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The Cayley-Hamilton Theorem
and Minimal Polynomials

Here are some notes on the Cayley-Hamilton Theorem, with a few extras thrown in. I
will start with a proof of the Cayley-Hamilton theorem, that the characteristic polynomial
is an annihilating polynomial for its n× n matrix A, along with a 3× 3 example of the vari-
ous aspects of the proof. In class, I only used a 2×2 example, which seems a little too simple.

The proof starts this way: given a matrix, A, we consider the formula

(xI − A)adj(xI − A) = det(xI − A)I = cA(x)I.

It would be nice to just plug A into this equation for x, and say that A − A = 0, so the
result follows. This does not work because adj(xI −A) has entries which are polynomials in
x so we would be dealing with a matrix where some of its entries are scalars and others are
matrices. For example, if

A =

2 1 1
1 2 1
1 1 2

 , then adj(xI − A) =

x2 − 4x + 3 x− 1 x− 1
x− 1 x2 − 4x + 3 x− 1
x− 1 x− 1 x2 − 4x + 3

.

Also,
(xI − A)adj(xI − A) = (x3 − 6x2 + 9x− 4)I.

What we do is write adj(xI − A) as a polynomial with matrix coefficients. In this case,

adj(xI − A) = x2I + x

−4 1 1
1 −4 1
1 1 −4

 +

 3 −1 −1
−1 3 −1
−1 −1 3

.

More generally,

adj(xI − A) = xn−1Bn−1 + xn−2Bn−2 + · · ·+ xB1 + B0

for some collection of matrices. At this point, we havexI −

2 1 1
1 2 1
1 1 2

x2I + x

−4 1 1
1 −4 1
1 1 −4

 +

 3 −1 −1
−1 3 −1
−1 −1 3

 = (x3−6x2+9x−4)I,

and it is legal to replace x by a matrix. This does not mean it is valid to do so, just that the
expressions can make mathematical sense at this point. For example, if we were to replace

x by, say, C =

0 0 1
0 0 0
0 0 0

, then on the left hand side of the expression above we have

0 0 1
0 0 0
0 0 0

−
2 1 1

1 2 1
1 1 2

0I +

0 0 1
0 0 0
0 0 0

−4 1 1
1 −4 1
1 1 −4

 +

 3 −1 −1
−1 3 −1
−1 −1 3


=

−2 −1 0
−1 −2 −1
−1 −1 −2

 4 0 −5
−1 3 −1
−1 −1 3

 =

−7 −3 11
−1 −5 4
−1 −1 0

.



On the other hand,

(x3 − 6x2 + 9x− 4)I = 0 + 0 + 9

0 0 1
0 0 0
0 0 0

− 4

1 0 0
0 1 0
0 0 1

 =

−4 0 9
0 −4 0
0 0 −4

,

a very different answer.

Thus,
(xI − A)(xn−1Bn−1 + xn−2Bn−2 + · · ·+ xB1 + B0) = cA(x)I

is correct for scalars x but not for matrices. Now if x is a scalar, we can multiply the left
hand side out, and collect powers of x to get

xnI + xn−1(Bn−2 − ABn−1) + · · ·+ x(B0 − AB1)− AB0.

If we denote cA(x) by xn + an−1x
n−1 + · · ·+ xa1 + a0 then

xnBn−1 + xn−1(Bn−2 − ABn−1) + · · ·+ x(B0 − AB1)− AB0 (1)

= xnI + an−1x
n−1I + · · ·+ xa1I + a0I.

Two polynomials are equal if and only if they have the same coefficients, and this is true even
if those coefficients are matrices. Consequently, Bn−1 = I, Bn−2−ABn−1 = an−1I, . . . , B0−
aB1 = a1I, −AB0 = a0I. In fact, for our running example, we see that B2 = I, B1−AB2 =

−6I, B0−AB1 =

 3 −1 −1
−1 3 −1
−1 −1 3

−
2 1 1

1 2 1
1 1 2

−4 1 1
1 −4 1
1 1 −4

 = 9I and −AB0 = −4I.

At this point, it is possible to replace x by any 3× 3 matrix, and everything will work. The
problem is that for general matrices x, it need not be the case that

(xI − A)(xn−1Bn−1 + xn−2Bn−2 + · · ·+ xB1 + B0)

= xnBn−1 + xn−1(Bn−2 − ABn−1) + · · ·+ x(B0 − AB1)− AB0.

That is, this equation is true for all scalars x but not all matrices. What does it take to make
it true for matrices? We must pay attention to order in matrix multiplication. A careful
multiplication shows

(xI − A)(xn−1Bn−1 + xn−2Bn−2 + · · ·+ xB1 + B0)

= xnBn−1 + (xn−1Bn−2 − Axn−1Bn−1) + · · ·+ (xB0 − AxB1)− AB0.

To make

xnBn−1 + (xn−1Bn−2 − Axn−1Bn−1) + · · ·+ (xB0 − AxB1)− AB0

look like
xnBn−1 + xn−1(Bn−2 − ABn−1) + · · ·+ x(B0 − AB1)− AB0
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we need x to be able to commute with all powers of A. This was the problem with the
matrix C we plugged in for x, that AC 6= CA. But A obviously commutes with all powers
of A so it is legal to replace x with A. When we do, we get

cA(A) = AnBn−1 + An−1(Bn−2 − ABn−1) + · · ·+ A(B0 − AB1)− AB0,

and you can see by the cancellation that this will be 0. This completes the proof.

Here is an extension of the Cayley-Hamilton Theorem. It uses adj(xI − A) to calculate
the minimal polynomial of A. Suppose that the greatest common divisor of all the entries in

adj(xI−A) is g(x). Then the minimal polynomial is mA(x) =
cA(x)

g(x)
. The proof is essentially

the same as the proof of the Cayley-Hamilton theorem. If every entry in adj(xI − A) is
divisible by g(x) then we may factor g(x) outside the matrix, and then write the remaining
matrix as a polynomial in x. This would give

adj(xI − A) = g(x)(xmCm + xm−1Cm−1 + · · ·+ xC1 + C0)

for some matrices C0, . . . , Cm. This means

cA(x)I = g(x)(xI − A)(xmCm + xm−1Cm−1 + · · ·+ xC1 + C0),

or
[cA(x)/g(x)]I = (xI − A)(xmCm + xm−1Cm−1 + · · ·+ xC1 + C0).

We now follow the rest of the proof of the Cayley-Hamilton theorem to justify that this
equation remains valid when x is replaced by A.

Next, if f(x) = xnCn + · · · + xC1 + C0 is any polynomial with matrix coefficients, then
if x is a variable that commutes with A we can divide by xI − A to get

f(x) = (xI − A)q(x) + R,

for some polynomial q(x) with matrix coefficients and some matrix R. If f(x) annihilates
A then 0 = f(A) = (A − A)q(A) + R forces R = 0. In particular, if mA(x) is the minimal
polynomial of A then we can write mA(x) = (xI −A)q(x) for some polynomial with matrix
coefficients. If cA(x) = mA(x)h(x) then we have

(xI − A)adj(xI − A) = cA(x)I = mA(x)h(x)I = (xI − A)h(x)q(x).

Comparing the start and the end, adj(xI−A) = h(x)q(x) = h(x)Q(x) where Q(x) is a single
matrix (not a polynomial) but with polynomial entries. This means that every entry in the
adjoint of xI − A must be divisible by h(x), and this finishes the proof. For example, with
the matrix A we have been using as an example, if you look back at the adjoint of xI−A and
note that x2−4x+3 = (x−1)(x−3) then we see that x−1 is the greatest common divisor of
the entries of the adjoint. The characteristic polynomial is x3−6x2+9x−4 = (x−1)2(x−4).
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This means the minimal polynomial of A should be
(x− 1)2(x− 4)

x− 1
= (x− 1)(x− 4), which

is easy to check.

For another example, let A =


3 1 1 1
1 3 1 1
0 0 3 1
0 0 1 3

. In this case, the adjoint is


(x− 2)(x− 3)(x− 4) (x− 2)(x− 4) (x− 2)2 (x− 2)2

(x− 2)(x− 4) (x− 2)(x− 3)(x− 4) (x− 2)2 (x− 2)2

0 0 (x− 2)(x− 3)(x− 4) (x− 2)(x− 4)
0 0 (x− 2)(x− 4) (x− 2)(x− 3)(x− 4)

.

As we can see, the gcd of the terms in the adjoint is x− 2. You should check that the char-
acteristic polynomial is (x− 2)2(x− 4)2 and that the minimal polynomial is (x− 2)(x− 4)2.

One final note on this material. A matrix with integer entries or polynomial entries can
be put into a special form, called the Smith-Normal form: Given A there are matrices P

and Q each with determinant ±1 for which PAQ =


c1

c2
. . .

cn

, a diagonal matrix.

In this matrix, each entry should divide subsequent entries. That is, cn is divisible by cn−1 is
divisible by cn−2, and so on. Moreover, det(A) = ±c1c2 · · · cn. If we find the Smith-Normal
form for xI − A then we can make all the c′s be monic polynomials, their product will be
the characteristic polynomial, and cn will be the minimal polynomial. Let’s show this on the
matrix A above. We do row and column operations on xI−A, but if we multiply or divide a
row by anything other than 1 or -1 we must do the reverse later. The method is to write the
greatest common divisor of all the entries as a combination of the entries, use row/column
operations to produce that gcd, interchange rows and columns to put that element in the
(1, 1) position, and use it to get rid of everything in its row and column. Then work on the
(n− 1)× (n− 1) submatrix that’s left, etc. In our case, the calculations look like this:

xI − A =


x− 3 −1 −1 −1
−1 x− 3 −1 −1
0 0 x− 3 −1
0 0 −1 x− 3

⇒

−1 x− 3 −1 −1

x− 3 −1 −1 −1
0 0 x− 3 −1
0 0 −1 x− 3



⇒


−1 x− 3 −1 −1
0 x2 − 6x + 8 −x + 2 −x + 2
0 0 x− 3 −1
0 0 −1 x− 3

⇒


1 0 0 0
0 x2 − 6x + 8 −x + 2 −x + 2
0 0 x− 3 −1
0 0 −1 x− 3

.

In the lower right 3× 3 submatrix, the greatest common divisor of the entries is still 1. We
could bring the (4, 3) entry to the (2, 2) entry by row/column operations. Doing this and
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continue the reduction:
1 0 0 0
0 x2 − 6x + 8 −x + 2 −x + 2
0 0 x− 3 −1
0 0 −1 x− 3

⇒


1 0 0 0
0 0 −1 x− 3
0 0 x− 3 −1
0 x2 − 6x + 8 −x + 2 −x + 2



⇒


1 0 0 0
0 −1 0 x− 3
0 x− 3 0 −1
0 −x + 2 x2 − 6x + 8 −x + 2

⇒


1 0 0 0
0 −1 0 x− 3
0 0 0 x2 − 6x + 8
0 0 x2 − 6x + 8 −(x2 − 4x + 4)



⇒


1 0 0 0
0 1 0 0
0 0 0 x2 − 6x + 8
0 0 x2 − 6x + 8 −(x2 − 4x + 4)

 .

Now things get more complicated. Each of the for lower right entries is divisible by x − 2,
since x2 − 6x + 8 = (x− 2)(x− 4) and x2 − 4x + 4 = (x− 2)2. If we interchange the third
and fourth rows, and then the third and fourth columns, and then add the bottom row from
to third, we get

1 0 0 0
0 1 0 0
0 0 −x2 + 4x− 4 x2 − 6x + 8
0 0 x2 − 6x + 8 0

⇒


1 0 0 0
0 1 0 0
0 0 −2x + 4 x2 − 6x + 8
0 0 x2 − 6x + 8 0


Fractions arise when using the (3, 3) entry: We multiply the third row by 1

2
(x− 4) and add

to the bottom:
1 0 0 0
0 1 0 0
0 0 −2x + 4 x2 − 6x + 8
0 0 0 1

2
(x− 4)(x2 − 6x + 8)

⇒


1 0 0 0
0 1 0 0
0 0 −2x + 4 0
0 0 0 1

2
(x− 4)(x2 − 6x + 8)

 .

Finally, we make the diagonal polynomials monic by dividing the (3, 3) entry by -2, multi-
plying the (4, 4) entry by 2. Factoring, we have the Smith-Normal form:

1 0 0 0
0 1 0 0
0 0 x− 2 0
0 0 0 (x− 2)(x− 4)2

 .

Thus, the minimal polynomial is (x−2)(x−4)2 and the characteristic polynomial polynomial
is the product of the diagonals: (x− 2)2(x− 4)2.
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