Systems

Broadly speaking, a system is anything that responds
when stimulated or excited

The systems most commonly analyzed by engineers are
artificial systems designed by humans

Engineering system analysis is the application of
mathematical methods to the design and analysis of
systems
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Systems

« Systems have inputs and outputs

« Systems accept excitation signals at their
Inputs and produce response signals at

their outputs

« Systems are often usefully represented by

block diagrams

A single-input, single-output system block diagram

X(1) H

—y(?)

Department of Electrical and Computer Engineering



Some Examples of Systems

Automobile Chassis | ,--—> Rotation
.. T Shock Wind
Spnng% L1 Absorber @Aio
[ | 4 y(t)
x(1)
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A Multiple-Input, Multiple-Output
System Block Diagram

Xl(l) — ‘}(1 -—Y1(t)

— H, —] H, - Y,(7)

X(1) —

— H,
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Continuous and Discrete Time Systems

Continuous Time Systems

X —— H —— y(t)

Example: an RC circuit

Discrete Time Systems

XIn] —— H +—— y[n]

Example: a delayed adder
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An Electrical Circuit Viewed as a System

1. An RC lowpass filter is a simple electrical system

2. Itis excited by a voltagey, (t) , and responds with a
VOltag e)Vout (t)

3. It can be viewed or modeled as a single-input, single-
output system

v (z) oL vo,(t) v,()—~ H

i1 N

_"Vout(t )
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Response of an RC Lowpass Filter
to a Step Excitation

If an RC lowpass filter is excited by a step of voltage,

vi(t)=Au(?)

Its response Is
V)
4

A ——

Vout(t)zA(I—eRLC] u(t)

RC "

If the excitation Is doubled, the response doubles.
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A DT System

x[n] R g l - y[n]

Sr—D

If the excitation, x[n], is the unit sequence, the response is
y[n]

5

..... |

-5 5 10 15 20

=l

If the excitation is doubled, the response doubles.
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Characteristics of a System

1. Homogeneity
> Linearity

Linear Time-Invariant <

Systems (LTI Systems) 2. Additivity

3. Time Invariance
4. Stabillity

5. Causality
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Homogeneity

X(t) —— H|— Y(0)

' Continuous Time Homogeneous

x(t)—»?—» H |— Ky(t)

x[N] ——| H — YIn]

Discrete Time Homogeneous 1

X[n] 4% H |— Ky[n]

K
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Additivity

Xl(t)—’ H —_’y1(t)

Xz(t)—’ H ——’yz(t)

N y(t) — y1(t) +Y, (t)
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Linearity

Xl(t)—’ H —_’y1(t)

Xz(t)—’ H ——’yz(t)

|

ax, (1) + BX, (1) X

YO =an®)+ A0

290
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Time-Invariance

X(t) —— H|— Y(0)

|

Delay x(t—t
x(t)—] 1, ()

H|—y(t-t,)

x[n] — H |— YIn]

Discrete Time Time-Invariant

Delay
X[n]— n,

|

X[n—n,]

H

—y[n—n,]
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Stability

X(t) ——| H |— Y()

Stable Input ‘ Stable Output

Stable Input means:

X(t) <o —oco<t<oo
also called

Stable Output means: BIBO Stable

()< —oo<t<om
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Causality

X(t) ——| H |— Y()

Output follows Input and can not precede input.

A

X(t)

v

yt)

»
»

t, t
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Let’s look at Examples of LTI Systems

Continuous Time Discrete Time
R
+ OV °© x[n] —(D > y[n]
X(t) ) ——  y(t) ;
XE < D=1
d t 1
Re Y4y = x yinl— yin 1= ¥
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Idea of Unit Impulse Response

X(t) —— H |— Y(0)

Continuous Time System

X(t)=0@t) —— H |— Yy(t)=h(t)

X[N] ——| H — YIn]

Discrete Time System

X[n]=6[n] ——| H |— YIn]=h[n]
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Higher Order Discrete System

a yln]l+a_ ,y[n-1]+....+a _,y[n—D]=X[n]

X[n]=o[n]

= y[n]=h[n]
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Impulse Response to System Response

a yln]l+a ,y[n-1]+....+a _,y[n—D]=X[n]

x[n]=¢6[n] = yln]=h[n

Any Input X[n] can be written as

X[n]=---+ X[-2]

o[n+ 2]+ x[-1]o[n+1] +

X[0]o

n]+ x[1]o[n—1]+ x[2]6[n— 2] + -

This means system response, y[n] can be given by
y[n]=---+ X[-2]h[n+ 2]+ X[-1]h[n + 1] +

X[O]h[n]+ x[1]h[n -1]+ x[2]h[n - 2] +---
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Simple System Response Example

System EXxcitation
x[#]

24

.W
30 1

S ?t?m Impulse Response
71
4
2__

P P ITTTT?!QMMH.H 7

0 System Response ¥
yl]

2T y[n] = h[n]+h[n—1]

__ﬁg,,,,,,,,."IITTTTf9.;‘;.‘.,,,,,,,,,,,?5_, p
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More Complicated System Response Example

x[n]
1§

Department of Electrical and Computer Engineering



Convolution Sum

y[n] = -+ X[=2]n[Nn + 2] + X[-1]n[n +1]

+ X[O]n[n] + X[h[n — 1]+ X[2]n[n + 2] + - --

yln]= 2 x[m]h[n—m]

m=2

m=-2

y[n] = i X[m]h[n—m] Convolution Sum

yln] = x[n]*h[n]

Superposition of delayed and weighted impulse responses
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A Convolution Sum Example

x[#] h[#]
Fy Fy
P o
—a—a =& >—o—o—» |1 —a—a & @ >—o—o—» |1
w3 o ex] 1 2 3 4 4 3 -2 -1 1 2 3 4
h[-m] hl# - m]
4 4
| ) @
o] 1 I
T35 1| 13 34" A5 51 nzninmi "
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A Convolution Sum Example

x[m] n=-1 h[-1 - ] x[1] n=0 h[O - 1]
A

3 21| 135 3 4 Y3211 1234 " T321] 1334 % 3 31

X[m]h[-1 - m] X[m]h[0 - m]
k k

—t2 4

o *—eo—o—o—» /11 *>—o—=o *—eo—o—o—» /7l
4 321] 12 3 4 4 321 12 3 4

yl-1]=2 y[0] =6
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4 3 2 1

xX[m]

A Convolution Sum Example

n=1 h[1 - ] x[rm] n=2 h[2 - ]
A A
24 2 2
1] ‘ ‘ 1
T3 53" 55T 1333 Y B 21| 1534 A3 2a] 1
X[m]h[1 - m] X[m]h[2 - m]
b
4 4 4
2
® —e € @ ¢ I8 m 2 o—a o 2 — m
% 35 1] 132 3 4 % 3201 L2 3 4
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A Convolution Sum Example

x[n] h[n]
& &

(I

35T I 133 & %329 L33

yl#]
F
Ho—e
4
]
—e @ @ e @ » /|
G .| 1 2 3 4
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Convolution Integral in Continuous Time

Xt)=0(t) —— H |— Y(O)=h(t)

y(t) = Tx(r)h(t —7)dr

y(t) = x(t) *h(t)

Superposition of delayed and weighted impulse responses
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A Graphical lustration of the Convolution Integral

The convolution integral 1s defined by

x(¢)*h(z)= ]2 x(z)h(t — Mz

For illustration purposes let the excitation, x(#), and the
impulse response, h(?), be the two functions below.

h(z) x(7)

2\ 2

1 =] 1
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A Graphical Illustration of the Convolution Integral

In the convolution integral there is a factor, h(z—7)

We can begin to visualize this quantity in the graphs below.

h(t) h(-t)
2 2
\1 »~ T 1/ » T
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A Graphical lllustration of the Convolution Integral

The functional transformation in going from h(t) to h(¢ - t) is

h(r)———>h(-7)———>h(Ar—-1))=h(r—7)

h(z-7)

2

A .

—1

[
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A Graphical llustration of the Convolution Integral

The convolution value is the area under the product of x(7)
and h(¢ - t). This area depends on what ¢ is. First, as an
example, let £ = 3.

L x@m b X(Dh(5-7)

4 | 1 45 = N 4 5
For this choice of ¢ the area under the product is zero. If

y(6)=x(t)*h(?)
then y(5) = 0.
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A Graphical Illustration of the Convolution Integral

Now let ¢ = 0.
X(T)h(-7)
4
h(-t) 2i X(T)
1T Sy
Jx(ﬂc)h(-r)d’c

Therefore y(0) = 2, the area under the product.
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A Graphical Illustration of the Convolution Integral

The process of convolving to find y(7) 1s illustrated below.

t=-1 =05 (=0 =05 =1 l

o o 'n o
Sl

4 B 2 -
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Properties of Convolution

Continuous Time Discrete Time
() = [5()h(t-1)dz pn]= > S[mih[n—m]
=S5(t)*h(t) = o[n]*h[n]
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Properties of Convolution ... cont.

Continuous Time Discrete Time

YO = [X(@Oh-r)dz yInl= 3. ximipin -
= >_<ozt)*h(t) = x_[ni *h[n
=h(t)*x(t) = h[n]*x[n

~ Th(r)x(t —7)d7 = rnf}ooh[m]X[lﬂ —m]
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Causality and Stability from Impulse Response

Continuous Time

Causality means fort <0

h(t)=0
Stability means
[ htydt <o

Example:

h(t) =e ""Cu(t)

Discrete Time

Causality means forn <0

h[n]=0

Stability means

S h{n] < oo

N=—0o0

Example:

h[n] = Gj u[n]
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Cascaded and Parallel Systems

X(t) ——

h (1)

X(t) —

Cascaded Systems

X(t) —h (t)|—

— y(O) =x(t)*hy(t)

h, (1)

—  Y() =x(t)*hy(t)

O] —  y(t)=x(t)*h(t)*h,(t)

Parallel Systems

—(t)

X(t) —

—h,(t)

A

D— YO =xO* M ®+h,©)
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Impulse excitation

Impulse response
o(f) h(z)
1 1
Responses to T —
Standard Signals ] s ] o
-1 Yot 6 - Y4 6
d d
[ & [ &
Vo4 v 4
Step excitation Step response
u(r) h_y = [h(®
A
1 1
— h(®) [—
- ¢ |L—r ot
-1 * + 6 -1 ,‘, + 6
d d
[ & | &
v bt
Ramp excitation Ramp response
ramp(r) h_y = [[h(r)
6 6
: h(z) /
4 ,Lj I };—I ot
-1 -1 6
Figure 3.70 )
Relations between integrals and derivatives of excitations and responses
for an LTI system.
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Finding Impulse Response

Continuous Time Discrete Time
R
A 7 X[n] —D . yin]
X(t) ) —  y() k
Re Y4y = x yinl— yin 1= i
_RC %fh h(t) = 5(t) = hin]— hin—1] = 5[n]
= h(t) =e "u(t) = h[n] = G) uln]
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Finding the Impulse Response by Recursive Method

XIn| — > n 1
= A -2 yin-g -
1| i 2
5 D=1
1
= y[n] =x[n]+ > y[n-1]
n Unit Impulse y(n) h(n)
-2 0 0 0
-1 0 0 0
0 1 1 1
1 0 1/2 1/2
2 0 1/4 1/4
3 0 1/8 1/8
4 0 1/16 1/16
5 0 1/32 1/32
6 0 1/64 1/64
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Solving First Order Difference Equation

> y[n]

x[n] _.@

A

A

N |-

Homogeneous Solution

Wﬂ—%ym—ﬂ=0

yﬁﬂ=§ym—ﬂ

yin] 1

y[n-1] 2

1 n
= y[n]= K(E)

D=1

wm—éym—n=xml

Particular Solution

Wﬂ—%ym—ﬂ=5m]

Atn=0 1
y[0]- > y[-1] = 6[0]

y[0]-0=1

(-

—=K=1

:byﬁﬂ=(%jum]
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Solving First Order Differential Equation

X(t) i0) -

O

Homogeneous Solution

dy(t) _
RC it +y(t)=0

dy(t) 1
" rc W

1

— y(t) = Ke RS

o +

dy(t)
y(t) RC ——= dt +y(t) X(t)

Particular Solution

c @)
5 Y=o

Integrating fromt=0"tot=0*

RC j dy(t)dt " j y(t)dt = j S(t)dt

RCLy(0")-y(0 )]+ j y(t)dt =1

RC[y(0")-y(0)]+0=1
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Solving First Order Differential Equation

R
+ O—AA o +
dy(t)
X fin) &=y RC=4r Ty =x(V
- O o —
Homogeneous Solution Particular Solution ... cont

RC[y(0")-y(07)]+0=1

dy(t) _
RC it +y(t)=0

RC[y(0")-y(0)]=1
dy(t) 1

&t~ rc’WY RC[Y(0")—-0]=1
_F\’lct RCy(0") =1
= y(t) =Ke . 1
RCKe” =1 =K=——
RC

1

— y(t) = %eRCtu(t)

Department of Electrical and Computer Engineering



