Noise and linearity analysis
and modeling



To develop good analog circuit design techniques, a basic understanding of noise is
required. Noise is especially important in OpAmps, filters and converters.

In this Chapter, we focus one inherent noise as opposed to interference noise. The
later is a result of unwanted interaction between the circuit and the outside world or
different parts of the circuit. Interference noise may or may appear as random signals,
such as power supply noise or coupling noise between wires, but usually they can be
significantly reduced by careful wiring and layout.

In contrast, inherent noise refers to random noise signals that can be reduced but never
eliminated since this noise is due to fundamental properties of the circuits. It is only
moderately affect by circuit wiring and layout. However, inherent noise can significantly
reduced through proper circuit design, such as sizes, power, circuit topology etc.



9.1 Time-domain analysis

Since inherent noise is random in nature, we can use statistics to deal with random
signals.

Throughout this Chapter, we will assume that all noise signals have a mean value of O,
which is valid in most physical systems.
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9.1.1 RMS value

Consider a noise voltage, v,(1), such as that shown in Fig. 9.1, or a noise current, i,(t). The rms, or root mean
square, voltage value is defined’ as

1/2

Vn{rms} = [%I;Vﬁ(t} dti| (9])

where T is a suitable averaging time interval. Typically, a longer T gives a more accurate rms measurement. Sim-
ilarly, the rms current value is defined as

Loims) = [_lrﬂiﬁ{t) dt]j? (92)

The benefit in knowing the rms value of a signal is that it indicates the normalized noise power of the signal.
Specifically, if the random signal v (1) is applied to a 1-€ resistor, the average power dissipated, Py, in watts,
equals the normalized noise power and is given by

2
Pdiss = Vﬂﬁ = Vifrms] (93}

1 Q



9.1.2 SNR

The signal-to-noise ratio (SNR) value (in dB) of a signal node in a system 1s defined as

SNR = 10 log| 202l power | g
noise power

Thus, assuming a node in a circuit consists of a signal, v,(t), that has a normalized signal
2 . . 2 . .
power of Vims, and a normalized noise power of Vs, the SNR is given by

SNR = 1(}I0g{vg['m“} = 20 lng{v*”“s’]dB (9.6)
V?

nirms) n{rmsj

Clearly, when the mean-squared values of the noise and signal are the same, then

SNR = 0 dB.



9.1.3 Units of dBm

Although dB units relate the relative ratio of two power levels,
it 1s often useful to know a signal’s power in dB on an absolute
scale. One common measure 1s that of dBm, where all power
levels are referenced by 1 mW. In other words, a 1-mW signal
corresponds to 0 dBm, whereas a 1-pW signal corresponds to
~30 dBm. When voltage levels are measured, it is also com-
mon to reference the voltage level to the equivalent power dis-
sipated if the voltage is applied across either a 50-Q ora 75-Q
resistor.

EXAMPLE 9.1

Find the rms voltage of a 0-dBm signal referenced to a 50-€) resistor. What is the level in dBm of a 2-volt rms signal?

Solution

A 0-dBm signal referenced to a 50-Q) resistor implies that the rms voltage level equals

Vims) = (50 Q) x 1 mW = 0.2236 V (9.7)
Thus, a 2-volt rms signal corresponds to
ZUIGg( 2.06] = 19 dBm (9.8)
0.223

and would dissipate 80 mW across a 50-Q resistor,



9.1.4 Noise summation

Define v, (t) as v, (1) = v, (1) + v..(1)

where v,,(1) and v,,(t) are two noise sources with known rms values V., ms, and V. ms), respectively.

2 1 2 2 2 2
Viaims) = 2o [Vai®) + VasOT At = Vismey + Vasime + [V (OVns(t) it

1
7/ oV OVea(t) dt

define a correlation coefficient, C, as

-1<C <1.

l"“'..n1-:rn*|s:ul"'arrl.a{rms.]

2 2 3
vnu-:rms: = Vn]-:rms: + Vn:trms: + zcvnmmmvn:“ms}

In the case of two uncorrelated signals, the mean-squared value of their sum is given by

-

3 ¥
Vno{rma] = an{rms] + l1||"'.lrl’_*[rr-r'la]

Vi) g
VaolD

Vna(1) i (1) ina(t)
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EXAMPLE 9.2

Given two uncorrelated noise sources that have Vi ms, = 10 pV and V5ms, = 5 puV, find their total output
rms value when combined. If we are required to maintain the total rms value at 10 pV, how much should Vs
be reduced while Vs, remains unchanged?
Solution
Using (9.14) results in

Vigams = (1074 5%) = 125(pV)’ (9.16)

which results in V gms, = 11.2 pV.
To maintain Vi gms, = 10 pV and Vi 5msy = 5 pV, we have

102 = vi]{rms}"' 52 (9.17)

which results in Vs = 8.7 pV. Therefore, reducing V ;.ns by 13 percent is equivalent to eliminating
V nairme; altogether!

The above example has an important moral. To reduce overall noise, concentrate on large noise signals.



9.2 Freqguency domain analysis

As with deterministic signals, frequency-domain techniques are useful for dealing with
random signals such as noise.



9.2.1 Noise spectral density

Although periodic signals (such as a sinusoid) have power at distinct frequency locations,
random signals have their power spread out over the frequency spectrum. A noise spectral
plot is useful to understand the power distribution of the noise signal.

In the plot (a) below, the vertical axis is a measure of the normalized noise power (mean
squared value) over a 1-Hz bandwidth at each frequency point. For example, the
measurement at 100Hz indicates the normalized power between 99.5Hz and 100.5Hz is
10 (V).

Vi)
A V() A
1,000 31.6
100 J Spectral density v 104 Root spectral density
@Y 10l N JAz 3.16 1
Hz 1.0 ! 1.01
————\—> —t——1
0.1 1.0 10 100 1,000 (Hz) 0.1 1.0 10 100 1,000 (Hz)

(a) (b)
Chapter 9 Figure 03



9.2.1 Noise spectral density

Thus, we define the noise spectral density, V;(f), or in the case of current, I(f), as the average normalized
noise power over a 1-Hz bandwidth. The units of V(f) are volts-squared/hertz, whereas those of Ii(f} are amps-
squared/hertz. Also, Vi(f) is a positive real-valued function.

[t is often convenient to plot the square root of the noise spectral density when we deal with filtered noise.
Taking a square root results in V,(f), as shown in Fig. 9.3(b). We will refer to V(f) as the root spectral density
which is expressed in units of volts/root-hertz (i.e., V/./Hz ). In the case of current noise, the resulting units are
amps/root-hertz. Note that the horizontal axis remains unchanged although there is a root-hertz factor in the
vertical axis.
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9.2.1 Noise spectral density

Since the spectral density measures the mean-squared value over a 1-Hz band-
width, one can obtain the total mean-squared value by integrating the spectral density
over the entire frequency spectrum. Thus, the rms value of a noise signal can also be
obtained in the frequency domain using the following relationship:

Vaemsy = [, Va(h df (9.19)

More generally, the rms noise within a specified frequency range is obtained by integrating the noise spectral den-
sity over that frequency range. For example, the rms voltage noise over the frequency range f, <f<f, is

[REGEL (9.21)

Finally, V() is rigorously defined as the Fourier transform of the autocorrelation function of the time-

domain signal, v,(1).



9.2.2 White noise

One common type of noise is whife noise. A noise signal is said to be white if its spec-
tral density 1s constant over a given frequency. In other words, a white noise signal
would have a flat spectral density, as shown in Fig. 9.4, where V() is given by

Vio(f) = Vi (9.22)

and V,, 1s a constant value.

It appears that white noise has infinite power, but this is not happening in practice as a
finite capacitance is always present to band-limit the noise.
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9.2.3 1/f or flicker noise

Another common noise shape is that of 1/f or flicker, noise.” The spectral density, V(f), of 1/f noise is approxi-

mated by

-

Vi(f) = kT (9.23)

where k, is a constant. Thus, the specitral density is inversely proportional to frequency, and hence the term “1/f
noise.” In terms of root spectral density, 1/f noise is given by
V() = K (9.24)
J
Substituting (9.23) into (9.21) gives the power of a 1/f noise source over a finite frequency range f, <f <f,.
lﬁkf, f
(=t = kgln[—?] (9.25)
" fy
Hence, the noise power in every decade range of frequencies is equal to kiln(10) = 2.3k3. Integration of 1/f

noise all the way down to de yields infinite power, but in practical cases, finite and reasonable values are obtained

even when the lower limit of integration is very low.
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9.2.4 Filtered noise

Consider the case of a noise signal, V,(f), being filtered by the transfer function A(S), as shown in Fig. 9.6.
Here, A(s) represents a linear transfer function as a result of some circuit amplification, filtering, or both. The
following relationship between the input and output signals can be derived using the definition of the spectral
density.

Vaof) = |A(j27)|V(f) (9.26)

Viof) = [AG27hIVa(f) <—— Transfer function shapes

total output mean-squared value is given by me,,mm = I:|A{j2 rcf)lj‘v'ﬁi{f} df the root spectral density

V2t Veof) = IAG27H]°V7i(h)
e A >y f) = |AG22h| Vo ()

Chapter 9 Figure 06

When multiple uncorrelated noise are filtered and summed together:

Vaih) o—pl As(s)

1/2
Uncorrelated Via(f) o—p Ax(S) Vo) = [ Z |Ai(j2nf)|2Vﬁi(f)J

noise sources i=1,2,3

Vis(f) o—p As(S)
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9.2.5 Noise bandwidth

noise bandwidth of a given filter is equal to the frequency span of a brick-wall filter that has the same rms out-
put noise as the given filter has when white noise is applied to both filters, assuming the same peak gain for
both filters. In other words, given a filter response with peak gain A, the noise bandwidth is the width of a rectan-
gular filter that has the same area and peak gain, A, as the original filter.

Vﬁo{rms‘] = Ilh df = Viwfu arctan(ij = Vourthy f, = ﬂ_f'i'
0 37 f 2
1 + (—j ol 2
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The advantage of knowing the noise bandwidth of a filter is that, when white noise is applied to the filter
input, the total output noise mean-squared value is easily calculated by multiplying the spectral density by the
noise bandwidth. Specifically, in the first-order case just described, the total output noise mean-squared value,

2 .
Vioirmsy 18 €qual to

Ve = Vaude = Vau E)fy (9.41)



9.3 Noise models for circuit elements

There are three main fundamental noise mechanisms: thermal, shot, and flicker.

Thermal noise is due to the thermal excitation of charge carriers in a conductor. This noise has a white spec-
tral density and is proportional to absolute temperature. It is not dependent on bias conditions (dc bias current) and
it occurs in all resistors (including semiconductors) above absolute zero temperature. Thus, thermal noise places
fundamental limits on the dynamic range achievable in electronic circuits.

Shot noise This noise occurs because the de bias current is not continuous and smooth but instead 1s a

result of pulses of current caused by the flow of individual carriers. As such, shot noise is dependent on the de bias
current. It can also be modelled as a white noise source. Shot noise is also typically larger than thermal noise and
1s sometimes used to create white noise generators.

Flicker noise is the least understood of the three noise phenomena. It is found in all active devices as well as
in carbon resistors,” but it occurs only when a dc current is flowing. Flicker noise usually arises due to traps in the
semiconductor, where carriers that would normally constitute de current flow are held for some time period and
then released. Flicker noise is also commonly referred to as 1/f noise since it is well modelled as havinga 1/f°
spectral density, where o is between 0.8 and 1.3. Although both bipolar and MOSFET transistors have flicker
noise, it is a significant noise source in MOS transistors, whereas it can often be ignored in bipolar transistors.



9.3.1 Resistors

The major source of noise in resistors is thermal noise. As just discussed, it appears as white noise and can be
modelled as a voltage source, Vg(f), in series with a noiscless resistor. With such an approach, the spectral density
function, Vi(f), is found to be given by

Va(h) = 4kTR (9.47)

where k is Boltzmann’s constant (1.38 x 10 JK''), T is the temperature in Kelvins, and R is the resistance value.

Rasisinr
R
L 2o _ AKT
%H Vi) = 4kTR R YREUES R
[ Moisalass)

An alternate model can be derived by finding the Norton equivalent
circuit. Specifically, the series voltage noise source, Vg(f), can be
replaced with a parallel current noise source, Ix(f), given by

Va(f) _ 4kT

[+(f) =
a(f) =

(9.49)




9.3.2 Diodes

Shot noise is typically the dominant noise in diodes and can be modelled with a current
source in parallel with the small-signal resistance of the diode, as Fig. 9.11 shows. The

spectral density function of the current source is found to be given by
I = 2ql, (9.50)

where q is one electronic charge (1.6 x 107" C) and 15 is the dc bias current flowing through the diode. The
small-signal resistance of the diode, ry, is given by the usual relationship,

r, = KL (9.51)
qlo

The Thévenin equivalent circuit can also be used, as shown in Fig. 9.11. Note that the small-signal resistance, rg,
is used for small-signal modelling and is not a physical resistor; hence, ry does not contribute any thermal noise.

kT
Dhod Mg = _I {Moisaless) T
q = —
% a D ’ qlp Lah = 2ql
Vif) = 2kTr,
Ny [ T2
(Foreard biased)




9.3.3 Bipolar transistors

The noise in bipolar transistors is due to the shot noise of both the collector and base currents, the flicker noise of
the base current, and the thermal noise of the base resistance. A common practice is to combine all these noise
sources into two equivalent noise sources at the base of the transistor, as shown in Fig. 9.11. Here, the equivalent
input voltage noise, V(f), is given by

Vi) = 4kT(rb+ L) (9.52)
20m

where the r, term is due to the thermal noise of the base resistance and the g, term 1s due to collector-current
shot noise referred back to the input. The equivalent input current noise, Ii(f), equals

2 Klg . Ig
It = 2q(Ls + —2 IB(_f)IJ (9.53)

where the 2ql; term is a result of base-current shot noise, the Klg/f term mod-
els 1/fnoise (K is a constant dependent on device properties), and the I term is
the input-referred collector-current shot noise (often ignored).

BJT

|,?I|I 2q|ls + II'r"—lﬂ'+ J—I

[Active: region) \ o pel™

Vi

akT(r.+
h Egm:

g [T R




9.3.4 MOSFE transistors

The dominant noise sources for active MOSFET transistors are flicker and thermal noise, as shown in Fig. 9.11.
The flicker noise is modelled as a voltage source in series with the gate of value

K
WLC,,f

where the constant K is dependent on device characteristics and can vary widely
for different devices in the same process. The variables W, L, and C,, represent
the transistor’s width, length, and gate capacitance per unit area, respectively.
The 1/fno iseis inversely proportional to the tran sistor area, WL, so larger
devices have less 1/f noise. In MOSFET circuits, 1/f noise is extremely impor-
tant because it typically dominates at low frequencies

Vq() =

(9.54)

1/f noise constant K is smaller for pMOS than nMOS since holes are less likely to be trapped
than electrons. So, pMOS input differential pair is desired if 1/f noise to be reduced.

The derivation of the thermal noise term is straightforward and is due to the resistive channel of a MOS
transistor in the active region.

Ii(f) = 4kTvg.

For the case Vps = Vgs— V; and assuming a long channel device,
vy = 2/3. However, for short gate-length devices much higher values
of v may be observed. Note that the white noise parameter v is differ-
ent from the body-effect parameter 7.



9.3.4 MOSFE transistors

Noise analysis of MOS transistors may be simplified by transforming the current noise to an
equivalent gate voltage noise, that is I4f) = g, V().

In this way, there is only one voltage noise source at the gate. However, note that this
assumes the gate current equal to 0, which is valid at low and moderate frequencies. (At
high frequencies, an noticeable amount of current may flow on Cegs).

Ve ,
i i) Vi

MOSFET -—t::l—! @ -—@—ll:l] (Noissless)
Hq

Vo) = K Vil = -M:T:E'Il  —

{Active region) WLC,.f ‘¥ g, WLC.f
MU 4kTiE: Om Simgpiifed model lor
3 low and modembe equencies




9.3.5 OpAmps

Noise in opamps is modelled using three uncorrelated input-referred noise sources, as shown in Fig. 9.11. With an
opamp that has a MOSFET input stage, the current noises can often be ignored at low frequencies since their values
are small. However, for bipolar input stages, all three noise sources are typically required,

Opae I m%
E " ymr Vi, L (F), L 0f)
— Values depend on
e E;S — Typically, all unmrroﬁaf
AT) |

2




9.3 Noise models for circuit elements

Element Noise Models
Resistor
R (Noiseless)
12 = 2KT
R Vi(f) = 4kTR R R R
(Noiseless)
Diode fa = = (Noiseless)
Qqlp - £
s} Tl Lih) = 29l
V() = 2KkTr, °
(Forward biased) (Noiseless)
BJT V() Vid) = akT(r,+ 2L]

4

(Active region)

@

W) ®

(Noiseless)

m

Klg . I¢

15 = 2q[la+— +—1]

Bl

MOSFET

&

(Active region)

Vi

—@)— I5(H)

K
WLC,,f

126 = 4kT® 9

Vi) =

Vil
"—®—| (Noiseless)

VA() = 4kT[§)l+ K
Om WLGC.,f

Simplified model for
low and moderate frequencies

Opamp

>

I (h é
Noiseless)
>
Vi I2,(f)

Vi), I (), In.(®

— Values depend on o?am
— Typically, all uncorrelate
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9.3.6 Capacitors and inductors

Capacitors/inductors do not generate any noise, but they do accummulate noise
generated by other noise sources.

Consider a capacitance, C, in parallel with a resistor of arbitrary size, R, as shown in Fig. 9.13(a). The equiv-
alent circuit for noise analysis is shown in Fig. 9.13(b). To determine the total noise mean-squared value across
the capacitor, we note that V() is simply a first-order, low-pass, filtered signal with Vg(f) as the input. There-
fore, we recognize that the noise bandwidth is given by (n/2)f, as in (9.41), and since the input has a white spec-
tral density, the total output mean-squared value 1s calculated as

Vio(ms) = "-"E*(f}(g)f“ - “kTH)@(ML‘CJ

(9.59)
Ve =
na{rmsy — C
R L Vald
R :[C Vi(f) = J4KTR = C
(@) (b)

Chapter 9 Figure 13

So the rms noise voltage across a capacitor is independent of the resistor R, but only C.
Finally, it should be mentioned that the equivalent noise current mean-squared value in an inductor of value L
connected only to resistors is given by (see Problem 9.19)
[, kT (9.62)

noirms) —



9.3.7 Sampled signhal noise

For a sample and hold circuit, when the clock goes low, the transistor turns off and in
ideal case the input voltage signal at that instance would be held on capacitance C.

However, when thermal noise is present, the resistance when the transistor is switched
on causes voltage noise on the capacitor with an rms value of ./kT/C.

So when the switch is turned off, the noise as well as the desired signal is held on the
capacitor, so called the sample noise.

The sampled noise voltage does not depend on the sampling rate and is independent
from sample to sample.

(I)clk
I

Vinh o ¥ 1

o Vout
L
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9.3.8 Input referred noise

In general, the noise voltage at a particular node will be a superposition of multiple
filtered un-correlated noise sources. In order to quantify the impact of all these noise
sources on SNR, it is useful to know the total input-referred noise of the circuit.

The input-referred noise of a circuit, if applied to the input of a noiseless copy of the
circuit, results in the exact same output noise as when all of the circuit’s noise sources
were present.

It can be found by dividing the observed output noise by the Mid-band gain of the circuit
using simulation or analysis as shown in the figure:

Vinims) = Vonms)/ A For voltage amplifier

iinems) = Vonirmsy/ 2 FOr trans-impedance amplifier

In the general, the output noise Von(rms) depends on the source and load impedance Zs and
Z. as well, so they should be taken into account.



Voltage Amplifier

Vin(rms)

(Noiseless)

OR Vin(rms) = Von(rms')/A
% 5 SNR = 20 Iog[vﬂm}
Vin(rms)
Von(rms)
Z,
(Noisy) )
Z z
is ZS Z iS Z iin rms Z
@ % (Noisy) - ° e (Noiseless) .
Transimpedance Amplifier linrms) = Von(rms)/ Z
SNR = 20 Iog[ls(ﬂl}
Iin(rms)
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Example 9.9 (page 385)

Two voltage amplifiers (each having very large input impedance and small output impedance) are available: one
with a gain of 3 V/V and 3 uV .. noise observed at the output; the other with a gain of 8 V/V and 6 uV . noise
observed at its output. What is the input-referred noise of each amplifier? If the two amplifiers are to be placed in
series to realize a gain of 24 V/V, in what order should they be placed in order to obtain the best noise perfor-
mance? What is the resulting input-referred noise of the overall system?

Vinems) = (1 u1V)?(3-8)*+ (0.75 pV)’8? = 0.61-10° V?
Vanirms) = 247 wv. .
Vinems) = (0.75 pV)3(8 - 3)*+ (1 pV)*32

0.33-10" V?

."'Fur'l(rrns‘.n = 18.2 H"";rms
Clearly, the second situation is preferable. The total input referred noise in this case is

Vinirms) = 18.2 I-'lvmu*’(({3 ’ 8) = 0.76 uvrms
075 uv,ms Vinirms) = J(O.?S vy + LYY - 976 v,

So, larger gain in the first

stage renders the later
0.75 uVme 0.76 uV,., stage noise negligible.
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9.3.8 Input referred noise: general case

The noise spectral density at the output of the circuit is generally the sum of noise contributed by the circuit
itself, Va.(f), as well as thermal noise from the real part of the source impedance filtered by the circuit,
4kTR,|A(f)[°. These quantities may be input referred as illustrated in Fig. 9.17 for a voltage amplifier where

vify = Yaed (9.65)
ADI?

w vZ (f) = 4KTRJA®)|2 + v, (f) 4kTR, vai(f)
R: z, — R,

(Noisy) (Noisy) (Noiseless)
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9.4 Noise analysis example

Current noise sources are used for R1 and Rf, whereas a voltage noise source is used for
R2. This way simplifies the analysis.

Assuming all noise sources are un-correlated, find the output voltage noise,
Vigi(f), due only to Iy, I, and I, . These current sources add together and go through the
parallel of Rf and Cf. R,

1 + jzanfo

Viei(H) = [I(H) + I + I, ()]

Using superposition principle, the output oise due to three noise sources at the positive
OpAmp terminal (converting In+ to a voltage source by multiplying R2).

Viell) = [Gu(ORE + Viah) + Vi1 1 + — P
I + IZTT-I:C|F{|
Finally, the total output noise mean-squared value is simply the sum
C; Vio{fj = Vﬁul(f) + Vio’:{f)
c “I or, if rms values are found,
i Lo o o . : )
“‘Rf In—é UR' V:no[rmsl = V;UHIITIS] + Il"°"ll;vc}?(rr'r|sl
R, wy My
Ve — —o Vo I ‘E‘;"' = | —o Vo)
- 1 * +
- Ve (9 Vi If output voltage 1V and
z L. .
] R. ® rms noise of 77uV
=7 1V
(@) (b) SNR = 20log(———) = 82 dB
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9.4 Noise analysis example (MOS diff. pair)

As seen before, if the input stage has a good gain, then its noise will dominate the overall
noise of a two-stage OpAmp.

Each transistor has been modeled using an equivalent voltage noise source. We need to
find the gain from each noise source to the output node.

Vio| = [Vho| = Om R,  Where R, is the output impedance seen at V.
an VHE
Vn3 and Vn4 generates noise current that goes to the output, so  |Vao| — [Vno| 9m:R,
Vni Un4
Finally, the noise gain from Vn5 to output can be found by Vol - gns
an Egm"
VDD A
Vn5
Viias @I Qs Neglecting Vn5 (gain is small), output noise is
y Vio() = 2(gmiRo) VailH) + 2(gm:Ro) Vas(h)
Vn1 n2

Input-referred noise is

Vin+ Vin— 2
@it o % A-® Vieal®) = 2Van(h) + 2V3h( 222)
Vi 7 Vio (Output) Gm1

Qs:l |:Q4

v V., v
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9.4 Noise analysis example (MOS diff. pair)
Thus, for the white noise portion of V,,,(f) and V,.,(f), we make the substitution V2 = 4|(T4‘,(l]
resulting in Vieq(f) = 2-4kTy( =) +2 4kT~f[%jﬂ(ij I
" gml grnl gm.‘-

So, gm1 should be made large to minimize thermal noise and gms small. For fixed DC
current los, this means small Vert1 and large Vesfs.

Next, we consider the effects of 1/f, or flicker, noise, V. (f) = Ki
WL WiL.C,,f
resulting in - V7 (f) = 2V;,(f) + 2V, (f;[ﬁ}
| 3 (W/L) i, D Omi = JZMiCux(%'J Lo
Vi) = 2| Koy (&] (&) (9.109)
Co:-:f W| L] Up W] L%
Voo ’
Vs We note some points for 1/f noise here:
VbI i L [s =
* @ i Qs 1. When L1=L3, , nMOS loads dominate the
V1 Vo noise as Hn> My and K, > K,

Vi °—®—||'—J Q, Q, |:||_®_° Vi 2. Taking L3 longer helps.

3. Noise independent of W3 (but thermal
v V.., t—= Vi, (Output) noise is increased).
Q; 4 " 5 Q. 4. Taking W1 wider helps both 1/f and thermal
noise.
v V,, v 5. Taking L1 longer increase the noise of from

the second term which may be dominant.
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9.5 Dynamic range performance

Whereas noise limits the value of the smallest useful signals, linearity limits the value of
the largest useful signals that can be processed by a circuit.

Thus, noise and linearity together determine the useful dynamic range of the circuit.

Harmonic distortion and total harmonic distortion are useful measurements of the
linearity of a circuit.



9.5.1 Total harmonic distortion

If a sinusoidal signal is applied to a nonlinear system, the output signal will have frequency
components at harmonics of the same input.

Specifically, consider a nonlinear system” with an input signal, v,.(t), and an output signal, v(t). The output
signal can be written as a Taylor series expansion of the input signal:

Vo) = @,Vin(t) + @:Vin(t) + aVin(h) + auvin(t) + - (9.123)

Here, the linear term is a,, whereas a,. a,, and a, characterize the second-, third-, and fourth-order distortion
terms, respectively. In fully differential circuits, all even terms (i.c., 8, and a, ) are small, so typically a, domi-
nates and we approximate V(1) as

Vo(t) = a,vi(t) + a;vin(t) (9.124)
If vi,(t) is a sinusoidal signal given by
Vin(t) = A cos(mt) (9.125)

the output signal can be shown to be approximated by
Vo(t) = aAcos(omt)+ %Aj[B cos(mt)+ cos(3mt)] (9.126)

Since, typically, (3/4)a,A’ << a, A, one usually approximates the linear component of the output signal as
Hp, = aA (9.128)

and the third-harmonic term as

=A’ (9.129)



9.5.1 Total harmonic distortion

Hp;/Hp, is defined as the third-order harmonic distortion ratio, given by

HD, = :_; _ E?) (%:) (9.130)

The total harmonic distortion (THD) of a signal is defined to be the ratio of the total power of all second and
higher harmonic components to the power of the fundamental for that signal. In units of dB, THD is found using

THD = 1U|ag[H”3+HE”:HE“+”'] (9.131)
HDl

Sometimes THD is presented as a percentage value. In this case,

JHo, + Hos+ Ho, o+ -
|-IIZZII

% 100 % (9.132)

THD =

Note that THD is always a function of the input signal amplitude, so a THD with the
corresponding input amplitude needs to be reported. Second, in most cases only up to 5t

harmonics needs to be considered.

The THD of a circuit deteriorates as the input signal amplitude is increased, as clearly
shown from equation 9.130.



9.5.1 Total harmonic distortion

One difficulty with THD in reporting circuit performance is that often harmonic
components falls outside the circuit usable bandwidth, thus the THD value is falsely
improved.

For example, the harmonics of a 20MHz signal is already outside the passband of a 21MHz
lowpass filter. In this case, the THD value will indicate much better linearity than would
occur for a practical application.

Therefore, a THD measurement is straight-forward to perform, but does not work well in
the important test of high-frequency signals near the upper passband limit of the circuit

(at upper passband limit, the circuit linearity is usually worst).

One way to solve this is to use inter-modulation test.



9.5.2 Third order intercept point (IIP3)

We can use an intermodulation test to move the distortion term back near the frequency
of the input signals.

Consider an intermodulation test, where the input signal consists of two equally sized sinusoidal signals and
is written as
Vio(t) = A cos(m,t) + A cos(m,t) (9.135)
Presuming the input—output relationship of (9.123), the output signal can be shown to be approximated by

Vo(t) = [E]A + {%AL) [ cos(m,t) + cos(m,t)]

+ %N[cos(?»m't) + cos(3m,t)]

9.136
3a, ( )

+TA5[cus(zm|t + @st) + cos(2m,t + m1)]

+ %AS[CGS(WJ —Awnt) + cos(m,t+ Ant)]

where Am is defined to be the difference between the input frequencies (i.e., A@ = ®, — ® ) which we assume to be
small.

fourth line describes the distortion levels at two new frequencies that are close to the input frequencies (slightly
below @, and slightly above m,). As a result, for a narrowband or low-pass circuit, these two new distortion compo-
nents (due to third-order distortion) fall in the passband and can be used to predict the third-order distortion term.



9.5.2 Third order intercept point (IIP3)

Io: = a,A The ratio of these two is the third-order intermodulation value, given by
I al) 3A°
IDS — %Ai ID} = _1" = (— (—
4 I a, 4
(dBm)

OIP; T &
: o ‘\ Third-order
oot intercept point

—
{ » Input level A
-a, S\ TP, (dBm)
I/

Compression of
fundamental and
intermodulation
products

Ips
(Slope = 3)

Chapter 9 Figure 24



9.5.3 Spurious free dynamic range

Spurious-free dynamic range (SFDR) 1s defined to be the signal-to-noise ratio when the power of the distortion
equals the noise power. In an intermodulation test, the third order intermodulation products are the dominant dis-
tortion. In Fig. 9.25, the circuit’s total output noise power is shown along the vertical axis as N,. If a low enough
signal level is used, Ip; will be well below the noise floor. However, since Ip; rises 3 dB for every 1 dB of signal-
level increase, there will soon be a point where Ip; is equal to the noise power. As the figure shows, SFDR is
defined to be the output SNR ratio when [g; is equal to N,. Alternatively, one can measure SFDR using the input-

signal levels as the difference between the level that results in Ip; = N, and the level Ay, that results in a funda-
mental output level equal to N,.

(dBm)

OIP, T d\ Third-order
15 N intercept point

| » Inputlevel A
1P, (aBm)

(Noise floor)
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9.5.4 Signal-to-Noise Ratio

The SNDR is defined as the ratio of the signal power to the total power in all noise and
distortion components.

Unlike SFDR, SNDR is a function of the signal amplitude. For small amplitude, noise
dominates over harmonics power, therefore we see an increasing SNDR typically. For large
amplitude, harmonics power kick in and dominates over noise power. So a maximum SNDR
is achieved at a certain input amplitude. As harmonics power increases faster than si9gnal
power, SNDR will decrease eventually with larger inputs.

SNDR (dB)
A

) Y
SNDR = 10log Vi J

SNDRmax 7 NG+VEZ+V;_‘-+H;4+"'

It

SNDR = 10log (V;/N,). For small signals
SNDR = 10log (Vi/Vis + Vis + Vg + --)

[

For large signals

> A

< > 4+—>r
Noise-limited Distortion-limited
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