
Math 4326
Fall 2017

Extending an independent
set to a basis: examples

I thought I would give some examples of extending independent sets to a basis. For a
first example, suppose we wish to extend {t3 + t + 1, t4 + 2t2 + t} to a basis for P4. The
usual method on a problem like this: Extend the set to a spanning set by appending the
vectors from a known spanning set, and then remove dependent vectors, making sure to keep
the ones in the original set. In a case like this, it is simplest to append the vectors for the
standard basis for P4 to get the spanning set {t3 + t+ 1, t4 + 2t2 + t, 1, t, t2, t3, t4}. We may
also use the fact that every basis for P4 consists of five vectors, so any 5-vector spanning
set must be a basis. Thus, we must find two dependence relations to remove vectors. The
great thing about a standard basis, is that it is easy to take any vector and write it as a
combination of standard basis vectors. We make use of that fact.

Let’s label the vectors in our spanning set v1, v2, v3, v4, v5, v6 and v7. One dependence
relation is v1 = v3 + v4 + v6. We want to keep v1, but that’s ok. We can view any vector
in a dependence relation as depending on the others. So we can pick any of v3, v4, v6 to
remove. That is, we can rewrite things, say, v4 = v1 − v3 − v6 or v6 = v1 − v3 − v4, etc. I
usually just select the largest index, so I will remove v6 from our set. Next, v2 = v4+2v5+v7,
and so v7 can also be removed. Our basis is {v1, v2, v3, v4, v5} = {t3+t+1, t4+2t2+t, 1, t, t2}.

It is worth noting here that which vector you remove can make a difference. For exam-
ple, suppose we remove v4 at the first stage. Then v4 can’t be used in a linear dependence
relation at the next stage. But {v1, v2, v3, v5, v6, v7} = {t3 + t + 1, t4 + 2t2 + t, 1, t2, t3, t4}
must be dependent. I found the following dependence by inspection (looking at it, an answer
came to me). I got v2 − v1 = −v3 + 2v5 − v6 + v7. That is, subtracting v1 from v2 got rid
of the coefficient of t and we had all the other powers of t to work with. Thus, we can
get rid of any of v3, v5, v6, v7. If we get rid of v6 just to be different, we would have a basis
{v1, v2, v3, v5, v7} = {t3 + t + 1, t4 + 2t2 + t, 1, t2, t4}.

What if we can’t just spot dependence relations? For example, in a vector space without
a standard basis there might not be any obvious ways to get dependence relations. So
let’s do this problem without using obvious dependencies. In this case, we set up a generic
linear combination of the seven vectors, set that equal to 0, and use that to get a system of
equations to help us out. I dislike subscripts so I will use the beginning of the alphabet for
my scalars:

a(t3 + t + 1) + b(t4 + 2t2 + t) + c · 1 + dt + et2 + ft3 + gt4 = 0. (1)

Rewrite this as a polynomial:

(b + g)t4 + (a + f)t3 + (2b + e)t2 + (a + b + d)t + (a + c) = 0,

and to be 0, a polynomial must have all coefficients equal to 0. This gives us our system of
equations:

a + c = 0, a + b + d = 0, 2b + e = 0, a + f = 0, b + g = 0.

We get the coefficient matrix and reduce




1 0 1 0 0 0 0
1 1 0 1 0 0 0
0 2 0 0 1 0 0
1 0 0 0 0 1 0
0 1 0 0 0 0 1

⇒


1 0 1 0 0 0 0
0 1 −1 1 0 0 0
0 2 0 0 1 0 0
0 0 −1 0 0 1 0
0 1 0 0 0 0 1

⇒


1 0 1 0 0 0 0
0 1 0 0 0 0 1
0 1 −1 1 0 0 0
0 2 0 0 1 0 0
0 0 −1 0 0 1 0

⇒


1 0 1 0 0 0 0
0 1 0 0 0 0 1
0 0 −1 1 0 0 −1
0 0 0 0 1 0 −2
0 0 −1 0 0 1 0

⇒


1 0 0 0 0 1 0
0 1 0 0 0 0 1
0 0 1 0 0 −1 0
0 0 0 1 0 −1 −1
0 0 0 0 1 0 −2


This tells us that a = −f, b = −g, c = f, d = f + g, e = 2g. How does this give us
dependence relations? Pick f = 1, g = 0 and we get a = −1, b = 0, c = 1, d = 1, e =
0, f = 1, g = 0. That is, our equation (1) above becomes

−1(t3 + t + 1) + 1 + t + t3 = 0,

or v1 = v3 + v4 + v6, as before. Setting f = 0, g = 1 gives the other dependence relation.

As a second example, let V be the space of all polynomials in P3 that satisfy p(2) = 0
and p(3) = 0. The problem: Find a basis for V , and extend this to a basis for W , the set of
polynomials in P3 that only satisfy the condition p(3) = 0.

Finding a basis for V : if p(x) = ax3 + bx2 + cx + d then we need 8a + 4b + 2c + d = 0
and 27a + 9b + 3c + d = 0. It is easier to use variables with the smallest coefficients as
determined variables, so suppose we say a and b are free. Subtracting the first equation from
the second, 19a + 5b + c = 0, so c = −19a − 5b and d = −2c − 8a − 4b = 30a + 6b.
As an aside, this would happen if we used row reduction, but with columns d, c, b, a :(

1 2 4 8
1 3 9 27

)
⇒
(

1 2 4 8
0 1 5 19

)
⇒
(

1 0 −6 −30
0 1 5 19

)
. We have at3 + bt2 + ct + d =

at3 + bt2 − (19a + 5b)t + (30a + 6b) = a(t3 − 19t + 30) + b(t2 − 5t + 6). This means that
{t3 − 19t + 30, t2 − 5t + 6} is a basis for V . Now we want to extend this to a basis for
W . It turns out that W is 3-dimensional. If we knew this, then any three independent
vectors in W would form a basis for W , and so the task is to find one extra vector in W ,
independent of the first two. In fact, t − 3 is in W and it is independent of the other two,
so {t3 − 19t + 30, t2 − 5t + 6, t− 3} is such a basis. I will let you check the independence of
these vectors. If we don’t know W is 3-dimensional, we can try to find a basis for it. Setting
27a + 9b + 4c + d = 0 and writing d = −27z − 9b − 3c we have that any vector in W can
be written p(t) = at3 + bt2 + ct − 27a − 9b − 3c = a(t3 − 27) + b(t2 − 9) + c(t − 3) so W is
3-dimensional, with basis {t3 − 27, t2 − 9, t− 3}. It turns out that any one of these vectors
can be appended to the basis for V to get a new basis for W . If we did not want to use facts
about dimension, we could still do this problem: Given our bases {t3− 19t+ 30, t2− 5t+ 6}
for V and {t3− 27, t2− 9, t− 3} for W , the set {t3− 19t+ 30, t2− 5t+ 6, t3− 27, t2− 9, t− 3}
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is a spanning set for W so we just remove dependent vectors, while making sure to keep the
first two. If we call these vectors v1 through v5, I actually checked (via a system of equations)
that 5v1 − 19v2 − 5v3 + 19v4 = 0 and v1 − v3 + 19v5 = 0 so v4 and v5 depend on v1, v2, v3, so
these three form a basis.

One final example. Let V be the the set of all 2 × 2 matrices who’s entries add to 0.
You should be able to check that this is a vector space. It has many nice bases, but suppose

we are told that

{(
1 −1
1 −1

)
,

(
1 −2
1 0

)
,

(
1 −3
3 −1

)}
is a basis. Our task: to find a basis

that contains the matrix

(
1 1
1 −3

)
. We could proceed as follows: form the set containing

this and the other three matrices:

{(
1 1
1 −3

)
,

(
1 −1
1 −1

)
,

(
1 −2
1 0

)
,

(
1 −3
3 −1

)}
, and look

for a dependence relation (we need to remove one vector because dim(V ) = 3). Maybe a
dependence relation can be found by inspection, but if not, we can use a system of equation.
First, set a generic combination of the four matrices to 0:

a

(
1 1
1 −3

)
+ b

(
1 −1
1 −1

)
+ c

(
1 −2
1 0

)
+ d

(
1 −3
3 −1

)
= 0,

or

(
a + b + c + d a− b− 2c− 3d
a + b + c + 3d −3a− b− d

)
=

(
0 0
0 0

)
. Now we have four linear equations, we can

form a matrix and reduce:
1 1 1 1
1 −1 −2 −3
1 1 1 3
−3 −1 0 −1

⇒


1 1 1 1
0 −2 −3 −4
0 0 0 2
0 2 3 2

⇒


1 1 1 0
0 2 3 0
0 0 0 1
0 0 0 0

⇒


1 0 −1
2

0
0 1 3

2
0

0 0 0 1
0 0 0 0

 .

This says that we need a = 1
2
c, b = −3

2
c and d = 0. If we pick c = 2 then our dependence

relation is (
1 1
1 −3

)
− 3

(
1 −1
1 −1

)
+ 2

(
1 −2
1 0

)
= 0,

so we can eliminate either the second or third matrix, but not the fourth. One basis is{(
1 1
1 −3

)
,

(
1 −1
1 −1

)
,

(
1 −3
3 −1

)}
.
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