Math 4326 Extending an independent
Fall 2017 set to a basis: examples

I thought I would give some examples of extending independent sets to a basis. For a
first example, suppose we wish to extend {t* + ¢ + 1,t* 4+ 2t> + ¢} to a basis for P;. The
usual method on a problem like this: Extend the set to a spanning set by appending the
vectors from a known spanning set, and then remove dependent vectors, making sure to keep
the ones in the original set. In a case like this, it is simplest to append the vectors for the
standard basis for P, to get the spanning set {t3+t+ 1,4 +2t2+¢, 1, ¢, 12, 3, t}. We may
also use the fact that every basis for P, consists of five vectors, so any 5-vector spanning
set must be a basis. Thus, we must find two dependence relations to remove vectors. The
great thing about a standard basis, is that it is easy to take any vector and write it as a
combination of standard basis vectors. We make use of that fact.

Let’s label the vectors in our spanning set vy, vs,v3,v4, V5,06 and v;. One dependence
relation is vy = v3 + vy + vg. We want to keep vy, but that’s ok. We can view any vector
in a dependence relation as depending on the others. So we can pick any of w3, v4, vg to
remove. That is, we can rewrite things, say, vy = v; — v3 — vg Or Vg = V] — V3 — Uy, etc. 1
usually just select the largest index, so I will remove vg from our set. Next, vy = vy +2v5+v7,
and so v7 can also be removed. Our basis is {v1, Vo, V3, V4, v5} = {3+t +1,t4+2t2+¢, 1, ¢, t*}.

It is worth noting here that which vector you remove can make a difference. For exam-
ple, suppose we remove v, at the first stage. Then v, can’t be used in a linear dependence
relation at the next stage. But {vy,vq,v3,v5, 06,07} = {83+t + 1,4+ 262 + ¢, 1, ¢2, 13, t*}
must be dependent. I found the following dependence by inspection (looking at it, an answer
came to me). I got vy — v; = —v3 + 205 — vg + v7. That is, subtracting v; from vy got rid
of the coefficient of ¢ and we had all the other powers of ¢t to work with. Thus, we can
get rid of any of vz, vs, vg, v7. If we get rid of vg just to be different, we would have a basis
{’U17 V2, U3, Us, U7} = {t3 + 1+ ]., t4 + 2t2 + t, 1, t2, t4}

What if we can’t just spot dependence relations? For example, in a vector space without
a standard basis there might not be any obvious ways to get dependence relations. So
let’s do this problem without using obvious dependencies. In this case, we set up a generic
linear combination of the seven vectors, set that equal to 0, and use that to get a system of
equations to help us out. I dislike subscripts so I will use the beginning of the alphabet for
my scalars:

a(t® +t+ 1) +b(t* + 22 +t) +c- 1+ dt + et® + ft* + gt = 0. (1)
Rewrite this as a polynomial:
(b+g)t* 4+ (a+ )+ (2b+e)t> + (a+ b+ d)t + (a+¢) = 0,

and to be 0, a polynomial must have all coefficients equal to 0. This gives us our system of
equations:
a+c=0,a+b+d=0,2b4+e=0,a+f=0,b+9g=0.

We get the coefficient matrix and reduce



1 01 000O0 10 1 0000 10 1 0000
1101000 01 -11000 01 0 0O0O01
06020010O0=(02 0 01O00l=1]01-11000|=
1000010 00 -1001P0 02 0 0100
0100001 01 0 0O0O01 00 -10010

10 1 000 O 10000 1 O

01 0 0O0O0 1 01000 0 1

00 -1100 -1}]=1]100100 -1 0

00 0 0120 -2 00010 -1 -1

00 -1001 O 00001 0 =2

This tells us that a = —f, b = —g, ¢ = f, d = f+ g, e = 2g. How does this give us
dependence relations? Pick f =1, g=0and weget a =—-1, b=0, c=1,d=1, e =
0, f =1, g =0. That is, our equation (1) above becomes

1 +t+1)+1+t+t3=0,

or v; = v3 + vy + vg, as before. Setting f =0, g = 1 gives the other dependence relation.

As a second example, let V' be the space of all polynomials in P3 that satisfy p(2) = 0
and p(3) = 0. The problem: Find a basis for V', and extend this to a basis for W, the set of
polynomials in Ps that only satisfy the condition p(3) = 0.

Finding a basis for V: if p(z) = az® + ba® 4+ cx + d then we need 8a + 4b+2c+d =0
and 27a + 9b + 3c + d = 0. It is easier to use variables with the smallest coefficients as
determined variables, so suppose we say a and b are free. Subtracting the first equation from
the second, 19a + 50 +c¢ = 0, so ¢ = —19a — 5b and d = —2¢ — 8a — 4b = 30a + 6b.
As an aside, this would happen if we used row reduction, but with columns d,c,b,a :
G g ;l 287) = ((1) ? ;l 189> = ((1) (1) 56 120). We have at® + bt? + ct + d =
at’ + bt* — (19a + 5b)t + (30a + 6b) = a(t® — 19t + 30) + b(t> — 5t + 6). This means that
{t? — 19t + 30,1*> — 5t + 6} is a basis for V. Now we want to extend this to a basis for
W. It turns out that W is 3-dimensional. If we knew this, then any three independent
vectors in W would form a basis for W, and so the task is to find one extra vector in W,
independent of the first two. In fact, ¢ — 3 is in W and it is independent of the other two,
so {t3 — 19t + 30,1 — 5t + 6,t — 3} is such a basis. I will let you check the independence of
these vectors. If we don’t know W is 3-dimensional, we can try to find a basis for it. Setting
27a 4+ 9b + 4c + d = 0 and writing d = —27z — 90 — 3¢ we have that any vector in W can
be written p(t) = at® + bt? + ct — 27a — 9b — 3¢ = a(t® — 27) + b(t* — 9) + c(t — 3) so W is
3-dimensional, with basis {t3 — 27,t> — 9,¢ — 3}. It turns out that any one of these vectors
can be appended to the basis for V' to get a new basis for W. If we did not want to use facts
about dimension, we could still do this problem: Given our bases {t* — 19t + 30, ¢* — 5t + 6}
for V and {t3 —27,t>—9,t — 3} for W, the set {t> — 19t + 30, > — 5t +6,1> — 27,t> - 9,t — 3}
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is a spanning set for W so we just remove dependent vectors, while making sure to keep the
first two. If we call these vectors v; through vs, I actually checked (via a system of equations)
that bvy — 19v9 — 5v3 4+ 19v4 = 0 and v; — v3 + 19v5 = 0 so vy and vs depend on vy, vs, V3, SO
these three form a basis.

One final example. Let V be the the set of all 2 x 2 matrices who’s entries add to 0.

You should be able to check that this is a vector space. It has many nice bases, but suppose

1 -1 1 =2 1 -3 . . .

we are told that {(1 _1> , <1 0 ) , (3 _1)} is a basis. Our task: to find a basis
1

: (1 .
that contains the matrix 1 _3) We could proceed as follows: form the set containing

. . 1 1 1 -1 1 =2 1 -3
this and the other three matrices: {(1 _3) , (1 _1> , <1 0 ) , (3 _1> }, and look

for a dependence relation (we need to remove one vector because dim(V) = 3). Maybe a
dependence relation can be found by inspection, but if not, we can use a system of equation.
First, set a generic combination of the four matrices to 0:

1 1 1 -1 1 -2 1 -3
a(l _3)+b<1 _1>+c<1 O)+d<3 _1)_0,
Or(a+b+c+d a—b—20—3d>_(0 0

a+b+c+3d —-3a—-b—-d 0 0

form a matrix and reduce:

) . Now we have four linear equations, we can

11 1 1 1 1 1 1 1110 10 —% 0
Lo—1 =2 =3] [0 -2 =3 -4 |0230]_ (01 5 0
1 1 1 3 0o 0 0 2 0001 00 0 1
-3 -1 0 -1 0o 2 3 2 0000 00 0 O
This says that we need a = %c, b= —%c and d = 0. If we pick ¢ = 2 then our dependence

relation is

()0 el )

so we can eliminate either the second or third matrix, but not the fourth. One basis is

(650069}
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