
Math 4326
Fall 2017

Linear Transformations
and the Rank-Nullity Theorem

In these notes, I will present everything we know so far about linear transformations.
This material comes from sections 1.7, 1.8, 4.2, 4.5 in the book, and supplemental stuff that
I talk about in class. The order of this material is slightly different from the order I used in
class. We will start with the initial definition.

Definition 1 A function T : V → W from a vector space V to a vector space W is called
a linear transformation if

T (u + v) = T (u) + T (v),

T (cu) = cT (u),

for all u, v ∈ V and all real c.

The following facts will be used so frequently, they should be memorized as if they too were
part of the definition.

Lemma 1 If T : V → W is a linear transformation, then

T (0) = 0

and
T (c1v1 + c2v2 + · · ·+ cnvn) = c1T (v1) + · · ·+ cnT (vn).

Associated with each linear transformation are two vector spaces:

Ker(T ) = {v ∈ V |T (v) = 0}

and
Range(T ) = {T (v) | v ∈ V } = {w ∈ W |w = T (v) for some v}.

You should be able to verify that these two sets are, indeed, subspaces of the appropriate
spaces. Make sure you know where each of these subspaces “lives.” Ker(T) is a subspace of
V and Range(T) is a subspace of W. If I asked you for a basis for the Range of T and you
listed vectors from V instead of W, there would be a considerable penalty on an exam. As

an extended example, let T : P3 → M2×2 be defined by T (p(t)) = p

(
1 1
−1 1

)
. What this

means is that if p(t) = at3 + bt2 + ct + d and A =

(
1 1
−1 1

)
, then

T (p(t)) = aA3 + bA2 + cA + dI

= a

(
−2 2
−2 −2

)
+ b

(
0 2
−2 0

)
+ c

(
1 1
−1 1

)
+ d

(
1 0
0 1

)
. (1)



Here, I have done some computing: A2 =

(
0 2
−2 0

)
and A3 =

(
−2 2
−2 −2

)
. For example,

T (2t3 − 3t + 1) = 2

(
−2 2
−2 −2

)
− 3

(
1 1
−1 1

)
+

(
1 0
0 1

)
=

(
−6 1
−1 −6

)
.

We could use (1) to rewrite the definition of T :

T (at3 + bt2 + ct + d) =

(
−2a + c + d 2a + 2b + c
−2a− 2b− c −2a + c + d

)
. (2)

For a quick check that T is linear, it is easier to use the original definition of T :

T (p(t) + q(t)) = (p + q)(A) = p(A) + q(A) = T (p(t)) + T (q(t)),

T (cp(t)) = cp(A) = cT (p(t)).

Next, let’s calculate ker(T ), Range(T ), and bases for each. For this, it is easier to use (2)
than the initial definition. For the kernel, we want polynomials p(t) for which T (p(t)) = 0.
That is, we want

T (at3 + bt2 + ct + d) =

(
−2a + c + d 2a + 2b + c
−2a− 2b− c −2a + c + d

)
=

(
0 0
0 0

)
.

To get the zero matrix we need −2a + c + d = 0, 2a + 2b + c = 0. We could put these into
a matrix and row reduce, but it is easier to just let a and b be free. Subtracting the second
equation from the first, −4a− 2b + d = 0 so c = −2a− 2b, d = 4a + 2b. The kernel of T is
the set of all polynomials of the form

at3 + bt2 − (2a + 2b)t + 4a + 2b = a(t3 − 2t + 4) + b(t2 − 2t + 2).

From this, we get a basis for the kernel, {t3− 2t+ 4, t2− 2t+ 2}. You should check that each
of these polynomials actually is in the kernel.

For the range of T, we have to answer the question “What matrices can have the form
T (p(t)) for some polynomial p(t)?” Introducing some free variables, we want to know what(
w x
y z

)
can have the form

(
−2a + c + d 2a + 2b + c
−2a− 2b− c −2a + c + d

)
. We need to know what has to

be true about w, x, y, z in order for a, b, c, d to exist. That is, we need to know when the

system of equations

−2a + c + d = w
2a + 2b + c = x
−2a− 2b− c = y
−2a + c + d = z

is consistent. We find the augmented matrix and

row reduce: 
-2 0 1 1 w
2 2 1 0 x
-2 -2 -1 0 y
-2 0 1 1 z

⇒


-2 0 1 1 w
2 2 1 0 x
0 0 0 0 x + y
0 0 0 0 -w + z

 .
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To have a solution, we need x + y = 0,−w + z = 0. That is, we have to solve yet another
system of equations. In this case, we can do it by inspection: Let y and z be free, giving

x = −y, w = z. Thus, the range consists of all matrices of the form

(
z −y
y z

)
, which we can

write z

(
1 0
0 1

)
+ y

(
0 −1
1 0

)
, so a basis for the range is

{(
1 0
0 1

)
,

(
0 −1
1 0

)}
.

Here is a second way to calculate the range. It is based on the following theorem.

Theorem 1 Given a linear transformation T : V → W, and a basis {v1, v2, . . . , vn} for V,
then Range(T ) = Span{T (v1), T (v2), . . . , T (vn)}.

This theorem does NOT say Span{T (v1), T (v2), . . . , T (vn)} is a basis, because the set could
be linearly dependent. However, it does give a way to find a basis for the range: remove
dependent vectors form Span{T (v1), T (v2), . . . , T (vn)} until the set becomes independent.
Once you see the proof of the Rank-Nullity theorem later in this set of notes, you should be
able to prove this.

Back to our example, we first need a basis for P3, the domain space. We might as well use
the standard basis, {1, t, t2, t3}. Applying T to each basis vector, {T (1), T (t), T (t2), T (t3)},

or

{(
1 0
0 1

)
,

(
1 1
−1 1

)
,

(
0 2
−2 0

)
,

(
−2 2
−2 −2

)}
will be a spanning set for the range. The

first two vectors in this set are linearly independent. However,

(
0 2
−2 0

)
= −2

(
1 0
0 1

)
+

2

(
1 1
−1 1

)
and

(
−2 2
−2 −2

)
= −4

(
1 0
0 1

)
+ 2

(
1 1
−1 1

)
. Since the third and fourth vectors

depend on the first two, a basis is

{(
1 0
0 1

)
,

(
1 1
−1 1

)}
. In general, this approach will

produce a different basis than the first method. Also, this basis, though easier to find, is
usually not as nice to work with as the one done by the first approach.

The next result is good for teachers–it gives us a way to design transformations with various
properties.

Theorem 2 Let V and W be vector spaces, and let {v1, v2, . . . , vn} be a basis for V. Given
ANY n vectors w1, w2, . . . , wn, in W, there is a unique linear transformation T : V → W for
which

T (v1) = w1, T (v2) = w2, . . . , T (vn) = wn.

This theorem is sometimes expressed this way: A linear transformation is uniquely de-
termined by its action on a basis. That is, if you know what T does to each of the vectors
in some basis, then in principle, you know T.
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The proof has two parts: existence, and uniqueness. That is, we must show that such
a transformation exists, and then show there is at most one such transformation. For the
existence, we make use of the spanning property of a basis: given any vector u in V, we can
write u = c1v1+c2v2+ · · ·+cnvn. We now define T this way: T (u) = c1w1+c2w2+ · · ·+cnwn.
That is, what ever linear combination is needed to write u as a copy of v’s, use that same
combination on the w’s to get T (u). This defines a function from V to W but it does not
tell us that the function is linear. We must check this. That is, we have to check that
T (u + v) = T (u) + T (v) and T (ku) = kT (u). So let u = c1v1 + c2v2 + · · · + cnvn and
v = d1v1 + d2v2 + · · ·+ dnvn. Then u + v = (c1 + d1)v1 + (c2 + d2)v2 + · · ·+ (cn + dn)vn, so

T (u + v) = (c1 + d1)w1 + (c2 + d2)w2 + · · ·+ (cn + dn)wn

= c1w1 + c2w2 + · · ·+ cnwn + d1w1 + d2w2 + · · ·+ dnwn

= T (u) + T (v).

Since ku = kc1v1 + kc2v2 + · · ·+ kcnvn.

T (ku) = kc1w1 + kc2w2 + · · ·+ kcnwn

= k(c1w1 + c2w2 + · · ·+ cnwn)

= kT (u),

as desired.

Having established that there IS a linear transformation with the right property, we show
there is only one. To that end, suppose S : V → W is linear and S(v1) = w1, S(v2) =
w2, . . . , S(vn) = wn. We show that S and T are the same function. First, a definition:
Two functions f(x) and g(x) are the SAME if for all x, f(x) = g(x). That is, sin 2x and
2 sinx cosx are the same function, even though they look different. So to show S and T are
the same, we must show that S(v) = T (v) for all vectors v in V. Given v in V, we know there
are scalars c1, c2, . . . , cn for which v = c1v1 + c2v2 + · · ·+ cnvn. We also know that from the
definition of T, T (v) = c1w1 + c2w2 + · · ·+ cnwn. On the other hand,

S(v) = S(c1v1 + c2v2 + · · ·+ cnvn)

= c1S(v1) + c2S(v2) + · · ·+ cnS(vn) (by linearity)

= c1w1 + c2w2 + · · ·+ cnwn (definition of S)

= T (v),

as desired. Here is a proof of Theorem 10 in Chapter 1 of our book (page 72).

Theorem 3 If T : Rn → Rm is a linear transformation, then there is a unique m×n matrix
A for which T (v) = Av for all v in Rn.

This theorem says that the only linear transformations from Rn to Rm are matrix trans-
formations. A transformation may be defined differently, but in the end, we could find an A
to describe it.
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Proof: We will use the previous theorem, so first we need a basis for Rn, and we may as
well use the standard basis, {e1, e2, . . . , en}. We apply the transformation, T, to each of these
standard basis vectors. Suppose T (e1) = w1, T (e2) = w2, . . . , T (en) = wn. By the previous

theorem, once we know this information, we essentially know T. Writing v =


x1

x2
...
xn

 , since


x1

x2
...
xn

 = x1e1 + x2e2 + · · ·+ xnen,

we have

T (v) = T (x1e1 + x2e2 + · · ·+ xnen)

= x1T (e1) + x2T (e2) + · · ·+ xnT (en)

= x1w1 + x2w2 + · · ·+ xnwn.

Now let A be the matrix that has the w’s as its columns: A = (w1|w2| · · · |wn). By the way
matrix multiplication works, we have

Av = (w1|w2| · · · |wn)


x1

x2
...
xn

 = x1w1 + x2w2 + · · ·+ xnwn = T (v).

This completes the proof.

For an example, suppose that T (x, y, z) = (y− z, 2x+ 3y+ 4z). Then T (e1) = (0, 2), T (e2) =
(1, 3), T (e3) = (−1, 4). we convert these vectors to columns (we HAVE to use columns when
putting things in matrix format), the matrix of the transformation is

A =

(
0 1 −1
2 3 4

)
.

As a check,

(
0 1 −1
2 3 4

)x
y
z

 =

(
y − z

2x + 3y + 4z

)
, which is T (x, y, z), when put into column

format instead of row format.

It is important to remember that this theorem ONLY applies to transformations from
Rn to Rm. If a polynomial space, a matrix space, or even some subspace of Rn is involved,
this theorem does not apply.
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Here are two more examples of Theorem 2. Suppose we wish for a linear transformation

from M2×2 to P2 that maps the basis vectors

(
1 0
0 0

)
,

(
1 1
0 0

)
,

(
1 1
1 0

)
,

(
1 1
1 1

)
to polyno-

mials t2 + t + 1, t + 1, t2 + t, and t, respectively. Theorem 2 says there is a unique linear
transformation that does this. Can we find a formula for it? Yes: Write the standard matrix
as a linear combination of basis vectors. I will let you check that(

a b
c d

)
= (a− b)

(
1 0
0 0

)
+ (b− c)

(
1 1
0 0

)
,+(c− d)

(
1 1
1 0

)
+ d

(
1 1
1 1

)
.

Given this, by linearity,

T

(
a b
c d

)
= (a− b)T

(
1 0
0 0

)
+ (b− c)T

(
1 1
0 0

)
+ (c− d)T

(
1 1
1 0

)
+ dT

(
1 1
1 1

)
= (a− b)(t2 + t + 1) + (b− c)(t + 1) + (c− d)(t2 + t) + dt

= (a− b + c− d)t2 + at + (a− c).

Suppose, instead, we want a linear transformation from M2×2 to P2 with kernel equal

to the span of

{(
1 2
0 0

)
,

(
0 0
2 1

)}
and range the span of {t + 1, t2 + t}. One has to be

careful with these problems, as some combinations are not possible. In this case, such a
transformation exists, and their are infinitely many such transformations. How do we find

such a transformation? First, we extend

{(
1 2
0 0

)
,

(
0 0
2 1

)}
to a basis for all of M2×2. Here

is one such basis:

{(
1 2
0 0

)
,

(
0 0
2 1

)
,

(
1 1
0 0

)
,

(
0 0
1 1

)}
. Theorem 2 says there is a (unique)

transformation that maps a basis onto any given set of vectors of the same size. We want
the first two vectors to map to 0, since they must be in the kernel. We map the other two
vectors to the two basis vectors for the range. That is, we look for a transformation that
does this:

T

(
1 2
0 0

)
= 0, T

(
0 0
2 1

)
= 0, T

(
1 1
0 0

)
= t + 1, T

(
0 0
1 1

)
= t2 + t.

We now proceed as in the previous example. We write a general matrix as a combination of
basis vectors, and then apply T to get a formula. We have(

a b
c d

)
= (b− a)

(
1 2
0 0

)
+ (c− d)

(
0 0
2 1

)
+ (2a− b)

(
1 1
0 0

)
+ (2d− c)

(
0 0
1 1

)
,

so

T

(
a b
c d

)
= (b− a)T

(
1 2
0 0

)
+ (c− d)T

(
0 0
2 1

)
+ (2a− b)T

(
1 1
0 0

)
+ (2d− c)T

(
0 0
1 1

)
= (b− c)(0) + (c− d)(0) + (2a− b)(t + 1) + (2d− c)(t2 + t)

= (2d− c)t2 + (2a− b− c + 2d)t + (2a− b).
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Answers like this can be checked. If we wanted the kernel, we would look for matrices
that get sent to 0 so we need 2a− b = 0, 2d− c = 0, 2a− b− c + 2d = 0. The last equation
is just the sum of the first two, so we need b = 2a and c = 2d, which quickly tells us we have
the right kernel. I will let you check that the range also works.

The Rank-Nullity Theorem

We had a theorem for matrices called the Rank-Nullity theorem. It stated that the
dimension of the column space + the dimension of the null space of a matrix is n, the
number of columns in the matrix. We now extend this result to linear transformations.

Theorem 4 (The Rank-Nullity Theorem) Let T : V → W be a linear transformation from
a finite dimensional vectors space V to a vector space W. Then

dim(Ker( T )) + dim(Range( T )) = dim V.

Proof: As with almost every proof that involves dimensions, we make use of bases for various
vector spaces involved. What we must do is relate the sizes of bases for Ker(T ), Range(T ),
and V. Since Ker(T ) is a subspace of V, it makes sense to start with these two vector spaces
(Ker(T ), and V ). Let {u1, u2, . . . , uk} be a basis for Ker(T ) (the smaller of the two spaces).
This is an independent set of vectors in V, so we can extend it to a basis for all of V. Let
this extended basis be {u1, u2, . . . , uk, v1, v2, . . . , vm}. In forming these two bases, we have
labeled the dimensions of Ker(T ) and V. That is, we have said that dim(Ker(T )) = k, and
dim(V ) = k +m. This means that we must show that the dimension of the range of T is m.

Claim A basis for the range of T is {T (v1), T (v2), . . . , T (vm)}. If we can verify this claim, we
will have finished the proof. To show this set is a basis, we must establish both the spanning
property and the independence property. We tackle these properties in the order listed.

Spanning: Let w be in the range of T. This means that w = T (v) for some v in V. This v
can be written as a combination of basis vectors so

v = c1u1 + · · ·+ ckuk + d1v1 + · · ·+ dmvm.

Applying the transformation and making use of linearity,

w = T (v) = T (c1u1 + · · ·+ ckuk + d1v1 + · · ·+ dmvm

= c1T (u1) + · · ·+ ckT (uk) + d1T (v1) + · · ·+ dmT (vm).

Since the u’s are all in the kernel of T, we have T (uj) = 0 for each j. Consequently,

w = d1T (v1) + · · ·+ dmT (vm),

which shows that w is in the span of {T (v1), T (v2), . . . , T (vm)}.

Page 7



Independence: Suppose that d1T (v1) + · · · + dmT (vm) = 0 for some scalars d1, . . . , dm.
We must show that all the d’s are forced to be 0. By linearity (in the opposite direction we
usually use it), d1T (v1)+ · · ·+dmT (vm) = 0→ T (d1v1+ · · ·+dmvm) = 0, so d1v1+ · · ·+dmvm
is in the kernel of T. Since we have a basis for Ker(T ), we have

d1v1 + · · ·+ dmvm = c1u1 + · · ·+ ckuk.

This looks like a dependence relation among the u’s and v’s, but the u’s and v’s are inde-
pendent. The only possibility, then, is that all the coefficients, all the c’s and all the d’s are
zero. In particular, all the d’s must be zero. This shows that {T (v1), T (v2), . . . , T (vm)} is a
linearly independent set, completing the proof that it is a basis.

We now have a new way to find a basis for the range of T. For example, going back to

our first transformation, T (at3 + bt2 + ct + d) =

(
−2a + c + d 2a + 2b + c
−2a− 2b− c −2a + c + d

)
, recall that

Ker(T ) has a basis of {t2− 2t+ 2, t3− 2t+ 4}. We extend this to a basis for P3. In fact, such
a basis is {t2− 2t+ 2, t3− 2t+ 4, 1, t}. One way to see this is a basis is to show that each of
the standard basis vectors, 1, t, t2, t3 are in the span of the set. You should check this. By
the proof of the Rank-Nullity Theorem, if we delete the vectors in the kernel of T, leaving us
with {1, t}, and then apply T to each of these vectors, we should get a basis for the range.
That is, a basis for the range of T is

{T (1), T (t)} =

{(
1 0
0 1

)
,

(
1 1
−1 1

)}
.

Here is another example. Let T : P3 → P3 be defined by

T (p(t)) = p(t + 2)− (t + 1)p′(t).

For example,

T (t3 − 2t + 3) = (t + 2)3 − 2(t + 2) + 3− (t + 1)(3t2 − 2)

= t3 + 6t2 + 12t + 8− 2t− 4 + 3− 3t3 − 3t2 + 2t + 2

= −2t3 + 3t2 − 14t + 9.

You should verify that T is a linear transformation. We will find bases for the kernel and
range of T. For the kernel, we want those polynomials, p(t) with T (p(t)) = 0. Letting
p(t) = at3 + bt2 + ct + d, we have

T (p(t)) = a(t + 2)3 + b(t + 2)2 + c(t + 2) + d− (t + 1)(3at2 + 2bt + c)

= −2at3 + (3a− b)t2 + (12a + 2b)t + (8a + 4b + c + d).

For this to be 0, we need −2a = 0, 3a− b = 0, 12a+2b = 0, 8a+4b+ c+d = 0, which quickly
reduces to a = 0, b = 0, c + d = 0. Writing d = −c, the kernel consists of all polynomials
p(t) = ct− c = c(t− 1), so the kernel is one-dimensional and a basis is {t− 1}.
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For the range, we extend {t − 1} to a basis for P3. As usual, we append the standard
basis vectors to the set: {t− 1, 1, t, t2, t3} is a spanning set for P3. Next, we remove depen-
dent vectors from among 1, t, t2, t3. In fact, we need only remove t to get {1− t, 1, t2, t3}. (We
know we need exactly four vectors, so there could only be one dependence.) Next, by the
proof of the Rank-Nullity Theorem, a basis for the range is {T (1), T (t2), T (t3)}. Applying
T, we get our basis

{1,−t2 + 2t + 4,−2t3 + 3t2 + 12t + 8}.
We could have found a basis for the range without using the Rank-Nullity Theorem. We
would look for polynomials et3 + ft2 + gt + h that could equal T (p(t)) for some polynomial
p(t). We would get the system

−2a = e

3a− b = f

12a + 2b = g

8a + 4b + c + d = f.

We need this system to be consistent. This leads to a row reduction:
-2 0 0 0 e
3 -1 0 0 f
12 2 0 0 g
8 4 1 1 h

⇒


-2 0 0 0 e
3 -1 0 0 f
18 0 0 0 2f + g
8 4 1 1 h

⇒


-2 0 0 0 e
3 -1 0 0 f
0 0 0 0 9e + 2f + g
8 4 1 1 h

 .

I will let you check that the only relation we need for consistency is 9e+ 2f + g = 0. Writing
this g = −9e − 2f, we have range polynomials of the form et3 + ft2 − (9e + 2f)t + h =
e(t3 − 9t) + f(t2 − 2t) + h · 1, leading to the basis

{t3 − 9t, t2 − 2t, 1}.

This is different from the previous basis, and this is usually the case. The basis produced
by the Rank-Nullity Theorem is usually easier to get, but the direct approach, though more
work intensive, usually produces a nicer basis. For example, suppose we wanted to know
if t3 − 2t2 − 5t − 1 is in the range of T. It is easier to try to write this polynomial as a
combination of t3 − 9t, t2 − 2t, 1 than to use the other basis. We would write

t3 − 2t2 − 5t− 1 = a(t3 − 9t) + b(t2 − 2t) + c · 1,

which quickly gives a = 1, b = −2, c = 1. We need to check that this works (which involves
checking that the coefficient of t is correct), but this also is easy. Thus, this polynomial IS
in the range of T. To use the other basis, we would need

t3 − 2t2 − 5t− 1 = a · 1 + b(−t2 + 2t + 4) + c(−2t3 + 3t2 + 12t + 8).

To find a, b, c here requires solving (an easy) system, and checking that it is consistent takes
a little more work as well.
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