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Systems

• Broadly speaking, a system is anything that responds 

when stimulated or excited

• The systems most commonly analyzed by engineers are 

artificial systems designed by humans

• Engineering system analysis is the application of 

mathematical methods to the design and analysis of 

systems
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Systems

• Systems have inputs and outputs

• Systems accept excitation signals at their 

inputs and produce response signals at 

their outputs

• Systems are often usefully represented by 

block diagrams

A single-input, single-output system block diagram
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Some Examples of Systems
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A Multiple-Input, Multiple-Output 

System Block Diagram
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Continuous and Discrete Time Systems

)(tx )(tyH

Continuous Time Systems

][nx ][nyH

Discrete Time Systems

Example: an RC circuit

Example: a delayed adder
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An Electrical Circuit Viewed as a System

1. An RC lowpass filter is a simple electrical system

2. It is excited by a voltage,          , and responds with a 

voltage,

3. It can be viewed or modeled as a single-input, single-

output system



vin t 



vout t 
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Response of an RC Lowpass Filter 

to a Step Excitation

If an RC lowpass filter is excited by a step of voltage, 

its response is



vin t  Au t 

If the excitation is doubled, the response doubles.



vout t  A 1 e

t

RC








u t 
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A DT System

If the excitation, x[n], is the unit sequence, the response is



y n  5 4
4

5







n







u n 

If the excitation is doubled, the response doubles.
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Characteristics of a System

1. Homogeneity

2. Additivity

3. Time Invariance

4. Stabillity

5. Causality

Linearity
Linear Time-Invariant

Systems (LTI Systems)
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Homogeneity

)(tx )(tyH

)(tx )(tKyH

K
][nx ][nyH

][nx ][nKyH

K

Continuous Time Homogeneous

Discrete Time Homogeneous
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Additivity

)(1 tx )(1 tyH

)(1 tx
)()()( 21 tytyty 

H

)(2 tx

)(2 tx )(2 tyH

)()( 21 txtx 
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Linearity

)(1 tx )(1 tyH

)(1 tx
)()()( 21 tytyty  

H

)(2 tx

)(2 tx )(2 tyH

)()( 21 txtx  
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Time-Invariance

)(tx )(tyH

)(tx )( 0tty H

Discrete Time Time-Invariant

Delay

0t
)( 0ttx 

][nx ][nyH

][nx ][ 0nny H
Delay

0n
][ 0nnx 
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Stability

)(tx )(tyH

Stable Input Stable Output

 ttx )(

Stable Input means:

 tty )(

Stable Output means:

also called

BIBO Stable
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Causality

)(tx )(tyH

Output follows input and can not precede input.

t

t

)(tx

)(ty

0t

0t
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Let’s look at Examples of LTI Systems

)(tx C

R

)(ty

)()(
)(

txty
dt

tdy
RC 

D=1
2

1


][nx ][ny

][]1[
2

1
][ nxnyny 

Continuous Time Discrete Time









)(ti
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Idea of Unit Impulse Response

)(tx )(tyH

)()( ttx  )()( thty H

][nx ][nyH

][][ nnx  ][][ nhny H

Discrete Time System

Continuous Time System
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Higher Order Discrete System

][][.....]1[][ 1 nxDnyanyanya Dnnn  

][][ nnx 

][][ nhny 
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][][.....]1[][ 1 nxDnyanyanya Dnnn  

][][ nnx  ][][ nhny 





]2[]2[]1[]1[][]0[

]1[]1[]2[]2[][

nxnxnx

nxnxnx





Impulse Response to System Response

Any Input x[n] can be written as





]2[]2[]1[]1[][]0[

]1[]1[]2[]2[][

nhxnhxnhx

nhxnhxny

This means system response, y[n] can be given by
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Simple System Response Example

]1[][][  nhnhny
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More Complicated System Response Example
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Convolution Sum







2

2

][][][
m

m

mnhmxny







m

mnhmxny ][][][

]1[]1[]2[]2[][  nhxnhxny

 ]2[]2[]1[]1[][]0[ nhxnhxnhx

Convolution Sum

Superposition of delayed and weighted impulse responses

][*][][ nhnxny 
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A Convolution Sum Example
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A Convolution Sum Example
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A Convolution Sum Example
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A Convolution Sum Example
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Convolution Integral in Continuous Time






  dthxty )()()(

)()( ttx  )()( thty H

)(*)()( thtxty 

Superposition of delayed and weighted impulse responses
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A Graphical Illustration of the Convolution Integral

The convolution integral is defined by



x t h t  x  h t  d






For illustration purposes let the excitation, x(t), and the

impulse response, h(t), be the two functions below.
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

h t  In the convolution integral there is a factor,

We can begin to visualize this quantity in the graphs below.

A Graphical Illustration of the Convolution Integral
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A Graphical Illustration of the Convolution Integral



h   
  h    t

  h    t   h t  

The functional transformation in going from h() to h(t - ) is
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A Graphical Illustration of the Convolution Integral

The convolution value is the area under the product of x(t)

and h(t - ).  This area depends on what t is.  First, as an

example, let t = 5.

For this choice of t the area under the product is zero. If



y(t) x t h t 

then y(5) = 0.
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A Graphical Illustration of the Convolution Integral

Now let t = 0.

Therefore y(0) = 2, the area under the product.
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A Graphical Illustration of the Convolution Integral

The process of convolving to find y(t) is illustrated below.
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Properties of Convolution

)(*)( tht






  dthth )()()( 





m

mnhmnh ][][][ 

][*][ nhn

Continuous Time Discrete Time
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Properties of Convolution … cont.

)(*)( thtx

)(*)( txth






  dthxty )()()(






  dtxh )()(







m

mnhmxny ][][][

][*][ nhnx

][*][ nxnh







m

mnxmh ][][

Continuous Time Discrete Time
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Causality and Stability from Impulse Response

Continuous Time Discrete Time

)()( / tueth RCt ][
2

1
][ nunh

n











0)( th

Causality means for t < 0

0][ nh

Causality means for n < 0

Stability means






dtth )( 





n

nh ][

Stability means

Example:
Example:
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Cascaded and Parallel Systems

)(tx )(*)()( 1 thtxty )(1 th

)(tx )(*)()( 2 thtxty )(2 th

)(1 th )(2 th)(tx )(*)(*)()( 21 ththtxty 

)(1 th

)(2 th

)(tx )]()([*)()( 21 ththtxty 

Cascaded Systems

Parallel Systems
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Responses to

Standard Signals
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Finding Impulse Response

)(tx C

R

)(ty

)()(
)(

txty
dt

tdy
RC 

Continuous Time









)(ti

)()(
)(

tth
dt

tdh
RC 

D=1
2

1


][nx ][ny

][]1[
2

1
][ nxnyny 

Discrete Time

][]1[
2

1
][ nnhnh 

)()( / tueth RCt ][
2

1
][ nunh

n










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D=1
2

1


][nx ][ny
][]1[

2

1
][ nxnyny 

Finding the Impulse Response by Recursive Method

n Unit Impulse y(n) h(n)

-2 0 0 0

-1 0 0 0

0 1 1 1

1 0 1/2 1/2

2 0 1/4 1/4

3 0 1/8 1/8

4 0 1/16 1/16

5 0 1/32 1/32

6 0 1/64 1/64

]1[
2

1
][][  nynxny
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D=1
2

1


][nx ][ny
][]1[

2

1
][ nxnyny 

Solving First Order Difference Equation

0]1[
2

1
][  nyny

]1[
2

1
][  nyny

2

1

]1[

][


ny

ny

n

Kny 









2

1
][

Homogeneous Solution Particular Solution

][]1[
2

1
][ nnyny 

1
2

1
0









K

]0[]1[
2

1
]0[  yy

1 K

At n= 0

][
2

1
][ nuny

n











10]0[ y
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Solving First Order Differential Equation

Homogeneous Solution Particular Solution

)(tx C

R

)(ty









)(ti
)()(

)(
txty

dt

tdy
RC 

0)(
)(

 ty
dt

tdy
RC

)(
1)(

ty
RCdt

tdy


t
RCKety

1

)(




)()(
)(

tty
dt

tdy
RC 

dttdttydt
dt

tdy
RC 















0

0

0

0

0

0

)()(
)(



1)()]0()0([

0

0

 





 dttyyyRC

10)]0()0([   yyRC

Integrating from t = 0- to t = 0+
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Solving First Order Differential Equation

Homogeneous Solution Particular Solution … cont

)(tx C

R

)(ty









)(ti
)()(

)(
txty

dt

tdy
RC 

0)(
)(

 ty
dt

tdy
RC

)(
1)(

ty
RCdt

tdy


t
RCKety

1

)(




10)]0()0([   yyRC

1)]0()0([   yyRC

1]0)0([ yRC

1)0( RCy

10 


RCKe
RC

K
1



)(
1

)(

1

tue
RC

ty
t

RC





