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The Frieze Groups
In this chapter, we discuss an interesting collection of infinite symmetry 
groups that arise from periodic designs in a plane. There are two types of 
such groups. The discrete frieze groups are the plane symmetry groups 
of patterns whose subgroups of translations are isomorphic to Z. These 
kinds of designs are the ones used for decorative strips and for patterns 
on jewelry, as illustrated in Figure 28.1. In mathematics, familiar 
examples include the graphs of y 5 sin x, y 5 tan x, y 5 |sin x|, and  
|y| 5 sin x. After we analyze the discrete frieze groups, we examine the 
discrete symmetry groups of plane patterns whose subgroups of transla-
tions are isomorphic to Z % Z.

In previous chapters, it was our custom to view two isomorphic 
groups as the same group, since we could not distinguish between them 
algebraically. In the case of the frieze groups, we will soon see that, al-
though some of them are isomorphic as groups (that is, algebraically the 
same), geometrically they are quite different. To emphasize this 
difference, we will treat them separately. In each of the following  
cases, the given pattern extends infinitely far in both directions.  
A proof that there are exactly seven types of frieze patterns is given in 
the appendix to [6].

Frieze Groups  
and Crystallographic Groups

Symmetry and group theory have an uncanny way of directing 
physicists to the right path. 

Mario Livio, The Equation That Could Not Be Solved

Group theory is the bread and butter of crystallography.
Mario Livio, The Equation That Could Not Be Solved
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Figure 28.1  Frieze patterns

The symmetry group of pattern I (Figure 28.2) consists of transla-
tions only. Letting x denote a translation to the right of one unit (that  
is, the distance between two consecutive R’s), we may write the sym-
metry group of pattern I as

F1 5 {xn | n [ Z}.

R R R R

Figure 28.2  Pattern I
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The group for pattern II (Figure 28.3), like that of pattern I, is infi-
nitely cyclic. Letting x denote a glide-reflection, we may write the sym-
metry group of pattern II as

F2 5 {xn | n [ Z}.

R R RRR R R

Figure 28.3  Pattern II

Notice that the translation subgroup of pattern II is just kx2l.
The symmetry group for pattern III (Figure 28.4) is generated by a 

translation x and a reflection y across the dashed vertical line. (There 
are infinitely many axes of reflective symmetry, including those mid-
way between consecutive pairs of opposite-facing R’s. Any one will 
do.) The entire group (the operation is function composition) is

F3 5 {xnym | n [ Z, m 5 0 or 1}.

RRRRRRRRRR

Figure 28.4  Pattern III

Note that the two elements xy and y have order 2, they generate F3, 
and their product (xy)y 5 x has infinite order. Thus, by Theorem 26.5, 
F3 is the infinite dihedral group. A geometric fact about pattern III worth 
mentioning is that the distance between consecutive pairs of vertical re-
flection axes is half the length of the smallest translation vector.

In pattern IV (Figure 28.5), the symmetry group F4 is generated by a 
translation x and a rotation y of 180° about a point p midway between 
consecutive R’s (such a rotation is often called a half-turn). This group, 
like F3, is also infinite dihedral. (Another rotation point lies between a 
top and bottom R. As in pattern III, the distance between consecutive 
points of rotational symmetry is half the length of the smallest transla-
tion vector.) Therefore,

F4 5 {xnym | n [ Z, m 5 0 or m 5 1}.

R R R RRRRR

p

Figure 28.5  Pattern IV
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RRRR RR RRRR RR
p

Figure 28.6  Pattern V

The symmetry group F5 for pattern V (Figure 28.6) is yet another 
infinite dihedral group generated by a glide-reflection x and a rotation y 
of 180° about the point p. Notice that pattern V has vertical reflection 
symmetry xy. The rotation points are midway between the vertical reflec-
tion axes. Thus,

F5 5 {xnym | n [ Z, m 5 0 or m 5 1}.

The symmetry group F6 for pattern VI (Figure 28.7) is generated by a 
translation x and a horizontal reflection y. The group is

F6 5 {xnym | n [ Z, m 5 0 or m 5 1}.

Note that, since x and y commute, F6 is not infinite dihedral. In fact, F6 
is isomorphic to Z % Z2. Pattern VI is invariant under a glide-reflection 
also, but in this case the glide-reflection is called trivial, since the axis 
of the glide-reflection is also an axis of reflection. (Conversely, a glide-
reflection is nontrivial if its glide-axis is not an axis of reflective sym-
metry for the pattern.)

R R R RR R R R

Figure 28.7  Pattern VI

The symmetry group F7 of pattern VII (Figure 28.8) is generated by a 
translation x, a horizontal reflection y, and a vertical reflection z. It is 
isomorphic to the direct product of the infinite dihedral group and Z2. 
The product of y and z is a 180° rotation. Therefore,

F7 5 {xnymzk | n [ Z, m 5 0 or m 5 1, k 5 0 or k 5 1}.

RR RR RR RRRR RR RR RR

Figure 28.8  Pattern VII

The preceding discussion is summarized in Figure 28.9. Figure 28.10 
provides an identification algorithm for the frieze patterns.

In describing the seven frieze groups, we have not explicitly said how 
multiplication is done algebraically. However, each group element cor-
responds to some isometry, so multiplication is the same as function 

44928  |  Frieze Groups and Crystallographic Groups

57960_ch28_ptg01_446-471.indd   449 10/27/15   2:38 PM



x =  translation

x =  glide-reflection

Z

Z

x =  translation
y =  vertical reflection

x =  translation
y =  rotation of 180°

x =  glide-reflection
y =  rotation of 180°

Generators

Group
isomorphism
classPattern

x =  translation
y =  horizontal reflection

x =  translation
y =  horizontal reflection
z =  vertical reflection

D

D

D

D

Z Z
2

Z
2

Figure 28.9  The seven frieze patterns and their groups of symmetries

composition. Thus, we can always use the geometry to determine the 
product of any particular string of elements.

For example, we know that every element of F7 can be written in the 
form xnymzk. So, just for fun, let’s determine the appropriate values for n, 
m, and k for the element g 5 x21yzxz. We may do this simply by looking 
at the effect that g has on pattern VII. For convenience, we will pick out 
a particular R in the pattern and trace the action of g one step at a time. To 
distinguish this R, we enclose it in a shaded box. Also, we draw the axis 
of the vertical reflection z as a dashed line segment. See Figure 28.11.

Now, comparing the starting position of the shaded R with its final 
position, we see that x21yzxz 5 x22y. Exercise 7 suggests how one may 
arrive at the same result through purely algebraic manipulation.

R R R RI

x21 x2xe

II R R
R R

R
x22

x21 x

x2e

III RR RRRR
x21y  x21 xy xy  e

IV R R

R R R

R
x21

x2y xy

e x

y

V RRRR
RR

  x21y xy x2e

y x

  x21y

VI R R
R R R

R
x21

y

e x

xy

VII RRRR RR
RR RRRR

  x21z x21

  x21yz  x21y

xz xz e

xyz xyyz y
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*Adaptation of figure from Dorothy K. Washburn and Donald W. Crowe. Symmetries of 
Culture: Theory and Practice of Plane Pattern Analysis. Copyright © 1988 by the 
University of Washington Press. Used by permission.
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The Crystallographic Groups
The seven frieze groups catalog all symmetry groups that leave a  
design invariant under all multiples of just one translation. However, 
there are 17 additional kinds of discrete plane symmetry groups that 
arise from infinitely repeating designs in a plane. These groups are the 
symmetry groups of plane patterns whose subgroups of translations are 
isomorphic to Z % Z. Consequently, the patterns are invariant under lin-
ear combinations of two linearly independent translations. These 17 
groups were first studied by 19th-century crystallographers and are of-
ten called the plane crystallographic groups. Another term occasionally 
used for these groups is wallpaper groups.

Our approach to the crystallographic groups will be geometric. It 
is adapted from the excellent article by Schattschneider [5] and the 
monograph by Crowe [1]. Our goal is to enable the reader to determine 
which of the 17 plane symmetry groups corresponds to a given periodic 
pattern. We begin with some examples.

RRRR RRRR
RRRR RRRR

RRRR RRRR
RRRR RRRR

RR RRR RRR
RRRR RRRR

RRRR RRRR
RRRR RRRR

RRRR RRRR

RRRR RRRR
RRRR RRRR

RRRR RRRR

z

x

z

y

x�1

Figure 28.11 
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The simplest of the 17 crystallographic groups contains translations 
only. In Figure 28.12, we present an illustration of a representative pat-
tern for this group (imagine the pattern repeated to fill the entire plane). 
The crystallographic notation for it is p1. (This notation is explained  
in [5].)

The symmetry group of the pattern in Figure 28.13 contains transla-
tions and glide-reflections. This group has no (nonzero) rotational or 
reflective symmetry. The crystallographic notation for it is pg.

Figure 28.14 has translational symmetry and threefold rotational 
symmetry (that is, the figure can be rotated 120° about certain points 
and be brought into coincidence with itself). The notation for this  
group is p3.

Representative patterns for all 17 plane crystallographic groups, 
together with their notations, are given in Figures 28.15 and 28.16. 
Figure 28.17 uses a triangle motif to illustrate the 17 classes of symme-
try patterns.

�Figure 28.12  Fish3 by Makoto Nakamura, adapted by Kevin Lee. Design with sym-
metry group p1 (disregarding shading). The inserted arrows are translation vectors.

M
ak

ot
o 

N
ak

am
ur

a 
an

d 
Ke

vi
n 

Le
e

45328  |  Frieze Groups and Crystallographic Groups

57960_ch28_ptg01_446-471.indd   453 10/27/15   2:38 PM



�Figure 28.13  Fish5 by Makoto 
Nakamura, adapted by Kevin Lee. 
Design with symmetry group pg 
(disregarding shading). The solid 
arrow is the translation vector. 
The dashed arrows are the glide-
reflection vectors.

�Figure 28.14   
Horses1 by Ma-
koto Nakamura, 
adapted by Kevin 
Lee. Design with 
symmetry group 
p3 (disregarding 
shading). The 
inserted arrows 
are translation 
vectors.
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Figure 28.15  The plane symmetry groups

All designs in Figures 28.15 and 28.16 except pm, p3, and pg are 
found in [2]. The designs for p3 and pg are based on elements of Chinese 
lattice designs found in [2]; the design for pm is based on a weaving pat-
tern from Hawaii, found in [3].  
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Figure 28.16  The plane symmetry groups
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Figure 28.17  The 17 plane periodic patterns formed using a triangle motif
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Identification of Plane Periodic Patterns
To decide which of the 17 classes any particular plane periodic pattern 
belongs to, we may use the flowchart presented in Figure 28.18. This is 
done by determining the rotational symmetry and whether or not the pat-
tern has reflection symmetry or nontrivial glide-reflection symmetry. 
These three pieces of information will narrow the list of candidates to at 
most two. The final test, if necessary, is to determine the locations of the 
centers of rotation.

For example, consider the two patterns in Figure 28.19 generated in a 
hockey stick motif. Both patterns have a smallest positive rotational sym-
metry of 120°; both have reflectional and nontrivial glide-reflectional 
symmetry. Now, according to Figure 28.18, these patterns must be of type 
p3m1 or p31m. But notice that the pattern on the left has all its threefold 
centers of rotation on the reflection axis, whereas in the pattern on the 
right the points where the three blades meet are not on a reflection axis. 
Thus, the left pattern is p3m1, and the right pattern is p31m.

Table 28.1 (reproduced from [5, p. 443]) can also be used to deter-
mine the type of periodic pattern and contains two other features that are 
often useful. A lattice of points of a pattern is a set of images of any 
particular point acted on by the translation group of the pattern. A lattice 
unit of a pattern whose translation subgroup is generated by u and v  
is a parallelogram formed by a point of the pattern and its image under 
u, v, and u 1 v. The possible lattices for periodic patterns in a plane, to-
gether with lattice units, are shown in Figure 28.20. A generating region 
(or fundamental region) of a periodic pattern is the smallest portion of the 
lattice unit whose images under the full symmetry group of the pattern 
cover the plane. Examples of generating regions for the patterns repre-
sented in Figures 28.12, 28.13, and 28.14 are given in Figure 28.21. In 
Figure 28.21, the portion of the lattice unit with vertical bars is the gener-
ating region. The only symmetry pattern in which the lattice unit and the 
generating region coincide is the p1 pattern illustrated in Figure 28.12. 
Table 28.1 tells what proportion of the lattice unit constitutes the generat-
ing region of each plane periodic pattern.

Notice that Table 28.1 reveals that the only possible n-fold rotational 
symmetries occur when n 5 1, 2, 3, 4, and 6. This fact is commonly 
called the crystallographic restriction. The first proof of this was given 
by the Englishman W. Barlow over 100 years ago. The information in 
Table 28.1 can also be used in reverse to create patterns with a specific 
symmetry group. The patterns in Figure 28.19 were made in this way.
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p3m1 p31m

Figure 28.19  Patterns generated in a hockey stick motif

Parallelogram

Square Hexagonal
(Equilateral triangles)

Rectangular Rhombic

Figure 28.20  Possible lattices for plane periodic patterns

In sharp contrast to the situation for finite symmetry groups, the transi-
tion from two-dimensional crystallographic groups to three-dimensional 
crystallographic groups introduces a great many more possibilities, since 
the motif is repeated indefinitely by three independent translations. Indeed, 
there are 230 three-dimensional crystallographic groups (often called space 
groups). These were independently determined by Fedorov, Schönflies, and 
Barlow in the 1890s. David Hilbert, one of the leading mathematicians of 
the 20th century, focused attention on the crystallographic groups in his 
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famous lecture in 1900 at the International Congress of Mathematicians in 
Paris. One of 23 problems he posed was whether or not the number of crys-
tallographic groups in n dimensions is always finite. This was answered af-
firmatively by L. Bieberbach in 1910. We mention in passing that in four 
dimensions, there are 4783 symmetry groups for infinitely repeating 
patterns.

As one might expect, the crystallographic groups are fundamentally 
important in the study of crystals. In fact, a crystal is defined as a rigid 
body in which the component particles are arranged in a pattern that re-
peats in three directions (the repetition is caused by the chemical 

Table 28.1  Identification Chart for Plane Periodic Patternsa

		  Highest		  Nontrivial		  Helpful
		  Order of		  Glide-	 Generating	 Distinguishing
Type	 Lattice	 Rotation	 Reflections	 Reflections	 Region	 Properties

p1	 Parallelogram	 1	 No	 No	 1 unit
p2	 Parallelogram	 2	 No	 No	 1

2 unit
pm	 Rectangular	 1	 Yes	 No	 1

2 unit
pg	 Rectangular	 1	 No	 Yes	 1

2 unit
cm	 Rhombic	 1	 Yes	 Yes	 1

2 unit
pmm	 Rectangular	 2	 Yes	 No	 1

4 unit
pmg	 Rectangular	 2	 Yes	 Yes	 1

4 unit	 Parallel reflection

						          axes
pgg	 Rectangular	 2	 No	 Yes	 1

4 unit
cmm	 Rhombic	 2	 Yes	 Yes	 1

4 unit	 Perpendicular

						          reflection axes
p4	 Square	 4	 No	 No	 1

4 unit
p4m	 Square	 4	 Yes	 Yes	 1

8 unit	 Fourfold centers

						          on reflection

						          axes
p4g	 Square	 4	 Yes	 Yes	 1

8 unit	 Fourfold centers

						          not on

						          reflection axes
p3	 Hexagonal	 3	 No	 No	 1

3 unit
p3m1	 Hexagonal	 3	 Yes	 Yes	 1

6 unit	 All threefold

						          centers on

						          reflection axes
p31m	 Hexagonal	 3	 Yes	 Yes	 1

6 unit	 Not all threefold

						          centers on

						          reflection axes
p6	 Hexagonal	 6	 No	 No	 1

6 unit
p6m	 Hexagonal	 6	 Yes	 Yes	 1

12 unit

aA rotation through an angle of 360°/n is said to have order n. A glide-reflection is nontrivial if its glide-axis is not 
an axis of reflective symmetry for the pattern.
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bonding). A grain of salt and a grain of sugar are two examples of com-
mon crystals. In crystalline materials, the motif units are atoms, ions, 
ionic groups, clusters of ions, or molecules.

Perhaps it is fitting to conclude this chapter by recounting two  
episodes in the history of science in which an understanding of symmetry 
groups was crucial to a great discovery. In 1912, Max von Laue, a young 
German physicist, hypothesized that a narrow beam of x-rays directed 
onto a crystal with a photographic film behind it would be deflected  

Figure 28.21  A lattice unit and generating region for the patterns in 
Figures 28.12, 28.13, and 28.14. Generating regions are shaded with bars.   
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(the technical term is “diffracted”) by the unit cell (made up of atoms or 
ions) and would show up on the film as spots. (See Figure 1.3.) Shortly 
thereafter, two British scientists, Sir William Henry Bragg and his 
22-year-old son William Lawrence Bragg, who was a student, noted that 
von Laue’s diffraction spots, together with the known information about 
crystallographic space groups, could be used to calculate the shape of the 
internal array of atoms. This discovery marked the birth of modern min-
eralogy. From the first crystal structures deduced by the Braggs to the 
present, x-ray diffraction has been the means by which the internal 
structures of crystals are determined. Von Laue was awarded the Nobel 
Prize in physics in 1914, and the Braggs were jointly awarded the No-
bel Prize in physics in 1915.

Our second episode took place in the early 1950s, when a handful of 
scientists were attempting to learn the structure of the DNA molecule—
the basic genetic material. One of these was a graduate student named 
Francis Crick; another was an x-ray crystallographer, Rosalind Franklin. 
On one occasion, Crick was shown one of Franklin’s research reports  
and an x-ray diffraction photograph of DNA. At this point, we let Horace 
Judson [4, pp. 165–166], our source, continue the story.

Crick saw in Franklin’s words and numbers something just as important,  
indeed eventually just as visualizable. There was drama, too: Crick’s  
insight began with an extraordinary coincidence. Crystallographers distin-
guish 230 different space groups, of which the face-centered monoclinic 
cell with its curious properties of symmetry is only one—though in biologi-
cal substances a fairly common one. The principal experimental subject of 
Crick’s dissertation, however, was the x-ray diffraction of the crystals of a 
protein that was of exactly the same space group as DNA. So Crick saw at 
once the symmetry that neither Franklin nor Wilkins had comprehended, that 
Perutz, for that matter, hadn’t noticed, that had escaped the theoretical crys-
tallographer in Wilkins’ lab, Alexander Stokes—namely, that the molecule 
of DNA, rotated a half turn, came back to congruence with itself. The struc-
ture was dyadic, one half matching the other half in reverse.

This was a crucial fact. Shortly thereafter, James Watson and Crick 
built an accurate model of DNA. In 1962, Watson, Crick, and Maurice 
Wilkins received the Nobel Prize in medicine and physiology for their 
discovery. The opinion has been expressed that, had Franklin correctly 
recognized the symmetry of the DNA molecule, she might have been 
the one to unravel the mystery and receive the Nobel Prize [4, p. 172].
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Exercises

You can see a lot just by looking.
Yogi Berra

	   1.	 Show that the frieze group F6 is isomorphic to Z % Z2.
	   2.	 How many nonisomorphic frieze groups are there?
	   3.	 In the frieze group F7, write x2yzxz in the form xnymzk.
	   4.	 In the frieze group F7, write x23zxyz in the form xnymzk.
	   5.	 In the frieze group F7, show that yz 5 zy and xy 5 yx.
	   6.	 In the frieze group F7, show that zxz 5 x21.
	   7.	 Use the results of Exercises 5 and 6 to do Exercises 3 and 4  

through symbol manipulation only (that is, without referring to the 
pattern). (This exercise is referred to in this chapter.)

	   8.	 Prove that in F7 the cyclic subgroup generated by x is a normal 
subgroup.

	   9.	 Quote a previous result that tells why the subgroups kx, yl and  
kx, zl must be normal in F7.

	 10.	 Look up the word frieze in an ordinary dictionary. Explain why the 
frieze groups are appropriately named.

	 11.	 Determine which of the seven frieze groups is the symmetry group 
of each of the following patterns.

		  a. 
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		  e. 

		  f. 

	 12.	 Determine the frieze group corresponding to each of the following  
patterns.

		  a.  y 5 sin x
		  b.  y 5 |sin x|
		  c.  |y| 5 sin x
		  d.  y 5 tan x
		  e.  y 5 csc x

	 13.	 Determine the symmetry group of the tessellation of the plane ex-
emplified by the brickwork shown.

	

	 14.	 Determine the plane symmetry group for each of the patterns in 
Figure 28.17.

	 15.	 Determine which of the 17 crystallographic groups is the symmetry 
group of each of the following patterns.

		  a.              b. 

		  c.              d. 
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	 16.	 In the following figure, there is a point labeled 1. Let a be the trans-
lation of the plane that carries the point labeled 1 to the point la-
beled a, and let b be the translation of the plane that carries the 
point labeled 1 to the point labeled b. The image of 1 under the 
composition of a and b is labeled ab. In the corresponding fashion, 
label the remaining points in the figure in the form aib j.

		

β αβ

α1

	 17.	 The patterns made by automobile tire treads in the snow are frieze 
patterns. An extensive study of automobile tires revealed that only 
five of the seven frieze patterns occur. Speculate on which two pat-
terns do not occur and give a possible reason why they do not.

	 18.	 Locate a nontrivial glide-reflection axis of symmetry in the cm pat-
tern in Figure 28.16.

	 19.	 Determine which of the frieze groups is the symmetry group of 
each of the following patterns.

		  a.  ? ? ? D D D D ? ? ?
		  b.  ? ? ? V 

V
 V 

V
 ? ? ?

		  c.  ? ? ? L L L L ? ? ?
		  d.  ? ? ? V V V V ? ? ?
		  e.  ? ? ? N N N N ? ? ?
		  f.  ? ? ? H H H H ? ? ?
		  g.  ? ? ? L

L

 L

L

 ? ? ?
	 20.	 Locate a nontrivial glide-reflection axis of symmetry in the pattern 

third from the left in the bottom row in Figure 28.17.
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Suggested Readings

S. Garfunkel et al., For All Practical Purposes, 9th ed., New York: W. H. 
Freeman, 2012.

This book has a well-written, richly illustrated chapter on symmetry in 
art and nature.

W. G. Jackson, “Symmetry in Automobile Tires and the Left-Right Prob-
lem,” Journal of Chemical Education 69 (1992): 624–626.

This article uses automobile tires as a tool for introducing and explain-
ing the symmetry terms and concepts important in chemistry.

C. MacGillivray, Fantasy and Symmetry—The Periodic Drawings of  
M. C. Escher, New York: Harry N. Abrams, 1976. 

This is a collection of Escher’s periodic drawings together with a math-
ematical discussion of each one.

D. Schattschneider, Visions of Symmetry, New York: Harry Abrams, 2004.

A loving, lavish, encyclopedic book on the drawings of M. C. Escher.

H. von Baeyer, “Impossible Crystals,” Discover 11 (2) (1990): 69–78.

This article tells how the discovery of nonperiodic tilings of the plane 
led to the discovery of quasicrystals. The x-ray diffraction patterns of 
quasicrystals exhibit fivefold symmetry—something that had been 
thought to be impossible.
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CHAPTER 28 9TH EDITION
Solutions for the odd numbered exercises for the chapter

on Frieze Groups and Crystallographic Groups

1. The mapping φ(xmyn) = (m,n) is an isomorphism. Onto is
by observation. If φ(xmyn) = φ(xiyj), then (m,n) = (i, j)
and therefore, m = n and i = j. Also, φ((xmyn)(xiyj)) =
φ(xm+iyn+j) = (m+ i, n+ j) = (m,n)(i, j) = φ(xmyn)φ(xiyj).

3. Using Figure 28.9 we obtain x2yzxz = xy.

5. Use Figure 28.9.

7. x2yzxz = x2yx−1 = x2x−1y = xy
x−3zxzy = x−3x−1y = x−4y

9. A subgroup of index 2 is normal.

11. a. V, b. I, c. II, d. VI, e. VII, and f. III.

13. cmm

15. a. p4m, b. p3, c. p31m, and d. p6m

17. The principle purpose of tire tread design is to carry water away
from the tire. Patterns I and III do not have horizontal reflec-
tive symmetry. Thus these designs would not carry water away
equally on both halves of the tire.

19. a. VI, b. V, c. I, d. III, e. IV, f. VII, g. IV
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