
Dodgson’s Determinant: A Qualitative Analysis

A THESIS

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Amy Dannielle Schmidt

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

PROFESSOR JOHN R. GREENE

May, 2011

Acknowledgements

I would like to take this opportunity to thank Dr. John Greene. As an algebra professor,

he made a great impact on my growth as a young mathematician. I am grateful for his

guidance in my research and his advice on career-shaping decisions.

Dr. Dalibor Froncek, Dr. Harlan Stech, Angela Sharp, and Chad Pierson have also

been great mentors throughout my undergraduate and graduate careers at the Univer-

sity of Minnesota Duluth. I appreciate their advice and encouragement.

I would also like to thank Dr. Guihua Fei and Dr. John Pastor for serving on my

thesis review committee and my friends and family for supporting me over the years.

i

Abstract

Condensation, developed by Charles Dodgson, is an uncommon method for calculating

the determinant. It is generally considered to be numerically unstable due to its itera-

tive nature. While we do not attempt to prove whether or not the algorithm is stable,

we conduct a qualitative stability analysis. We compare the algorithm’s performance to

that of row reduction on contrived and random matrices. We have written two modified

condensation algorithms for 3× 3 and 4× 4 matrices, which we include in our compar-

isons as well.

We also briefly investigate the relationship between the condition number of a matrix

and the performance of these algorithms when used to calculate its determinant.

ii

Contents

Acknowledgements i

Abstract ii

List of Tables v

1 Introduction 1

1.1 Background . 1

1.2 Statement of Problem . 5

1.3 Literature Review . 6

2 Preliminaries 7

2.1 Terminology . 7

2.2 Precision . 7

2.3 Floating-Point Representation Errors . 9

2.4 Order of Magnitude . 12

3 Methodology 13

3.1 Algorithms . 13

3.2 Comparisons . 16

4 Ill-Conditioned Matrices 18

5 3 by 3 Matrices 27

5.1 Contrived Matrices . 27

5.2 Random Matrices . 34

iii

6 4 by 4 Matrices 36

6.1 Contrived Matrices . 36

6.2 Random Matrices . 39

7 Conclusion and Discussion 41

7.1 Summary . 41

7.2 Future Work . 42

References 44

Appendix A. Mathematica Code 45

A.1 Condensation . 45

A.2 Modified Condensation . 46

A.2.1 3 by 3 Matrices . 46

A.2.2 4 by 4 Matrices . 46

A.3 Row Reduction . 47

iv

List of Tables

4.1 Error comparisons for the determinants of Hilbert matrices of orders 2

through 15. 20

4.2 Error comparisons for the determinant of A1 for 50 ≤ x ≤ 55. 21

4.3 Error comparisons for the determinant of A2 for 50 ≤ x ≤ 55. 22

4.4 Error comparisons for the determinant of A3 for 51 ≤ x ≤ 56. 22

4.5 Error comparisons for the determinant of A4 for 50 ≤ x ≤ 55. 23

4.6 Error comparisons for the determinant of A5 for 50 ≤ x ≤ 55. 24

4.7 Error comparisons for the determinant of A6 for 50 ≤ x ≤ 55. 24

4.8 Error comparisons for the determinant of A7 for 24 ≤ x ≤ 30. 26

4.9 Error comparisons for the determinant of A8 for 0 ≤ x ≤ 5. 26

5.1 Error comparisons for the determinant of B1 for 50 ≤ x ≤ 57. 28

5.2 Error comparisons for the determinant of B2 for 39 ≤ x ≤ 54. 29

5.3 Error comparisons for the determinant of B3 for 50 ≤ x ≤ 56. 33

5.4 Error comparisons for the determinant of B4 for 50 ≤ x ≤ 56. 34

5.5 Failure comparisons for the determinants of 3× 3 matrices with random

elements. 35

6.1 Error comparisons for the determinant of C1 for 50 ≤ x ≤ 55. 37

6.2 Error comparisons for the determinant of C2 for 50 ≤ x ≤ 60. 38

6.3 Error comparisons for the determinant of C3 for 47 ≤ x ≤ 54. 39

6.4 Failure comparisons for the determinants of 4× 4 matrices with random

elements. 40

v

Chapter 1

Introduction

1.1 Background

Charles Dodgson is best known for writing the Alice books under the pen name Lewis

Carroll. In addition to writing works of fiction, he was also a nineteenth century math-

ematician. One of his contributions was an iterative method for calculating the deter-

minant of a matrix, first published in Proceedings of the Royal Society of London [4]

in 1866. The method is sometimes referred to as Dodgson’s Condensation Method, or

condensation, because with each iteration a matrix is replaced by a smaller one until

a 1 × 1 matrix, the determinant, is reached. Each smaller matrix contains the 2 × 2

connected minors of the previous iteration’s matrix. The 2 × 2 connected minors are

the determinants of each 2 × 2 submatrix consisting of adjacent elements of the larger

matrix. Beginning with the second stage of iteration, each of these minors is divided by

their central element from two stages previous. To illustrate this, consider the following

examples.

In the case of a 3×3 matrix, M , where we denote the ith stage of iteration by Mi+1,

we have

M =

1 1 1

2 3 4

4 9 16

 ,

1

2

M2 =

∣∣∣∣∣ 1 1

2 3

∣∣∣∣∣
∣∣∣∣∣ 1 1

3 4

∣∣∣∣∣∣∣∣∣∣ 2 3

4 9

∣∣∣∣∣
∣∣∣∣∣ 3 4

9 16

∣∣∣∣∣

 =

(
1 1

6 12

)
,

M3 =
1(12)− 1(6)

3
= 2 = detM,

where containment of a submatrix by vertical bars denotes its determinant. In the 4×4

case we have

M =

1 2 4 8

1 3 9 27

1 4 16 64

1 5 25 125

 ,

M2 =

∣∣∣∣∣ 1 2

1 3

∣∣∣∣∣
∣∣∣∣∣ 2 4

3 9

∣∣∣∣∣
∣∣∣∣∣ 4 8

9 27

∣∣∣∣∣∣∣∣∣∣ 1 3

1 4

∣∣∣∣∣
∣∣∣∣∣ 3 9

4 16

∣∣∣∣∣
∣∣∣∣∣ 9 27

16 64

∣∣∣∣∣∣∣∣∣∣ 1 4

1 5

∣∣∣∣∣
∣∣∣∣∣ 4 16

5 25

∣∣∣∣∣
∣∣∣∣∣ 16 64

25 125

∣∣∣∣∣

=

1 6 36

1 12 144

1 20 400

 ,

M3 =

1
3

∣∣∣∣∣ 1 6

1 12

∣∣∣∣∣ 1
9

∣∣∣∣∣ 6 36

12 144

∣∣∣∣∣
1
4

∣∣∣∣∣ 1 12

1 20

∣∣∣∣∣ 1
16

∣∣∣∣∣ 12 144

20 400

∣∣∣∣∣

 =

(
2 48

2 120

)
,

M4 =
2(120)− 2(48)

12
= 12 = detM.

We generalize this process for a given n × n matrix, A, as follows: Let A0 be an

(n+ 1)× (n+ 1) matrix whose entries are all 1, and let A1 = A. Beginning with k = 1

3

repeat the process below until the result is a scalar, the determinant of A.

Iterative process: Calculate all the 2× 2 connected minors of Ak and

divide each by the corresponding interior element of Ak−1. The re-

sulting matrix is Ak+1.

A proof of Dodgson’s method in the 3× 3 case is simple.

Proof. Let A be the 3× 3 matrix,

A =

a1 a2 a3

a4 a5 a6

a7 a8 a9

 ,

and suppose a5 6= 0. By cofactor expansion [9] down the first column we have

detA = a1a5a9 − a1a6a8 − a4a2a9 + a4a3a8 + a7a2a6 − a7a3a5.

By condensation we have

A =

a1 a2 a3

a4 a5 a6

a7 a8 a9

→ A2 =

(
a1a5 − a2a4 a2a6 − a3a5
a4a8 − a5a7 a5a9 − a6a8

)

→ A3 =
(a1a5 − a2a4) (a5a9 − a6a8)− (a2a6 − a3a5) (a4a8 − a5a7)

a5

=
a1a

2
5a9 − a1a5a6a8 − a2a4a5a9 + a2a6a5a7 + a3a5a4a8 − a3a25a7

a5

= a1a5a9 − a1a6a8 − a2a4a9 + a2a6a7 + a3a4a8 − a3a5a7,

the determinant of A.

4

When a5 = 0, this method breaks down. In this case, Dodgson suggested replacing

a5 with a nonzero element of the matrix by rotating columns or rows and then proceed-

ing with condensation. (Note that for an n × n matrix, if n is odd, then a single row

or column rotation involves an even number of row or column interchanges and so does

not change the sign of the determinant.) If all elements of the matrix are zero, then the

matrix is trivial and its determinant is zero.

General proofs for n× n matrices are written by Xia [11] and Bressoud [3].

Clearly the iterative process cannot continue if, at any stage but the last, a zero

appears as an interior element. Dodgson suggested cyclical transposition of rows or

columns to remove any offending zeros. This technique cannot be applied to a con-

densed matrix - a matrix resulting as a step in the iterative process - as it would not

yield the correct value of the determinant. One must first determine where the interior

zeros arise in condensation and which elements of the original matrix produced them.

Second, rotate the original rows or columns to ensure that these zeros are in the first

or last rows or columns of condensed matrices.

This procedure could inadvertently introduce new zeros at some stage of iteration,

since it could change several of the 2× 2 connected minors. In this case, cyclical trans-

position should be used again. In a random matrix, it is very unlikely for any element

(including those on the interior) to be zero. Hence we focus our analysis on 3 × 3 and

4 × 4 matrices constructed with random, normally distributed elements. We also use

matrices contrived to void the problem altogether. Zeros are much more likely to arise

in matrices with elements from a small set of integers.

Another approach to avoiding division by zero is to replace the offending element

with a variable and take the limit as the variable goes to 0. This technique is imple-

mented as follows:

A =

1 1 1

2 0 4

4 9 16

 = lim
x→0

1 1 1

2 x 4

4 9 16

 ,

5

A2 = lim
x→0

(
x− 2 4− x

18− 4x 16x− 36

)
,

A3 = lim
x→0

(x− 2) (16x− 36)− (4− x) (18− 4x)

x
,

= lim
x→0

12x2 − 34x

x

= lim
x→0

12x− 34

= −34.

This process involving algebraic simplification prior to evaluation is not appropriate for

comparison to numerical computations, which are used in our determinant-calculating

algorithms and do not involve any such simplification. In this paper, we do not consider

this technique further.

1.2 Statement of Problem

We compare the performance of Dodgson’s method to that of row reduction. Row re-

duction, which involves n3

3 +O(n2) steps, is three times faster then condensation, which

requires n3 + O(n2) steps [11]. Nonetheless, Dodgson’s method is still of theoretical

interest. We are interested in the possible numerical stability of condensation. When

using floating-point arithmetic, row reduction with partial pivoting is well-known to be

numerically stable [10]. That is, loss of precision or roundoff errors are not magnified

by the algorithm. Dodgson’s method is generally considered to be unstable, since these

errors are likely to be exacerbated by iteration. We do not intend to prove or disprove

this notion but make qualitative comparisons of results produced by the two algorithms.

6

In Chapter 2 we cover preliminary topics, and in Chapter 3 we describe the tech-

niques and algorithms we use in our analysis. In Chapter 4 we compare alogrithms

using ill-conditioned matrices. In Chapters 5 and 6 we use 3 × 3 and 4 × 4 contrived

and random matrices.

1.3 Literature Review

Rice and Torrence [8] give a brief introduction to determinants, focusing Dodgson’s

method. They provide a description of the technique and cite a proof using adjoint ma-

trices by Bressoud [3]. As teachers of mathematics, they find condensation to be very

popular among their students for evaluating large determinants, despite its potential

complications when it comes to interior zeros.

Ron Pandolfi, for his undergraduate honors research project, “Doubting Dodgson’s

Method of Determinants” [7], illustrates how condensation can yield large percent errors

when using floating-point arithmetic. He uses a matrix whose entries differ by many

orders of magnitude (see Section 2.4), which we investigate in further detail. Such ma-

trices are ill-conditioned (see Chapter 4) and are an important part of numerical linear

algebra [9].

Pandolfi includes the condensation algorithm written in Matlab, whereas we use

Mathematica, and so we rely heavily on Wolfram Research’s “Documentation Center”

[1] for syntax support.

As a masters student in 1991, Xiangsheng Xia, also under the advisement of Professor

John Greene at the University of Minnesota Duluth, wrote a new proof [11] of Dodgson’s

method and investigated the runtime costs of the algorithm.

Chapter 2

Preliminaries

2.1 Terminology

We use a few important terms related to matrices:

• The transpose of a matrix is the matrix produced by replacing each element

positioned in the ith row and jth column by that in the jth row and ith column.

• A cofactor, denoted Cij , of a matrix, A, is defined as

Cij = (−1)i+j det (A(i|j))

where A(i|j) is the matrix obtained by deleting the ith row and jth column of A,

[5].

• The adjoint of a matrix, A, denoted adj(A), is the transpose of the matrix whose

elements are Cij , where i and j denote the row and column position of each

element.

2.2 Precision

The term precision is used to describe the number of digits used in storing numbers and

performing calculations. These digits are most often base 2 or base 10. Base 2 digits,

called bits, are zeros or ones, and base 10 digits, called decimal digits, are the integers

zero through nine. In everyday use, we typically express numbers using decimal digits,

7

8

so we express π with 7 decimal digit precision as 3.141592. The amount of precision to

be used can be implicitly or explicitly specified in Mathematica. The default precision

for any number given with a decimal point and fewer than approximately 16 decimal

digits is machine precision [1]. Such a number is called a machine number or a double

and is represented by our machine using 64 bits. If we input a decimal number with

more than about 16 digits, we implicitly specify the use of arbitrary precision using the

number of digits given, or we can explicitly set the precision using the SetPrecision

command. To declare x to be the first 20 digits of π, we input

x = SetPrecision[π, 20].

This command can also be used to specify the precision of integers or rational numbers,

which default to arbitrary precision.

Arbitrary precision numbers are not restricted by 64 bits of memory, so numbers

can be stored and manipulated at a higher level of precision than machine numbers.

Arbitrary precision numbers require more memory than machine numbers and so cal-

culations using them can require more runtime. We use arbitrary precision to calculate

a more precise value of the determinant, which is used to calculate the percent errors

(see Section 3.2) in the values returned by the algorithms we compare.

Computer memory is not limitless. The largest and smallest positive arbitrary pre-

cision numbers that can be represented on our computer system [1] are

1.233433712981650× 10323228458 and 6.423382276680400× 10−323228430,

respectively. There are more digits stored by the computer than those displayed above,

which are displayed with 16 digits. The largest and smallest positive machine numbers

representable are

1.7976931348623157× 10308 and 2.225073858507201× 10−308,

respectively.

9

2.3 Floating-Point Representation Errors

Most computers render real numbers using the base 2 floating-point representation

σ × (.a1a2 . . . at)2 × 2e

where the sign, σ, is −1 or 1 and the ai’s are 0 or 1. The ai’s are the base 2 digits -

multiples of 2 required to represent the number-, where a1 6= 0. The exponent, e, is

an integer, and t represents the number of bits available in the machine’s memory to

store the ai’s (the mantissa). The 64 bits used to store a machine number are allotted

as t = 52 for the mantissa, one for the sign, and 11 are the exponent. To see the

relationship between a base 10 (decimal) number and its base 2 representation, consider

the ai’s as multiples of subsequent powers of two, starting with the largest, then assign

the appropriate value to e so that the decimal, or radix point, preceeds a1. As an

example we have

11.25 = 1× 23 + 0× 22 + 1× 21 + 1× 20 + 0× 2−1 + 1× 2−2

= 1× (1011.01)2 × 20

= 1× (.101101)2 × 24.

However, this example is misleading; most real numbers, x, cannot be represented

exactly this way, because most numbers cannot be represented as decimal numbers that

terminate. The limited memory space of the computer requires the representation to

be an approximation of x given by truncating the representation [2]. Our machine uses

rounding so that if the exact value of x is

xexact = σ × (.a1a2 . . . atat+1 . . .)2 × 2e,

then

xapproximate =

σ × (.a1a2 . . . at)2 × 2e, if at+1 = 0;

σ × [(.a1a2 . . . at)2 + (. 00 . . . 0︸ ︷︷ ︸
t-1 zeros

1)2]× 2e, if at+1 = 1.

10

This introduces a small truncation error, which can be propagated by arithmetic op-

erations. These errors can also be introduced in calculations involving numbers that can

be represented exactly. To see this consider the unit round, ε = 2−52, of the computer.

This is the smallest positive floating-point representable number such that 1 + ε > 1,

using machine precision. Thus for any number, δ < ε, the machine evaluates 1 + δ to 1

introducing a small roundoff error of δ.

We can verify this with the floating-point operations:

ε = 1× (.1 00 . . . 0︸ ︷︷ ︸
51 zeros

)2 × 2−51,

so if we choose δ = 2−53, we have

δ = 1× (.1 00 . . . 0︸ ︷︷ ︸
51 zeros

)2 × 2−52.

To add or subtract floating-point numbers they must have the same exponent, so since

1 = 1× (.1 00 . . . 0︸ ︷︷ ︸
51 zeros

)2 × 21

we need to adjust the representations of ε and δ so that their exponents are also 1, so

we have

ε = 1× (. 00 . . . 0︸ ︷︷ ︸
52 zeros

1)2 × 21

and

δ = 1× (. 00 . . . 0︸ ︷︷ ︸
53 zeros

1)2 × 21.

We then calculate 1 + ε, and, because the 53rd bit of ε is 1, rounding yields

1 + ε = 1× [(.1 00 . . . 0︸ ︷︷ ︸
51 zeros

)2 + (. 00 . . . 0︸ ︷︷ ︸
52 zeros

1)2]× 21

= 1× (.1 00 . . . 0︸ ︷︷ ︸
50 zeros

1)2 × 21

> 1.

However, adding 1 and δ we have

1 + δ = 1× [(.1 00 . . . 0︸ ︷︷ ︸
51 zeros

)2 + (. 00 . . . 0︸ ︷︷ ︸
53 zeros

1)2]× 21

11

= 1× (.1 00 . . . 0︸ ︷︷ ︸
51 zeros

)2 × 21

= 1.

Thus 1 + δ evaluates to 1 due to truncation. Similarly the machine rounds 1− δ to 1 for

δ < 2−53, although subtraction is handled differently and can lead to significant errors.

When subtracting nearly equal quantities, we are likely to lose a lot of precision [2]

and possibly accuracy. To subtract two quantities the machine uses a method called

“two’s complement” [6]. This involves switching the bits of the subtracter and adding

one to the last bit. The operation is then performed, and the last bit to carry over is

dropped. To see this and how precision and accuracy can be lost consider the following:

Suppose x is a real number whose exact representation consists of 51 ones and a zero

followed by an infinite sequence of ones, and y is a nearly equal real number that can be

represented exactly (without truncation). Then their machine precision representations

are

x = 1× (. 11 . . . 1︸ ︷︷ ︸
52 ones

)2 × 20

and

y = 1× (. 11 . . . 1︸ ︷︷ ︸
51 ones

0)2 × 20.

The machine calculates their difference using two’s complement as follows:

x− y = 1× [(. 11 . . . 1︸ ︷︷ ︸
52 ones

)2 − (. 11 . . . 1︸ ︷︷ ︸
51 ones

0)2]× 20,

Switching the bits of y we have (. 00 . . . 0︸ ︷︷ ︸
51 zeros

1)2, and adding one to the last bit gives us

(. 00 . . . 0︸ ︷︷ ︸
50 zeros

10)2. We proceed by adding this to x and dropping the last carried bit:

= 1× [(. 11 . . . 1︸ ︷︷ ︸
52 ones

)2 + (. 00 . . . 0︸ ︷︷ ︸
50 zeros

10)2]× 20

= 1× (. 00 . . . 0︸ ︷︷ ︸
51 zeros

1)2 × 20.

12

The exponent is then adjusted so that the radix point is in its proper place, and the

machine pads the trailing 51 bits with zeros:

= 1× (.100 . . . 0)2 × 251.

In this calculation we lose 51 bits of precision, and the percent error (see Section 3.2)

is almost 100%. In Chapters 4, 5, and 6, we see errors arise this way in each of the

algorithms we are comparing.

2.4 Order of Magnitude

Due to the need for equal exponents when adding or subtracting floating-point numbers,

their orders of magnitude are very important. Commonly the order of magnitude of a

number is the number of powers of 10 in it. Since the machine uses powers of two in

floating-point representation of numbers, we will define it with powers of 2. The order

of magnitude, O, of a number x, is

O(x) = blog2 xc,

where b·c is the “floor” or “greatest integer”. For example,

O(11) = blog2 11c = b3.459 . . . c = 3.

For our floating-point arithmetic computations, comparisons of the orders of mag-

nitude of the numbers involved are more important the values themselves. Consider 1,

ε, and δ: 1 and ε differ in order of magnitude by 52, and 1 and δ differ in magnitude by

53. The machine can evaluate 1 + ε correctly but not 1 + δ, because of this difference.

Similarly it can evaluate 1− δ but not 1− δ/2 because of the two’s complement method

and the difference in their orders of magnitude.

Chapter 3

Methodology

3.1 Algorithms

We use Mathematica in our experiments to compare three algorithms: row reduction

with partial pivoting, condensation, and condensation with cyclical transposition of rows

or columns. A “pivot” is an element in the main diagonal (from the upper left to lower

right corner) of a matrix by which other elements are divided in algorithms used in

matrix operations. Partial pivoting is the process of interchanging rows of a matrix in

order to establish a “good” pivot element. A “good” pivot is one with a large absolute

value, since it improves numerical stability [10].

Our row reduction algorithm (see Appendix A.3) incorporates standard partial piv-

oting. In a given column, starting with the first, we consider the elements in or below

the pivot position. The element of largest absolute value is established as the pivot by

interchanging its row with the pivot row. Since each interchange switches the sign of

the resulting matrix’s determinant, the number of interchanges is monitored.

We then proceed by eliminating the values below the pivot by subtracting from their

row a multiple of the pivot row. The multiplier is the quotient of the element we want

to eliminate and the pivot element. For an n × n matrix, this process is repeated in

the first n − 1 columns, while keeping track of sign changes of the determinant. The

result is an upper triangular matrix, and its determinant is calculated by multiplying

13

14

the main diagonal entries. For example,
1 1 1

2 3 4

4 9 16

 one interchange−−−−−−−−−→

4 9 16

2 3 4

1 1 1

row3− 1
4
row1−−−−−−−−→

row2− 2
4
row1

4 9 16

0 −3
2 −4

0 −5
4 −3

row3−−5×−2
4×3

row2

−−−−−−−−−−−→

4 9 16

0 −3
2 −4

0 0 1
3

 .

There is a total of one row interchange, so the determinant is the negation of the product

of the diagonal elements: −
(
4×−3

2 ×
1
3

)
= 2. The algorithm is coded as described and

includes a counter for the interchanges, and once an upper triangular form is reached,

if this number is odd, the diagonal product is negated.

Our condensation algorithm (see Appendix A.1) is coded according to the iterative

process described in Section 1.1. While Mathematica has a built-in function for calcu-

lating the minors of a matrix, we only use those that are 2 × 2 and connected, and so

we have written a function to calculate a desired minor.

For condensation with cyclical transposition of rows or columns, we have modified

the condensation algorithm differently in the 3× 3 (see Appendix A.2.1) and 4× 4 (see

Appendix A.2.2) cases. For 3 × 3 matrices, analogous to the idea of partial pivoting,

we rotate the element of largest absolute value to the center, since this element will

be the only divisor, by rotating columns from left to right and rows top to bottom.

Condensation then follows, and the sign of the determinant is not effected by row and

column rotations, since the dimension of the matrix is odd, as mentioned in Section 1.1.

The determinant of the above matrix is calculated according to this algorithm as follows:

15

1 1 1

2 3 4

4 9 16

 2 row rotations−−−−−−−−−−−→
2 column rotations

3 4 2

9 16 4

1 1 1

condensation begins−−−−−−−−−−−−→

(
12 −16

−7 12

)

the determinant is−−−−−−−−−−−→ 2.

Similarly, for 4×4 matrices, we position the 2×2 connected minor of largest absolute

value in the center before proceeding with condensation. This is done by determining the

largest (in absolute value) of the matrix’s nine 2×2 connected minors and positioning it

in the center by rotating rows and columns. The rotations are again top to bottom and

left to right, respectively, but, in this case, the number of rotations must be monitored.

For a matrix of even dimension, each row or column rotation involves an odd number of

row or column interchanges. Therefore, if an odd number of rotations are used, the sign

of the determinant is switched, and so the resulting value must be negated. Consider

the following example illustrating this process: For the matrix

V =

1 2 4 8

1 3 9 27

1 4 16 64

1 5 25 125

 ,

in order from left to right and top to bottom the minors are 1, 6, 26, 1, 12, 144, 1, 20,

and 400, so we use cyclical transposition of rows and columns to establish 400 as the

center one and proceed with condensation:

V
3 row rotations−−−−−−−−−−−→

3 column rotations

3 9 27 1

4 16 64 1

5 25 125 1

2 4 8 1

16

condensation begins−−−−−−−−−−−−→

12 144 −37

20 400 −61

−30 −300 117

→

(
120 94

240 228

)

the determinant is−−−−−−−−−−−→ 12.

There are an even number of row and column rotations used, so the the value produced

by condensation is correct and does not need to be negated, and 12 is the resulting

value.

3.2 Comparisons

We compare the algorithms by constructing a matrix with a variable element(s) and

calculating the percent errors produced with each new value of the variable. Each

percent error is calculated as

Percent Error =

∣∣∣∣xe − xaxe

∣∣∣∣× 100,

where xe and xa are the exact and approximate values of the determinant of the matrix.

The approximate value is that produced by the algorithm calculated using machine pre-

cision floating-point arithmetic. The exact value, which is the same for comparing all

the algorithms, is value of the determinant given by the built-in Mathematica function

calculated using arbitrary precision arithmetic. For example, solving x2 = 2 with two

decimal digit precision arithmetic yields xa = 1.4 and xe =
√

2 = 1.41421 That is

a percent error of about 1.

To determine the exact value, the value with the highest possible precision, of the

determinant of an n×n matrix, M , with entries mij , we use the SetPrecision command

17

with the Infinity option specified:

Mexact = SetPrecision[{{m11,m12, . . . ,m1n}, {m21,m22, . . . ,m2n}, . . . ,

{mn1,mn2, . . . ,mnn}}, Infinity].

The exact value is

Det[Mexact],

where Det is Mathematica’s built-in function. Similarly to calculate the approximate

values produced by condensation and row reduction using machine precision, we define

the matrix as follows:

Mmachine = SetPrecision[{{m11,m12, . . . ,m1n}, {m21,m22, . . . ,m2n}, . . . ,

{mn1,mn2, . . . ,mnn}}, MachinePrecision].

The approximate values are

Condensation[Mmachine, n]

and

RowReduction[Mmachine, n],

where Condensation and RowReduction are the functions we have written. Lastly

the percent errors are calculated, and the results are organized in a table for easy

comparison. The results included are those that exemplify the data trends and allow

for error comparison, as seen in later chapters.

Chapter 4

Ill-Conditioned Matrices

The condition number of an n×n matrix, A, is used to estimate the amount of precision

lost when solving a linear system of n equations and n unknown variables, [10], and it

is given by

κ(A) = ‖A‖∞ ∗ ‖A−1‖∞,

where

‖A‖∞ = max
16i6n

{
n∑
j=1

|aij |

}
,

and aij denotes the element in the ith row and jth column of A. We use the infinity

norm, but any norm can be used.

In general, log10 (κ(A)) estimates the number of base 10 digits lost when solving the

system Ax = b. Hence, a large condition number indicates the solution to the system

is likely to involve a significant relative error. A matrix is said to be ill-conditioned

if log10 (κ(A)) is greater than the precision of the matrix’s elements - approximately

16 decimal digits, or 52 bits. Given the relationship between this solution and the

determinant of A,

Ax = b ⇐⇒ x = A−1b =
1

det(A)
adj(A) b,

we investigate briefly the relationship between a matrix’s condition number and the

accuracy in its determinant when calculated with machine precision. We compare the

18

19

effects of the condition number on the results produced by row reduction and conden-

sation.

There are some matrices that are well-known to be ill-conditioned, such as Hilbert

matrices, whose condition number increases exponentially with their size. An n × n

Hilbert matrix, called the Hilbert matrix of order n and denoted Hn, has elements of

the form 1/(i+ j− 1), where i and j denote the column and row, respectively, in which

the element is positioned. For example, the Hilbert matrix of order 3 is
1 1

2
1
3

1
2

1
3

1
4

1
3

1
4

1
5

 ,

and the Hilbert matrix of order 4 is
1 1

2
1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7

 .

To calculate the determinant of a Hilbert matrix, H, exactly, we use the following

formula [1],

detH =
1

n−1∏
i=1

(2k + 1)
(
2k
k

)2 .
Mathematica does this calculation symbolically and displays the result using any speci-

fied precision. Table 4.1 compares this value to those produced by the row reduction and

condensation algorithms. Notice both algorithms lose slightly less than log10 (κ(Hn))

digits of precision, and neither algorithm loses more than this many digits. Take into

account the percent error adds two to ten’s power in the relative error.

20

n

2

3

4

5

6

7

8

9

10

11

12

13

14

15

log10 (κ(Hn))

1.43136

2.8739

4.45294

5.97481

7.46345

8.99352

10.5299

12.0413

13.5485

15.0912

16.6144

18.122

19.6568

21.1873

Exact

Value

8.33333× 10-2

4.62963× 10-4

1.65344× 10-7

3.7493× 10-12

5.3673× 10-18

4.8358× 10-25

2.73705× 10-33

9.72023× 10-43

2.16418× 10-53

3.0191× 10-65

2.63778× 10-78

1.4429× 10-92

4.94031× 10-108

1.05854× 10-124

Row Reduct.

% Error

1.66533× 10-14

3.51282× 10-13

8.86894× 10-12

3.66269× 10-12

1.00953× 10-8

3.25232× 10-7

7.91173× 10-7

3.19076× 10-4

1.04445× 10-2

2.71065× 10-1

8.35136

2.08272× 102

8.93876× 102

2.06927× 106

Condens.

% Error

1.66533× 10-14

2.10769× 10-13

1.49203× 10-11

1.26083× 10-10

5.52884× 10-9

3.03405× 10-7

2.51456× 10-6

1.64511× 10-4

6.82095× 10-3

1.52704× 10-1

1.20225

1.31516× 102

1.2411× 104

4.11647× 106

Table 4.1: Error comparisons for the determinants of Hilbert matrices of orders 2

through 15.

Other ill-conditioned matrices are those with elements that differ by large orders of

magnitude, such as

A1 =

2−x 1 2x

1 2 3

2x 1 2−x

 ,

A2 =

1 + 2x 2−x 2x

2−x 1 + 2x 2−x

2x 2−x 1 + 2x

 ,

21

and

A3 =

2−x 2x 1

1 2−x 1

1 1 2−x

 .

The logarithms of the condition numbers and the determinants of these matrices for

increasing values of x are shown in Tables 4.2, 4.3 and 4.4, along with the results

produced by each algorithm. For A1, row reduction, condensation, and modified con-

densation produce the same results, and for A2 and A3, row reduction and modified

condensation produce the same results.

x

50

51

52

53

54

55

log2 (κ(A1))

49.

50.

51.

52.

53.

54.

Exact

Value

−2.5353× 1030

−1.01412× 1031

−4.05648× 1031

−1.62259× 1032

−6.49037× 1032

−2.59615× 1033

All Algorithm

% Errors

0.

0.

0.

0.

0.

0.

Table 4.2: Error comparisons for the determinant of A1 for 50 ≤ x ≤ 55.

22

x

50.

51.

52.

53.

54.

55.

log2 (κ(A2))

51.

52.

53.

54.

55.

56.

Exact

Value

2.5353× 1030

1.01412× 1031

4.05648× 1031

1.62259× 1032

6.49037× 1032

2.59615× 1033

Condensation

% Error

2.22045× 10-13

1.11022× 10-13

6.66134× 10-14

100.

100.

100.

Other Algorithm

% Errors

4.44089× 10-14

2.22045× 10-14

0.∗

100.

100.

100.

Table 4.3: Error comparisons for the determinant of A2 for 50 ≤ x ≤ 55.

∗ The modified condensation algorithm produces a 2.22045× 10−14% error.

x

51

52

53

54

55

56

log2 (κ(A3))

52.

53.

54.

55.

56.

57.

Exact

Value

2.2518× 1015

4.5036× 1015

9.0072× 1015

1.80144× 1016

3.60288× 1016

7.20576× 1016

Condensation

% Error∗

0.

0.

0.

100.

100.

100.

Table 4.4: Error comparisons for the determinant of A3 for 51 ≤ x ≤ 56.

∗ The modified condensation and row reduction algorithms produce zero percent errors.

The matrices A1, A2, and A3 are similarly constructed and ill-conditioned and yet

their results are very different from each other and from the results for Hilbert matrices.

The Hilbert data suggests there is a relationship between the condition number and

the accuracy of the determinant. The data for A1, A2, and A3 does not suggest a

relationship. For A2, if there were a relationship, we would expect to see accuracy

23

degrade more gradually. Condensation produces errors for A3 not because it is ill-

conditioned but because it has a small interior element (see Chapter 5). Similarly

constructed to A1, A2, and A3 are the 4× 4 matrices

A4 =

2−x 1 1 2x

1 2 3 4

1 1 1 1

2x 1 1 2−x

 ,

A5 =

1 + 2x 2−x 2x 2−x

2−x 1 + 2x 2−x 2x

2x 2−x 1 + 2x 2−x

2−x 2x 2−x 1 + 2x

 ,

and

A6 =

2−x 2x 1 1

1 2−x 1 1

1 1 2−x 1

1 1 1 2−x

 ,

whose corresponding results are shown in Tables 4.5, 4.6, and 4.7. For each matrix the

condensation and modified condensation algorithms produce the same results.

x

50

51

52

53

54

55

log2 (κ(A4))

52

53

54

55

56

57

Exact

Value

1.26765× 1030

5.0706× 1030

2.02824× 1031

8.11296× 1031

3.24519× 1032

1.29807× 1033

Row Reduction

% Error

0.

2.22045× 10-14

1.11022× 10-14

1.11022× 10-14

3.33067× 10-14

0.

Other Algorithm

% Errors

1.11022× 10-14*

0.

0.∗∗

0.∗∗

1.11022× 10-14

0.

Table 4.5: Error comparisons for the determinant of A4 for 50 ≤ x ≤ 55.

24

∗ The condensation algorithm produces a 0% error.

∗∗ The condensation algorithm produces a 1.11022× 10-14% error.

x

50

51

52

53

54

55

log2 (κ(A5))

51

52

53

54

55

56

Exact

Value

5.0706× 1030

2.02824× 1031

8.11296× 1031

3.24519× 1032

1.29807× 1033

5.1923× 1033

Row Reduction

% Error

8.88178× 10-14

4.44089× 10-14

2.22045× 10-14

100.

100.

100.

Other Algorithm

% Errors

4.44089× 10-13*

2.22045× 10-13*

1.11022× 10-13*

100.

100.

100.

Table 4.6: Error comparisons for the determinant of A5 for 50 ≤ x ≤ 55.

∗ The modified condensation algorithm produces 4.5036× 1017%, 9.0072× 1017%, and

1.80144× 1018% errors.

x

50

51

52

53

54

55

log2 (κ(A6))

51.585

52.585

53.585

54.585

55.585

56.585

Exact

Value

−1.1259× 1015

−2.2518× 1015

−4.5036× 1015

−9.0072× 1015

−1.80144× 1016

−3.60288× 1016

Condensation Algorithms’

% Errors∗∗

2.66454× 10−13∗

1.33227× 10−13∗

6.66134× 10−14∗

4.44089× 10−14∗

200.∗∗∗

200.∗∗∗

Table 4.7: Error comparisons for the determinant of A6 for 50 ≤ x ≤ 55.

∗ The modified condensation algorithm produces a zero percent error.

∗∗ The row reduction algorithm produces zero percent errors.

∗∗∗ The condensation algorithm produces a 100% error.

25

The matrices A4, A5, and A6 are similarly constructed and ill-conditioned, and like

A1, A2, and A3, their results are very different from each other and from the results

for Hilbert matrices. That is the A4 data does not suggest a relationship between the

condition number and the accuracy of the determinant, nor does the A5 data and the

A6 data. As in the 3 × 3 case, we expect the accuracy in A5’s determinant to degrade

more gradually. The errors produced by condensation for A6 are due to the small in-

terior elements. The errors produced by the modified algorithm for A6 are caused by

the small elements involved in the largest minor. We explain in more detail how these

small interior elements cause large errors in Chapter 6.

The discrepancy in these results could be attributed to the size of the matrices or

to the magnitude of their determinants. Since we focus our analysis on 3× 3 and 4× 4

matrices, we disregard larger matrices. We investigate the possibility of a relationship

between the condition number and the accuracy in a small determinant using 3× 3 and

4× 4 matrices, such as

A7 =

7× 2−5x 4× 2−3x 2× 2−4x

6× 2−7x 5× 2−5x 2−3x

2−x 9× 2−4x 6× 2−7x

and

A8 =

2× 2−9x 8× 2−6x 6× 2−4x 2−5x

3× 2−9x 5× 2−7x 3× 2−3x 4× 2−8x

2−3x 7× 2−x 9× 2−5x 9× 2−8x

4× 2−8x 4× 2−7x 6× 2−7x 3× 2−6x

 .

These matrices have elements of the form a×2−bx, where a and b are random integers

in the interval [1, 9]. The data for all such matrices is similar to that in Tables 4.8 and

4.9, with the exception that small interior elements can cause standard condensation

or condensation modified for 4 × 4 matrices to produce significant errors. Given these

results, further investigation is necessary to determine if there is a relationship between

the condition number and the accuracy in the determinant for larger matrices. Within

the scope of our analysis, we conclude that such a relationship is not apparent in 3× 3

and 4× 4 matrices.

26

x

24

25

26

27

28

29

30

log2 (κ(A7))

48.

50.

52.

54.

56.

58.

60.

Exact

Value

1.06911× 10−50

8.35239× 10−53

6.5253× 10−55

5.09789× 10−57

3.98273× 10−59

3.11151× 10−61

2.43087× 10−63

All Algorithm

% Errors

0.

0.

0.

0.

0.

0.

0.

Table 4.8: Error comparisons for the determinant of A7 for 24 ≤ x ≤ 30.

x

0.

1.

2.

3.

4.

5.

log2 (κ(A8))

3.93963

9.87712

15.7415

22.2648

29.0282

35.9146

Exact

Value

7.32× 102

5.61314× 10−4

5.41202× 10−9

3.99367× 10−14

2.95844× 10−19

2.21685× 10−24

All Algorithm

% Errors∗

0.

0.

0.

0.

0.

0.

Table 4.9: Error comparisons for the determinant of A8 for 0 ≤ x ≤ 5.

∗ Some of the algorithms produce nearly zero percent errors.

Chapter 5

3 by 3 Matrices

5.1 Contrived Matrices

The crux of Dodgson’s condensation method is division by zero or amplification of

floating-point arithmetic errors through iteration. In the case of 3× 3 matrices, we can

attempt to fix both issues simultaneously. Since there is only one interior element, we

simply rotate the element of largest absolute value to the interior before commencing

condensation, as described in Chapter 3. Consider the matrix

B1 =

1 2 3

1 2−x 1

1 1 1

 ,

whose determinant is 2− 21−x. As x becomes large, the interior element, 2−x, tends to

zero. Increasing the value of x causes condensation to yield larger and larger percent

errors, whereas row reduction is unaffected, as shown in Table 5.1. We can see conden-

sation performs better if modified to rotate the largest element, in this case 3, to the

interior. That is, condensation is performed on the following matrix:

B∗1 =

1 1 1

2 3 1

2−x 1 1

 .

27

28

x

50

51

52

53

54

55

56

57

Exact

Value

2.

2.

2.

2.

2.

2.

2.

2.

Row Reduction

% Error

0.

0.

1.11022× 10-14

1.11022× 10-14

0.

0.

0.

0.

Condensation

% Error

4.44089× 10-14

2.22045× 10-14

1.11022× 10-14

100.

300.

100.

100.

100.

Modified Condens.

% Error

0.

0.

1.11022× 10-14

1.11022× 10-14

2.22045× 10-14

0.

0.

0.

Table 5.1: Error comparisons for the determinant of B1 for 50 ≤ x ≤ 57.

Note the exact value of the determinant is not 2 for all x but is actually slightly

less than 2. The exact value is stored and used in comparative calculations, but it is

displayed using fewer digits, which causes the printed value to be rounded up to 2. Data

in subsequent tables is also displayed this way.

More generally, for the matrix

B2 =

r1 r2 r3

r4 2−x r5

r6 r7 r8

 ,

where ri is a random integer in the interval [1, 9] we obtain similar results. For r1 = 7,

r2 = 9, r3 = 2, r4 = 7, r5 = 3, r6 = 8, r7 = 7, and r8 = 3 we have the results in Table 5.2.

29

x

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Exact

Value

−22.

−22.

−22.

−22.

−22.

−22.

−22.

−22.

−22.

−22.

−22.

−22.

−22.

−22.

−22.

−22.

Row Reduction

% Error

1.61487× 10-14

0.

0.

0.

0.

0.

0.

0.

1.61487× 10-14

0.

1.61487× 10-14

0.

1.61487× 10-14

0.

0.

0.

Condensation

% Error

1.15412× 10-1

6.74716× 10-1

1.5625

2.91193

1.5625

10.5114

7.38636

28.4091

43.1818

100.

472.727

1045.45

2390.91

100.

100.

100.

Modified Condens.

% Error

9.68922× 10-14

1.13041× 10-13

1.45338× 10-13

1.13041× 10-13

1.2919× 10-13

1.13041× 10-13

9.68922× 10-14

8.07435× 10-14

8.07435× 10-14

8.07435× 10-14

1.77636× 10-13

1.45338× 10-13

6.45948× 10-14

8.07435× 10-14

8.07435× 10-14

8.07435× 10-14

Table 5.2: Error comparisons for the determinant of B2 for 39 ≤ x ≤ 54.

As described in Chapter 2, subtracting nearly equal quantities introduces significant

errors. Any 3× 3 matrix, A, of the form

A =

a1 a2 a3

a4 ε a5

a6 a7 a8

condenses according to Dodgson’s method as follows:

A2 =

(
a1ε− a2a4 a2a5 − a3ε
a4a7 − a6ε a8ε− a5a7

)
,

30

A3 =
(a1ε− a2a4)(a8ε− a5a7)− (a2a5 − a3ε)(a4a7 − a6ε)

ε
,

where the subscripts here denote the (i+ 1)th stage of the iterative process.

As ε gets smaller, the terms in the difference in the numerator both tend to a2a4a5a7,

usually at different rates. Machine rounding of these values accounts for the increasing

percent errors produced by condensation. Eventually ε becomes small enough that, due

to rounding, the machine evaluates the terms in the difference to a2a4a5a7 causing the

100% errors.

We are interested in cases where row reduction suffers as well, so we attempt to

contrive such matrices using our understanding of how floating-point arithmetic can

produce errors. To do this we begin with the arbitrary 3× 3 matrix

M =

a b c

d e f

g h i

 ,

and consider the calculations performed by row reduction and condensation to compute

the determinant. They are

a

(
e− bd

a

)(i− cg

a

)
−

(
h− bg

a

) (
f − cd

a

)
e− bd

a

and

(ae− bd)(ei− fh)− (bf − ce)(dh− eg)

e
,

respectively, where parentheses are used to specify the order of the operations. Without

loss of generality we assume, a ≥ c, a ≥ d, and e − db
a ≥ h − gb

a , to avoid the need for

row interchanges in partial pivoting for row reduction. For simplicity we choose a = 1,

which gives us

(e− bd)

(
(i− cg)− (h− bg)(f − cd)

e− bd

)
and

(e− bd)(ei− fh)− (bf − ce)(dh− eg)

e
.

31

Errors can arise in row reduction in evaluating e − bd, h − gb, i − gc, f − cd, or in

evaluating the final expression, and they can arise in condensation in evaluating e− bd,

ei− fh, bf − ce, dh− eg, or the final expression. We seek values for these elements for

which row reduction yields errors but condensation does not. Since e− bd is computed

by both algorithms, we do not want to choose values such that the machine cannot

correctly evaluate this expression.

First we try a = 1, b = 1, c = 1, d = 1/2, e = 2, f = 1, g = 1− ε, h = 1− ε/2, and

i = 1, where ε = 2−x, so we have

B3 =

1 1 1
1
2 2 1

1− ε 1− ε
2 1

 ,

whose determinant is 5
4ε. Row reduction calculates

3

2

(
(1− (1− ε))−

((
1− ε

2

)
− (1− ε)

) (
1
2

)
3
2

)

=
3

2

(
(1− (1− ε))− 1

3

((
1− ε

2

)
− (1− ε)

))
.

For ε = 2−53, the machine evaluates to

3

2

(
ε− 1

3
(1− (1− ε))

)
=

3

2

(
ε− 1

3
ε

)
=ε,

yielding a 20% error, and for 0 ≤ ε ≤ 2−54, the machine evaluates

3

2

(
(1− (1− ε))− 1

3

((
1− ε

2

)
− (1− ε)

))
=

3

2

(
(1− 1)− 1

3
(1− 1)

)
=0,

32

yielding a 100% error. Condensation yields a 20% error for ε = 2−51, 2−52, and 2−53 by

calculating

3
2

(
2−

(
1− ε

2

))
− (−1)

(
1
2

(
1− ε

2

)
− 2 (1− ε)

)
2

=
3
2

(
2−

(
1− ε

2

))
+
(
1
2

(
1− ε

2

)
− 2 (1− ε)

)
2

.

For ε = 2−51, the machine evaluates this to

3
2

(
1 + ε

2

)
+
((

1
2 −

ε
4

)
− (2− 2ε)

)
2

=

(
3
2 + 3

4ε
)

+
(
−3

2 + 2ε
)

2

=
3

2
ε.

For ε = 2−52, it evaluates

3
2

(
2−

(
1− ε

2

))
− (−1)

(
1
2

(
1− ε

2

)
− 2 (1− ε)

)
2

=
3
2 (1) +

((
1
2 −

ε
4

)
− (2− 2ε)

)
2

=
3
2 +

(
−3

2 + 2ε
)

2

=ε.

For ε = 2−53, it evaluates

3
2

(
2−

(
1− ε

2

))
− (−1)

(
1
2

(
1− ε

2

)
− 2 (1− ε)

)
2

=
3
2 (2− (1)) +

(
1
2 (1)− (2− 2ε)

)
2

=
3
2 +

(
−3

2 + 2ε
)

2

=ε.

Notice that floating-point arithmetic errors occur in different stages of the computation

for different values of ε. For all 0 ≤ ε ≤ 2−54, using condensation accuracy degrades as

follows
3
2

(
2−

(
1− ε

2

))
− (−1)

(
1
2

(
1− ε

2

)
− 2 (1− ε)

)
2

33

=
3
2 (2− (1)) +

(
1
2 (1)− 2 (1)

)
2

=
3
2 (1) +

(
1
2 − 2

)
2

=0

producing 100% errors. These results are in Table 5.3. Note we do not need to include

the modified condensation algorithm’s results, since the largest element, 2, is positioned

in the center, and so the results are identical to those produced by condensation.

x

50

51

52

53

54

55

56

Exact

Value

1.11022× 10-15

5.55112× 10-16

2.77556× 10-16

1.38778× 10-16

6.93889× 10-17

3.46945× 10-17

1.73472× 10-17

Row Reduction

% Error

0.

0.

0.

20.

100.

100.

100.

Condensation

% Error

0.

20.

20.

20.

100.

100.

100.

Table 5.3: Error comparisons for the determinant of B3 for 50 ≤ x ≤ 56.

We can see we have succeeded in finding a matrix on which row reduction performs

poorly, however condensation does as well. We try again constructing B4:

B4 =

1 1− ε 1− ε
1 2 1− ε

2

1 1− ε
2 1− ε

2

 ,

where ε = 2−x. The results in Table 5.4 are an improvement, as we can see there are

cases when condensation outperforms row reduction. For example, when ε = 2−53, the

percent error produced by condensation is 0 but that produced by row reduction is 100.

These errors arise in a similar fashion as they did for B3, because of rounding and loss

34

of precision errors.

x

50
51
52
53
54
55
56

Exact
Value

4.44089× 10-16

2.22045× 10-16

1.11022× 10-16

5.55112× 10-17

2.77556× 10-17

1.38778× 10-17

6.93889× 10-18

Row Reduction
% Error

0.
0.
0.

100.
100.
100.
100.

Condensation
% Error

4.44089× 10-14

2.22045× 10-14

50.
0.

100.
100.
100.

Table 5.4: Error comparisons for the determinant of B4 for 50 ≤ x ≤ 56.

5.2 Random Matrices

In Section 5.1, we show there exist matrices on which one algorithm performs better

than another. In this section we make a more general comparison using matrices with

random elements that are normally distributed with mean 0 and standard deviation 1.

We use the following sequence of commands to generate random matrices:

random := RandomReal[NormalDistribution[0, 1], WorkingPrecision → 40],

Mexact = Table[random, {i, 3}, {j, 3}],

and

Mmachine = SetPrecision[Mexact, MachinePrecision].

The := assignment operator requires the right hand side to be reevaluated each

time the left hand side is called. Since real numbers’ precisions default to machine

precision, we set the WorkingPrecision option of the RandomReal command to 40

decimal digits to construct Mexact with much higher precision than Mmachine. Then

the row reduction, condensation, and modified condensation functions are called. Their

35

results are compared to the value of the determinant given by

a1a5a9 − a1a6a8 − a2a4a9 + a2a6a7 + a3a4a8 − a3a5a7,

where ai is the ith entry of Mexact. We choose this formula for comparison, since

it involves the fewest operations, which combined with the high arbitrary precision of

Mexact, will produce a much better approximation to the exact value of the determinant

than the other methods. The number of percent errors beyond a specified tolerance, or

number of failures, are totaled with counters and used to determine the percentage of

failures. The results after one million trials for each tolerance are shown in Table 5.5.

Tolerance

2−39%
2−40%
2−41%
2−42%
2−43%
2−44%
2−45%
2−46%
2−47%
2−48%
2−49%

Row Reduction
Failure %

0.2423
0.4999
0.9952
1.9628
4.0069
8.4116
20.2651
52.8108
66.7824
66.7801
66.7637

Condensation
Failure %

0.6403
1.1503
2.1625
3.955
7.2574
13.6199
28.0657
59.1794
71.7554
71.7576
71.7434

Modified Condensation
Failure %

0.2749
0.5555
1.1102
2.1676
4.3261
9.1078
22.3707
55.3559
68.9129
68.9179
68.8718

Table 5.5: Failure comparisons for the determinants of 3 × 3 matrices with random
elements.

Chapter 6

4 by 4 Matrices

6.1 Contrived Matrices

Improving Dodgson’s algorithm in the case of 4× 4 matrices is not as simple as it is for

3×3 matrices. In this case, throughout condensation there are five interior elements that

are used in multiple calculations, including division. We prefer them all to be as large

as possible, however, rotating rows and columns to achieve the appropriate positioning

of one is likely to interfere with that of another. We focus on the last divisor, which is

the central or interior element after the first stage in condensation, and it is the central

or interior 2× 2 connected minor of the original matrix. As described in Chapter 3 we

use row and column rotations to position the largest of the matrix’s 2 × 2 connected

minors in the center before proceeding with condensation. If the original central minor

is extremely small, floating-point errors can arise when using standard condensation but

can be avoided with row and column rotations. Such a matrix is

C1 =

9 4 8 9

8 1 1 9

9 1 + ε 1 3

7 2 6 5

 ,

where ε = 2−x. As we can see from Table 6.1, the modified condensation algorithm

performs much better, and when x becomes small enough, the central minor evaluates

to zero causing the standard algorithm to yield “Indeterminate” results. Row reduction

36

37

produces no significant percent errors, so its results are excluded from the table.

x

50

51

52

53

54

55

Exact

Value

−392.

−392.

−392.

−392.

−392.

−392.

Condensation

% Error

2.04082

2.04082

14.2857

Indeterminate

Indeterminate

Indeterminate

Modified Condensation

% Error

0.

0.

0.

0.

0.

0.

Table 6.1: Error comparisons for the determinant of C1 for 50 ≤ x ≤ 55.

Standard condensation does not always produce large errors for matrices like C1. The

matrix, C2, below has the same general form and yet condensation does not produce

any significant errors until x becomes small enough for the central minor to evaluate

to zero. In this case the modified algorithm is necessary and also doesn’t produce

significant errors, as seen in Table 6.2. Again, row reduction produces no significant

percent errors.

C2 =

8 3 3 5

5 1 1 6

4 1 + ε 1 4

1 3 8 6

38

x

50

51

52

53

54

55

56

57

58

59

60

Exact

Value

−5.

−5.

−5.

−5.

−5.

−5.

−5.

−5.

−5.

−5.

−5.

Condensation

% Error

1.95399× 10-13

4.61853× 10-13

8.88178× 10-14

Indeterminate

Indeterminate

Indeterminate

Indeterminate

Indeterminate

Indeterminate

Indeterminate

Indeterminate

Modified Condensation

% Error

5.32907× 10-14

3.55271× 10-14

7.10543× 10-14

4.79616× 10-13

2.30926× 10-13

1.24345× 10-13

5.32907× 10-14

3.55271× 10-14

1.77636× 10-14

0.

0.

Table 6.2: Error comparisons for the determinant of C2 for 50 ≤ x ≤ 60.

These matrices were constructed with random integers from the interval [1, 9] on

the exterior and 1, 1, 1, and 1 + ε on the interior. While the modified algorithm is

an improvement, it can also produce large percent errors if the largest 2× 2 connected

minor of a matrix involves values much smaller or larger than the others. For example,

condensation performs well and modified condensation does not on the following matrix:

C3 =

2 9 6 5

9 1 4 9

2 1 2x 2−x

9 2 2−x 2x

 .

The results for increasing values of x are shown in Table 6.3. Again row reduction

produces no significant percent errors.

39

x

47

48

49

50

51

52

53

54

Exact

Value

−1.56476× 1030

−6.25902× 1030

−2.50361× 1031

−1.00144× 1032

−4.00578× 1032

−1.60231× 1033

−6.40924× 1033

−2.5637× 1034

Condensation

% Error

0.

1.79884× 10-14

1.79884× 10-14

0.

0.

0.

0.

0.

Modified Condensation

% Error

8.49054× 10-12

4.24527× 10-12

11.3924

21.519

21.519

59.4937

102.532

102.532

Table 6.3: Error comparisons for the determinant of C3 for 47 ≤ x ≤ 54.

6.2 Random Matrices

As in the case of 3 × 3 matrices, in Section 6.1, we show there exist 4 × 4 matrices

on which one algorithm performs better than another. In this section we make a more

general comparison using matrices with normally distributed random elements with

mean 0 and standard deviation 1. The procedure for running one million trials for each

tolerance is the same as described in Chapter 5, and the results are as follows in Table

6.4.

40

Tolerance

2−37%

2−38%

2−39%

2−40%

2−41%

2−42%

2−43%

2−44%

2−45%

2−46%

2−47%

2−48%

2−49%

Row Reduction

Failure %

0.1026

0.2032

0.3972

0.8026

1.593

3.1765

6.4452

13.9431

32.0889

63.6639

75.337

75.3071

75.2743

Condensation

Failure %

0.7683

1.413

2.5052

4.4475

7.6741

13.0874

21.7476

36.0122

56.2207

78.3946

85.7237

85.7164

85.6863

Modified Condens.

Failure %

0.4448

0.8204

1.5097

2.7458

4.908

8.7789

15.4098

28.0361

49.06

74.5288

83.037

83.1048

83.0159

Table 6.4: Failure comparisons for the determinants of 4 × 4 matrices with random

elements.

Chapter 7

Conclusion and Discussion

7.1 Summary

While our results for ill-conditioned matrices are interesting, they are inconclusive. The

results for Hilbert matrices suggest there is a direct relationship between the condition

number of a matrix and accuracy of its numerically-calculated determinant, however,

the results for matrices with elements differing by several orders of magnitude do not.

It is possible this relationship exists for larger matrices.

For 3× 3 matrices, condensation suffers the worst loss of accuracy when the central

element is much smaller than others: If it is less than a certain critical value, the algo-

rithm produces a 100% error. The modified algorithm, which includes row and column

rotations is an improvement, but it can still produce significant errors in extreme cases.

For 4 × 4 matrices we have a greater possibility for error and more options for im-

proving condensation. Since after the first stage of condensation the original matrix is

reduced to dimension 3 × 3, we modify the algorithm to ensure the central element in

the second stage is large. Again the modified algorithm is an improvement, but there

are also matrices for which it produces significant errors.

For each determinant-calculating algorithm, regardless of stability, there exist ma-

trices such that large errors are produced. Comparisons of algorithm performance are

41

42

better made using random matrices. Our results show condensation performs worse

than row reduction on 3× 3 and 4× 4 matrices. In the case of 3× 3 matrices, modified

condensation performs better than condensation and almost as well as row reduction.

For 4 × 4 matrices, our modified algorithm only performs slightly better than conden-

sation and worse than row reduction.

We have not found evidence of instability of Dodgson’s method for 3× 3 and 4× 4

matrices, and we have not investigated the possibility for larger matrices. Condensation

performs reasonably well in general cases, except when a zero or very small number arises

as an interior element during the process. There are extreme types of matrices for which

condensation yields significant errors, but the same can also be said for the numerically

stable row reduction.

7.2 Future Work

With additional time and experience in numerical analysis, we would conduct a formal

stability analysis of the condensation algorithm and the condensation algorithm mod-

ified for 3 × 3 matrices. Such work could indicate other ways to improve algorithm

performance and stability, if it is unstable. There are certainly other possibilities for

improving condensation in the case of 4× 4 and larger matrices. One could investigate

a possible general scheme for improving the stability of condensation for matrices of

any size. Regardless of the stability of the condensation or modified condensation al-

gorithms, it would be interesting to determine whether there exist families of matrices

for which one or more of these algorithms consistently produces more accurate results

than row reduction.

An explanation for the trends in the results for random matrices would also be

interesting. The significant change in failure percentages for each new tolerance and

the leveling off of these values after a certain tolerance are most likely related to the

machine’s capacity to represent the results.

43

Beyond our brief investigation, further exploration is needed to determine the rela-

tionship, if any, between the condition number of a matrix and its numerically-calculated

determinant.

References

[1] C.L. Dodgson. Condensation of Determinants, Being a New and Brief Method for

Computing their Arithmetical Values. Proceedings of the Royal Society of London,

15:150–155, 1866.

[2] G. Strang. Introduction to Linear Algebra. Wellesley Cambridge Pr, 2003.

[3] Xiangsheng Xia. The Analysis of a Nonstandard Method for Calculating Determi-

nants. Master’s Thesis, 1991.

[4] David M. Bressoud. Proofs and Confirmations: The Story of the Alternating Sign

Matrix Conjecture. Mathematical Association of America, 1999.

[5] L.N. Trefethen and D. Bau. Numerical Linear Algebra. Society for Industrial

Mathematics, 1997.

[6] A. Rice and E. Torrence. Lewis Carroll’s Condensation Method for Evaluating

Determinants. Math Horizons, pages 12–15, 2006.

[7] Ron Pandolfi. Doubting Dodgson’s Method of Determinants. Undergraduate Hon-

ors Project, 2008.

[8] Wolfram mathematica documentation center. http://reference.wolfram.com/

mathematica/guide/Mathematica.html, 2011.

[9] K. Hoffman and R. Kunze. Linear Algebra. Prentice-Hall, NJ, 1971.

[10] K. E. Atkinson. An Introduction to Numerical Analysis. Wiley-India, 2009.

[11] I. Koren. Computer Arithmetic Algorithms. AK Peters, Ltd., 2002.

44

http://reference.wolfram.com/mathematica/guide/Mathematica.html
http://reference.wolfram.com/mathematica/guide/Mathematica.html

Appendix A

Mathematica Code

A.1 Condensation

We define a function to calculate the 2 × 2 connected minor whose first element is in

position {i, j}, that is in row i and column j.

Minor[M , {i Integer, j Integer}]:=
Block[{minor = Take[M, {i, i+1}, {j, j+1}]},
minor[[1, 1]]*minor[[2, 2]]-minor[[1, 2]]*minor[[2, 1]]

Before beginning the iterative process (see Section 1.1), we locally declare the variable

k and the arrays Anext, A0, and Ai. Iteration begins by calculating Anext and adding

to the list of matrices, Ai, involved in condensation. Lastly matrices in this list are

displayed in MatrixForm (versus nested lists). The last matrix in the list is a 1 × 1

matrix, or a scalar, the determinant of the original n × n matrix, M.

Condensation[M , n]:=

Block[{k, Anext, A0 = Table[1, {i, n+1}, {j, n+1}], Ai = {}},
{AppendTo[Ai, A0];

AppendTo[Ai, M];

For[k = 3, k ≤ n+1, k++,

Anext = Table[1/((Ai[[k-2]])[[i+1, j+1]])*Minor[Ai[[k-1]], {i, j}],

45

46

{i, n-(k-2))}, {j, n-(k-2)}], AppendTo[Ai, Anext]}];
Table[MatrixForm[Ai[[i]]], {i, 2, n+1}]}]

A.2 Modified Condensation

A.2.1 3 by 3 Matrices

The modified condensation function modified for 3×3 matrices rotates rows and columns

so as to place the largest entry (in absolute value) in the (2, 2) position. It then applies

the standard condensation algorithm.

CondensationMod3x3[M]:=

Block[{k, Anext, Amod, A0 = Table[1, {i, n+1}, {j, n+1}], Ai = {}},
{Amod = Catch[For[i = 1, i ≤ n, i++,

For[j = 1, j ≤ n, j++,

If[MemberQ[Position[Abs[M], Abs[Max[M]]], {i, j}],
Throw[RotateRight[M, {2-i, 2-j}]]]]]];

AppendTo[Ai, A0];

AppendTo[Ai, Amod];

For[k = 3, k ≤ n+1, k++,

{Anext = Table[1/((Ai[[k-2]])[[i+1, j+1]])*Minor[Ai[[k-1]],

{i, j}], {i, n-(k-2))}, {j, n-(k-2)}], AppendTo[Ai, Anext]}];
Table[MatrixForm[Ai[[i]]], {i, 2, n+1}]}]

A.2.2 4 by 4 Matrices

To modify condensation for 4× 4 matrices, we use the same code structure as for 3× 3

matrices and include the variable sign. This keeps track of the sign of the determi-

nant as a result of row and column rotations of M, which are used to position the 2× 2

connected minor of largest absolute value in the center. The resulting matrix is Amod.

Finally the sign of the determinant, the last item in the list Ai, is adjusted, and the

matrices at each stage of condensation are printed.

47

CondensationMod4x4[M]:=

Block[{k, Anext, Amod, sign = 1, A0 = Table[1, {i, n+1}, {j, n+1}],
Ai = {}, A1 = Abs[Table[Minor[M, {i, j}], {i, 3}, {j, 3}]]},
{{sign, Amod} = Catch[For[i = 1, i ≤ 3, i++,

For[j = 1, j ≤ 3, j++,

If[MemberQ[Position[A1, Max[A1]], {i, j}],
Throw[{(-1)(i+j), RotateRight[M, {2-i, 2-j}]}];

AppendTo[Ai, A0];

AppendTo[Ai, Amod];

For[k = 3, k ≤ n+1, k++,

{Anext = Table[1/((Ai[[k-2]])[[i+1, j+1]])*Minor[Ai[[k-1]],

{i, j}], {i, n-(k-2)}, {j, n-(k-2)}], AppendTo[Ai, Anext]}];
Ai[[n+1, 1, 1]] = sign*Ai[[n+1, 1, 1]];

Table[MatrixForm[Ai[[i]]], {i, 2, n+1}]}]

A.3 Row Reduction

We have two functions to define the columns and rows of an n × n matrix, M, as col[i,

M] and row[i, M], respectively, for 1 ≤ i ≤ n.

DefineColumns[M , n]:=For[i = 1, i ≤ n, i++,

col[i, M] = Table[M[[k, i]], {k, n}]]

DefineRows[M , n]:=For[i=1, i ≤ n, i++, row[i, M] = M[[i]]]

Before beginning the process of row reduction, we locally declare the matrix to be

row reduced, the number of row interchanges, the pivot in a given column, and its

position in the matrix. Row reduction is then implemented as described in Section

3.1, and the value of the determinant is returned.

RowReduction[M , n]:=

Block[{Mrr = M, interchanges = 0, pivot, position},
{For[c = 1, c ≤ n, c++,

48

{DefineColumns[Mrr, n],

DefineRows[Mrr, n],

If[c 6= n, {pivot = Position[Abs[Drop[col[c, Mrr], c-1]],

Max[Abs[Dropcol[c, Mrr], c-1]]]][[1, 1]];

position = c-1+pivot;

If[pivot 6= 1, {Mrr = ReplacePart[Mrr, {c → row[position, Mrr],

position → row[c, Mrr]}], interchanges += 1}]}],
DefineColumns[Mrr, n],

DefineRows[Mrr, n],

For[r = 1, r ≤ n, r++,

If[c < r && Mrr[[c, c]] 6= 0,

row[r, Mrr] =row[r, Mrr]-

(1/(Mrr[[c, c]]))*((row[r, Mrr])[[c]])*row[c, Mrr]]],

Mrr = Table[row[i, Mrr], {i, 1, n}];}];
If[OddQ[interchanges],-1*Product[Mrr[[i, i]], {i, n}],
Product[Mrr[[i, i]], {i, n}]]}]

	Acknowledgements
	Abstract
	List of Tables
	Introduction
	Background
	Statement of Problem
	Literature Review

	Preliminaries
	Terminology
	Precision
	Floating-Point Representation Errors
	Order of Magnitude

	Methodology
	Algorithms
	Comparisons

	Ill-Conditioned Matrices
	3 by 3 Matrices
	Contrived Matrices
	Random Matrices

	4 by 4 Matrices
	Contrived Matrices
	Random Matrices

	Conclusion and Discussion
	Summary
	Future Work

	References
	 Appendix A. Mathematica Code
	Condensation
	Modified Condensation
	3 by 3 Matrices
	4 by 4 Matrices

	Row Reduction

