)

Here, A, is the dc gain of the opamp and ®,, ®,, and o, are the frequencies of a zero, the dominant pole, and the
equivalent second pole, respectively. Assume that @, = 27 x 50 MHz and that A, = 10*. The opamp is to be
used in a unity-gain configuration so that p = land L(s) = A(s).

a. Assuming m, — =0, find ®,, and the unity-gain frequency, m{, so that the opamp has a unity-gain phase
margin of 559,

b. Assuming o, = 1.7m; (where oy 1s as found in part (a)), what is the new unity-gain frequency, m,? Also,
find the new phase margin.

Ayl +5/m,)
(8/ g )(1 +8/m,)

ZA(jo]) = —90° —tan (] /m,) = —125°

® >> My, L(s)= A(s) =

(a) For m, — =

tan (o} /®,) = 35° = = 2.2 x 10*rad/s = 2r x 35 MHz
Ag = | i J1 + (0] ®,)?
. 7 - :’fﬂp| =
(0] /1)1 + (0] /@,)? A,
Or we can simply estimate wp1 equal to wt'/Ao=3.5kHz

= 2nt x 4.28 kHz




Example 6.7 (page 258)

An opamp has an open-loop transfer function given by

Ayl +5/m,)

A(s) =
(1+8/m,)(1 +8/m,)

(6.52)

Here, A, is the dc gain of the opamp and ®,, ®,, and o, are the frequencies of a zero, the dominant pole, and the
equivalent second pole, respectively. Assume that @, = 27 x 50 MHz and that A, = 10*. The opamp is to be
used in a unity-gain configuration so that p = land L(s) = A(s).

a. Assuming m, = =, find ®,, and the unity-gain frequency, ®y, so that the opamp has a unity-gain phase
margin of 55°.

b. Assuming o, = 1.7m; (where oy 1s as found in part (a)), what is the new unity-gain frequency, m,? Also,
find the new phase margin.
| Al +8/0,)

== l. L =A =
©77 0 L(s)= Al9) (s/@,,)(1 +S/®,)

(b) First, we set
o, = 1.70] = 27 x 59.5 MHz

To find the new unity-gain frequency, setting |A(jo,)| = 1
Ayl + (0 m,)° -1 > = AumleI + (my/w,)?
(0/@p) 1+ (0/ ®,) J1+ (0 0,)

m, = 2m x 39.8 MHz.

ZA(jay) = —90° + tan ](m1f’mz) —tan (0,/®,) = —95° a phase margin of 85°



6.2.3 Making compensation independent or
process and temperature

o = Im! In a typical process, the ratios of all gms remain relatively constant over
c process and temperature variation since the gms are all determined by the
gy = 9w same biasing network. (/s is relatively constant tool)

C.i+C, Also, mostly the capacitors also track each other or remain relatively
constant.
. i _ W, = 1
the lead zero is at a frequency given by Cc(1/gm: — Re)

Thus, if Re can also be made to track the inverse of transconductances, and in particular 1/g,,-, then the lead
zero will also be proportional to the transconductance of Q,. As a result, the lead zero will remain at the same
relative frequency with respect to @, and ®,,, as well as all other high-frequency poles and zeros. In other
words, the lead compensation will be mostly independent of process and temperature variations.

I
MHCDD{(W’K LJ‘JVETf*J

recall that R is actually realized by Q, and therefore we have Ro = foso =

grnT = FIHCDM(W"JL}TVEII?
Thus, the product R¢g,,7, which we want to be a constant, is given by Regn, = (W/L)7V e
Cdam? =

ally realized by Q,, and therefore we have (W/L)sVens

So then we need to make sure that Ven?f’VEff; is independent of process and
temperature variations. It may be made constant by deriving Vess from the same
biasing network used to derive Vas7. (see the circuit in next slide)



First, we need to make Va=Vb, which is possible is Veff13=Veff7, i.e.

J 215, ~ J 251 I, _ (W/L),

HaCo( W/L), 1, Co W/L) s I,  (W/L);

Also note the ratio Ip;/Ip,s is set from the current mirror pair Q,, Q,,, resulting in lo; _ (W/L)
IUH (W’KL]II

Thus, to make Veiz = Venz, we need to satisfy the following relationship: (W/L),  (W/L),
(W/L);  (W/L),s

The note that once Va=Vb, then Ves12=Vaess, which mean Veff12=Veifo,

Q Q / 2053
Vbias 11|E15 6I 45 Ve{{,-. _ Veffl} _ h anox(WfL}H _ (WKL}D
Verto. Ve J 21510 V(W/L)s
41 anﬁx(w"‘l—}lz
Q12 _
_||:6 Imz = IDI31
—t V, So finally, we have
—i5° k2 T
Q5 | R.g.. = (W/ L)V o5 _ (W/L); (W/L),,
(W/L)oVeaio (W/ L))o\ (W/L), s
- 4|:+18
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