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Abstract

The trace of a square matrix A is the sum of the diagonal entries in A, and is de-

noted Tr(A). In this paper we investigate the relative size of the trace of a product

of matrices. We consider how both the ordering of the product and the number of

matrices in the product influences the size of the trace. Data was collected for prod-

ucts of real-valued matrices with independent random variable entries from a standard

normal distribution. We first considered two n × n matrices A and B and compared

Tr(ABAB) vs Tr(AABB) as n increased. We then considered products of 2A’s and

mB’s for 2 × 2 matrices A and B. When m = 4, there are three possible traces to

consider, 1 = Tr(AB2AB2), 2 = Tr(ABAB3), and 3 = Tr(A2B4). Here, all possible

orderings of the traces were investigated and it was found that the permutation 231

did not occur. This investigation was extended to larger numbers of B’s, asking which

permutations of the orders are possible and which are not.
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Chapter 1

Introduction

The trace of a square matrix A is the sum of the diagonal entries in A, and is de-

noted Tr(A)[7, p. 90]. As an example, if A =


1 3 0 2

5 4 2 5

8 6 6 2

3 6 9 0

 we find that Tr(A) =

1 + 4 + 6 + 0 = 11. When considering a product of matrices A and B, we have two

possible products to examine, AB and BA. It turns out that if A and B are square

matrices of the same size then Tr(AB) = Tr(BA). For example, if A =


2 1 8

3 4 3

1 6 7


and B =


2 0 0

1 5 5

8 1 2

, we have AB =


69 13 21

34 23 26

64 37 44

, BA =


4 2 16

22 51 58

21 24 81

 and

Tr(AB) = Tr(BA) = 136.

Lemma 1.1. If A and B are square matrices of the same size then

Tr(AB) = Tr(BA)

Proof. Let A =
(
aij

)
and B =

(
bij

)
be n× n matrices. Then

Tr(AB) =
n∑

i=1

n∑
j=1

aijbji =
n∑

i=1

n∑
j=1

bjiaij =
n∑

j=1

n∑
i=1

bjiaij = Tr(BA)

1



2

When considering the trace of a product of matrices, it is well known that the product

of matrices is invariant under cyclic permutations[7, p. 110]. That is, for matrices

A,B and C, Tr(ABC) = Tr(CAB) = Tr(BCA), where the products CAB and BCA

are cyclic permutations of ABC. Thus, these three permutations are equivalent when

considering their traces.

Theorem 1.2. Let A1, A2, ..., An be m×m matrices. Then

Tr(A1...An−1An) = Tr(AnA1...An−1)

Proof. By Lemma 1.1, for m×m matrices A1 and A2, Tr(A1A2) = Tr(A2A1).

In general, for matrices

A1, A2, ..., An

Let

B = A1A2...An−1

Then we find that

Tr(BAn) = Tr(AnB)

or

Tr(A1A2...An) = Tr(AnA1...An−1)

This does not hold for more general permutations however. In general Tr(ABC) 6=

Tr(CBA). For example, consider A =

(
2 2

1 2

)
, B =

(
3 1

4 3

)
and C =

(
2 3

4 1

)
. Then

ABC =

(
60 50

50 40

)
, CBA =

(
47 58

39 46

)
and so Tr(ABC) = 100 6= 93 = Tr(CBA).

Given a collection of matrices, we define a necklace as the set of all cyclically permuted

products of the collection. For example, when considering a product of matrices con-

taining two A’s and two B’s there are two necklaces to consider, {ABAB,BABA} and
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{AABB,BAAB,BBAA,ABBA}. For convenience we write the matrices of a necklace

in lexicographic order and we let the first permutation of a necklace represent the entire

set. Thus for two A’s and two B’s, we would say there are two necklaces represented by

AABB and ABAB. For three A’s and three B’s there are four necklaces represented

by AAABBB,AABABB,AABBAB and ABABAB. By Theorem 1.2 we can think of

the traces as acting on necklaces of products, rather than on products.

In this paper we investigate the value of the trace of a product of matrices under certain

conditions. We build on Huang’s [5] work which served as the motivation behind this

research. For example, for a product of mA’s and nB’s, as m and n increase, what

happens to the trace of their product? For two n × n matrices A and B, how does

increasing n affect the trace of their product? We considered which necklaces have the

larger trace for different m and n values, however we almost exclusively restricted our

simulations to the case of m = 2. We also investigated which traces can never be largest.

In Chapter 2, data for our initial simulations is presented. All of our simulations in

this paper use real valued matrices with independent random variable entries from a

standard normal distribution. We give the results for the products of two A’s and two

B’s, where matrices A and B are n× n, for n ranging from 2 to 1000. We also present

simulation results for a product of two A’s with two and three B’s, where A and B

are 2 × 2, 3 × 3 and 4 × 4 matrices. In these simulations we considered the effects

that complex eigenvalues have on the relative size of the trace. In the 2× 2 case we ex-

plain most of the probabilities in our simulations for a product of two A’s with three B’s.

We then present more trace data in Chapter 3 and introduce the idea of a forbidden

ordering. Chapter 4 is more theoretical. We introduce two variable Lucas Polynomials

in order to derive a formula that relates a polynomial to the difference for the traces

of a product of 2 × 2 matrices A and B. Using this formula we were able to verify

that orders in our simulations are indeed forbidden. Suggestions for future work are

contained within Chapter 5 and the appendix includes several samples of code used for

collecting data in our simulations.



Chapter 2

Some Initial Data

We first considered a product of two A’s and two B’s, with independent random variable

entries from a standard normal distribution. In general, Tr(AABB) 6= Tr(ABAB) so

we investigated how these traces compare for matrices of various sizes. Table 2.1 shows

our results after 1,000,000 trials.

A and B are n× n matrices

n Tr(ABAB) > Tr(AABB) Tr(AABB) > Tr(ABAB)

2 707359 292641

3 703919 296081

4 701421 298579

5 701513 298487

10 705472 294528

20 710109 289891

30 713266 286734

40 714237 285763

50 714643 285357

100 716399 283601

1000 718481 281519

Table 2.1: Simulations on Tr(ABAB) vs Tr(AABB) for n× n matrices as n varies.

4
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Dr Greene [4] had done some research on products of matrices and found that for 2× 2

matrices A and B, Tr(ABAB) > Tr(AABB) with probability 1√
2
. This explains our

results for n = 2 in Table 2.1 as 1√
2
≈ 0.707, so one expects roughly 707,000 vs 293,000.

As we increased the size of matrices A and B, this probability decreased initially and

then slowly began to increase. The probability that Tr(ABAB) > Tr(AABB) appears

to change slowly as the size of the matrices, n, increases. As Table 2.1 indicates, there

are no sudden jumps from n = 50 to n = 100 or n = 1000, it appears to be fairly stable

for larger n.

During our investigation we considered how complex eigenvalues might affect these

traces. By Lemma 3.7 in [4], If matrix A has independent normally distributed ele-

ments of mean 0 and variance 1, then the probability that A has real eigenvalues is 1√
2
.

Another result from Dr Greene [4] is that Tr(ABAB) > Tr(A2B2) whenever either A

or B has complex eigenvalues. We first considered when A and B are 2× 2 matrices, as

shown in Table 2.2, again with 1,000,000 trials. We use r to indicate the given matrix

having real eigenvalues and c to indicate the given matrix having complex eigenvalues.

A eigenvalues r r r r c c c c

B eigenvalues r r c c r r c c

Tr(ABAB) > Tr(A2B2) no yes no yes no yes no yes

Count 292544 207597 0 207510 0 206602 0 85747

Table 2.2: Eigenvalues for 2× 2 products of 2A’s with 2B’s.

These results can all be explained. We know that Tr(ABAB) has the larger trace when

either A or B has complex eigenvalues, thus explaining why the counts for columns three,

five and seven are 0. Column one counts all the cases where Tr(ABAB) < Tr(AABB),

which is (1− 1√
2
) ≈ 0.292. Column eight counts the cases when A and B have complex

eigenvalues, which happens with probability (1− 1√
2
)(1− 1√

2
) = 3

2 −
√

2 ≈ 0.085. Now,

columns four and six are the sum of total cases where one matrix has real eigenvalues

and the other has complex. This happens with probability 1√
2
(1− 1√

2
) = 1√

2
− 1

2 ≈ 0.207.

Finally, we know that Tr(ABAB) > Tr(AABB) with probability 1√
2
, so column two
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occurs with probability 1√
2
− (2( 1√

2
− 1

2) + (3
2 −
√

2)) ≈ 0.207.

We also considered when A and B are n × n matrices, for n = 3 and n = 4, as shown

in Table 2.3 and Table 2.4 respectively. We again ran our simulations for 1,000,000

trials. A 3× 3 matrix will always have at least one real eigenvalue because any complex

eigenvalues occur in conjugate pairs. As such, the columns in Table 2.3 labeled c

correspond to that given matrix having one real and two complex eigenvalues.

A eigenvalues r r r r c c c c

B eigenvalues r r c c r r c c

Tr(ABAB) > Tr(A2B2) no yes no yes no yes no yes

Count 77386 47657 64586 164094 64326 164732 90363 326856

Table 2.3: Eigenvalues for 3× 3 products of 2A’s with 2B’s.

We can explain some features of columns 3,4,5 and 6 using symmetry. Consider the

entries in columns 3 and 5 for example, since we consider a product of two A’s and two

B’s, the probability of A real B complex should equal A complex B real. Thus we can

explain the cases when Tr(A2B2) > Tr(ABAB). Likewise, the yes cases corresponding

to columns 4 and 6 should have equal probabilities, which are observed in our simula-

tions.

It was shown in [3] that if A is a 3× 3 matrix, then three real eigenvalues should occur

with probability
√

2
4 and one real eigenvalue should occur with probability 1 −

√
2

4 . In

Table 2.3, if we consider the cases when matrix A has real eigenvalues, this occurred

in 77386 + 47657 + 64586 + 164094 = 353723 of 1,000,000 trials and fits nicely with
√

2
4 ≈ 0.353553. The remaining cases account for A having two complex and one real

eigenvalues occurred 64326 + 164732 + 90363 + 326856 = 646277 and again fits nicely

with 1−
√

2
4 ≈ 0.646447.

With 4× 4 matrices, the cases to consider are no real eigenvalues, two real eigenvalues

or four real eigenvalues. The columns in Table 2.4 labeled 2c correspond to that matrix

having two real and two complex eigenvalues. Similarly, the columns labeled 4r and 4c
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correspond to four real or four complex eigenvalues, respectively.

A eigenvalues B eigenvalues Tr(ABAB) > Tr(A2B2) Count

4r 4r no 10393

4r 4r yes 5271

4r 2c no 34885

4r 2c yes 55621

4r 4c no 4845

4r 4c yes 14395

2c 4r no 34591

2c 4r yes 55706

2c 2c no 151412

2c 2c yes 369583

2c 4c no 26145

2c 4c yes 84145

4c 4r no 4650

4c 4r yes 14250

4c 2c no 26065

4c 2c yes 84794

4c 4c no 5410

4c 4c yes 17839

Table 2.4: Eigenvalues for 4× 4 products of 2A’s with 2B’s.

It was also shown in [3] that a 4×4 matrix A has four real eigenvalues with probability 1
8 ,

two real eigenvalues with probability −1
4 +11

√
2

16 and no real eigenvalues with probability
9
8−11

√
2

16 . From Table 2.4, consider those cases when matrix A has four real eigenvalues.

These occurred 10393 + 5271 + 34885 + 55621 + 4845 + 14395 = 125410 from 1,000,000

trials, in close agreement with 1
8 = 0.125. Next, the cases when A has two real and two

complex eigenvalues occurred 34591+55706+151412+369583+26145+84145 = 721582,

closely matching −1
4 + 11

√
2

16 ≈ 0.722272. The remaining cases account for A having no
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real eigenvalues and occurred 4650 + 14250 + 26065 + 84794 + 5410 + 17839 = 153008

agreeing with 9
8 − 11

√
2

16 ≈ 0.152728.

We then considered the case of 2 × 2 matrices again but with the addition of another

matrix B and compared Tr(AABBB) vs Tr(ABABB). With two A’s and an odd

number of B’s we immediate noticed apparent symmetry. There is obvious symmetry

in Table 2.5 among the yes and no values. The reason is that any involution on A and B

which leaves them with standard normal variables should keep probabilities the same.

An involution [1] is a map which, if done twice, gets you back where you started. As an

example consider f(x) = −x, then f(f(x)) = x as desired. The relevant involution for

our work is f(B) = −B. This means that the probability that Tr(ABAB2) > Tr(A2B3)

is the same as the probability that Tr(A(−B)A(−B)2) > Tr(A2(−B)3). But this sim-

plifies to −Tr(ABAB2) > −Tr(A2B3), or Tr(A2B3) > Tr(ABAB2). Now, since B and

−B either both have real eigenvalues or both have complex eigenvalues, this involutions

proves that the yes-no combinations occur with the same probability. In Table 2.5,

Tr(ABAB2) > Tr(A2B3) in 500,549 of the 1,000,000 cases.

A eigenvalues r r r r c c c c

B eigenvalues r r c c r r c c

Tr(ABAB2) > Tr(A2B3) no yes no yes no yes no yes

Count 250377 250144 103198 103557 103199 104059 42677 42789

Table 2.5: Eigenvalues for 2× 2 products of 2A’s with 3B’s.

To explain these results in more detail we need to use the following.

Lemma 2.1. For any 2× 2 matrix M ,

M2 = Tr(M)M −Det(M)I

where I is the 2× 2 identity matrix.

Proof. Let M =

(
a b

c d

)
, then M2 =

(
a2 + bc ab+ bd

ac+ cd bc+ d2

)
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Now, Tr(M)M =

(
a(a+ d) b(a+ d)

c(a+ d) d(a+ d)

)
andDet(M)I =

(
−bc+ ad 0

0 −bc+ ad

)

So we have Tr(M)M −Det(M)I =

(
a2 + bc ab+ bd

ac+ cd bc+ d2

)
as desired.

When we consider Tr(ABAB2) > Tr(A2B3), this implies Tr(ABAB2)−Tr(A2B3) > 0.

By Lemma 2.1 ABAB2 = ABA[Tr(B)B − Det(B)I] = Tr(B)ABAB − Det(B)ABA,

and A2B3 = AAB[Tr(B)B −Det(B)I] = Tr(B)A2B2 −Det(B)A2B. Thus

Tr(ABAB2)− Tr(A2B3) = Tr(B)(Tr(ABAB)− Tr(AABB))

as Tr(ABA) = Tr(A2B). From our involution, Tr(B) > 0 has exactly the same proba-

bility that Tr(−B) > 0. As a result Tr(B) > 0 with probability exactly 1
2 . So if we add

the yes-no entries we should get the probability of the combination of the eigenvalues.

We can use this information to explain the results in Table 2.3. Column one and two

count the cases when A and B both have real eigenvalues, which happens with probabil-

ity 1√
2

1√
2

= 1
2 . Since the yes-no possibilities are evenly divided, the probability of each

will be 0.25. Next, column three and four count the cases when A has real eigenvalues

and B has complex eigenvalues, which happens with probability 1√
2
(1− 1√

2
) = 1√

2
− 1

2 .

Similarly, column five and six count the cases when A has complex eigenvalues and B

has real eigenvalues, which happens with probability (1− 1√
2
) 1√

2
= 1√

2
− 1

2 . As a result,

each of these four probabilities should be 1
2( 1√

2
− 1

2) ≈ 0.103. Finally, column seven

and eight count the cases when A and B both have complex eigenvalues, which happens

with probability (1 − 1√
2
)(1 − 1√

2
) = 3

2 −
√

2. Since the yes-no possibilities are evenly

divided, the probability of each will be 1
2(3

2 −
√

2) ≈ 0.042.

This analysis becomes more and more complicated as the number of A’s and B’s in-

creases. For example, consider the case of two A’s and four B’s. Now there are three

necklaces denoted by M1 = AB2AB2,M2 = ABAB3 and M3 = A2B4. If we ask when

Tr(AB2AB2) > Tr(A2B4), we get Table 2.6,
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A eigenvalues r r r r c c c c

B eigenvalues r r c c r r c c

Tr(AB2AB2) > Tr(A2B4) no yes no yes no yes no yes

Count 292393 207277 0 207536 0 207370 0 85424

Table 2.6: Eigenvalues Tr(AB2AB2) vs Tr(A2B4).

which is very much like Table 2.2. Dr Greene [4] found that if M is a product of A’s and

B’s, then Tr(M2) > Tr(MMR) if and only if Tr(ABAB) > Tr(A2B2), whereMR is the

reversal of M, the product in reverse order. For example, ifM = M1M2...Mn is a product

of matrices, then the reversal of this product is defined as MR = MnMn−1...M1. Using

this result for M = AB2, this means that Tr(AB2AB2) > Tr(AB4A) = Tr(A2B4)

with probability 1√
2
, explaining why Table 2.6 mimics Table 2.2.

However, if we ask when Tr(ABAB3) > Tr(A2B4) or when Tr(AB2AB2) > Tr(ABAB3)

we obtain significantly different tables, Table 2.7 and Table 2.8

A eigenvalues r r r r c c c c

B eigenvalues r r c c r r c c

Tr(ABAB3) > Tr(A2B4) no yes no yes no yes no yes

Count 292393 207277 87608 119928 0 207370 36218 49206

Table 2.7: Eigenvalues Tr(A2B4) vs Tr(ABAB3).

A eigenvalues r r r r c c c c

B eigenvalues r r c c r r c c

Tr(AB2AB2) > Tr(ABAB3) no yes no yes no yes no yes

Count 211671 287999 0 207536 146513 60857 0 85424

Table 2.8: Eigenvalues Tr(ABAB3) vs Tr(AB2AB2)

We first focus on Table 2.8. To explain these results in more detail we need to use the

following.
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By Lemma 2.1ABAB3 = Tr(B)ABAB2−Det(B)ABAB, andAB2AB2 = Tr(B)ABAB2−
Det(B)A2B2. Thus

Tr(ABAB2)− Tr(A2B3) = −Det(B)(Tr(A2B2)− Tr(ABAB))

= Det(B)(Tr(ABAB)− Tr(AABB))

Therefore we need information about Det(B). The involution f(B) = −B does not

affect the determinant, however, the involution where two rows of B are interchanged

will change the sign of the determinant. This means Det(B) > 0 with probability 1
2 .

Lemma 2.2. [6, p. 288] Let λ1, λ2, ..., λn be all the eigenvalues of an n× n matrix M.

Then

Det(M) = λ1λ2...λn

Tr(M) = λ1 + λ2 + ...+ λn

As a consequence, if B is a 2 × 2 matrix with complex eigenvalues c + di and c − di
then by Lemma 2.2 Det(B) = (c + di)(c − di) = c2 + d2 > 0. So B will always have

a positive determinant when it has complex eigenvalues. Since Det(B) > 0 half of the

time, and all of the time when B has complex eigenvalues, and B has complex eigenval-

ues with probability 1− 1√
2
, it follows that the probability that B has real eigenvalues

and Det(B) > 0 is 1
2 − (1 − 1√

2
) = 1√

2
− 1

2 . Finally, since B has real eigenvalues with

probability 1√
2
, we need p( 1√

2
) = 1√

2
− 1

2 , or p = 1− 1√
2
.

What we have determined then is

Det(B) > 0 with probability

{
1, if B has complex eigenvalues,

1− 1√
2
, if B has real eigenvalues.

and

Det(B) < 0 with probability

{
0, if B has complex eigenvalues,

1√
2
, if B has real eigenvalues.

It is useful to have a similar calculation for when Tr(ABAB) > Tr(A2B2). We have

to consider both A and B so there are four cases, depending on whether A and B have
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real or complex eigenvalues. We know that Tr(ABAB) has the larger trace when either

A or B has complex eigenvalues. For real eigenvalues, the probability that A has real

eigenvalues and B has real eigenvalues and Tr(ABAB)− Tr(A2B2) > 0 is 1√
2
− 1

2 . So

we need p( 1√
2
)( 1√

2
) = 1√

2
− 1

2 , or p = 2( 1√
2
− 1

2) =
√

2− 1.

Therefore we have determined that

Tr(ABAB) > Tr(A2B2) with probability


1, if complex, complex,

1, if complex, real,

1, if real, complex,
√

2− 1, if real, real eigenvalues.

With this information we can explain most of Table 2.8. The columns are linked in

pairs, in other words, the sum of columns 1 and 2, 3 and 4, 5 and 6, 7 and 8 is the

probability of a particular eigenvalue combination.

First, columns 1 and 2 count the cases when A and B both have real eigenvalues, this oc-

curs with probability ( 1√
2
)( 1√

2
) = 1

2 , which fits nicely with our data, 211671 + 287999 =

499670 ≈ 500000. Next, Columns 3 and 4 count the cases when A has real and B has

complex eigenvalues, this occurs with probability ( 1√
2
)(1 − 1√

2
) = 1

2(
√

2 − 1) ≈ 0.207,

which matches our data, 0 + 207536 ≈ 207000. Columns 5 and 6 count the cases when

A has complex and B has real eigenvalues, this occurs with probability (1− 1√
2
)( 1√

2
) =

1
2(
√

2 − 1) ≈ 0.207, matching 146513 + 60857 = 207370 ≈ 207000. Finally, Columns

7 and 8 count the cases when A and B both have complex eigenvalues, this occurs

with probability (1 − 1√
2
)(1 − 1√

2
) = 1

2(3 − 2
√

2) ≈ 0.085, again matching our data

0 + 85424 = 85424 ≈ 85000.

Since the columns are linked if we explain one linked column we will explain the other

by default. For example, column 8 counts the case when A has complex eigenvalues

and B has complex eigenvalues and Tr(ABAB) − Tr(A2B2) > 0, this happens with

probability (1 − 1√
2
)(1 − 1√

2
)(1) = 1

2(3 − 2
√

2) ≈ 0.085. Now, since we know columns

7 and 8 add to 85,000, column 7 must be 0. In fact, we already knew this because

Tr(ABAB) − Tr(A2B2) < 0 with probability 0 when B has complex eigenvalues, and
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Det(B) > 0 with probability 1 when B has complex eigenvalues.

Similarly column 3 must be 0 since B has complex eigenvalues and Tr(ABAB) −
Tr(A2B2) < 0 with probability 0 when in this case. Thus, column 4 must be ≈ 0.207,

matching our data nicely, 207536. Finally, column 6 counts the case when A has com-

plex eigenvalues and B has real eigenvalues and Tr(ABAB) − Tr(A2B2) > 0, which

means we need Det(B) > 0 as well. This occurs with probability (1− 1√
2
)( 1√

2
)(1− 1√

2
) =

1
4(3
√

2 − 4) ≈ 0.0607, which is close to 60857. Now that we know column 6, column 5

must be 1
2(
√

2−1)− 1
4(3
√

2−4) = 1
4(2−

√
2) ≈ 0.146, matching 146536 nicely. We have

explained columns 3,4,5,6,7 and 8. However, we were unable to explain columns 1 and 2.

The same analysis done in Table 2.8 will work in Table 2.7, except it is a bit more compli-

cated. Since Tr(ABAB3)−Tr(A2B4) = (Tr(B)2−Det(B))(Tr(ABAB)−Tr(A2B2)),

things depend also on the sign of Tr(B)2 − Det(B). However, some features of Ta-

ble 2.7 can be explained. If B is a 2 × 2 matrix with real eigenvalues λ1 and λ2 then

by Lemma 2.2 Tr(B)2 −Det(B) = (λ1 + λ2)2 − λ1λ2 = λ2
1 + λ1λ2 + λ2

2. Since this is

always nonnegative, when B has real eigenvalues, the sign of Tr(ABAB3)− Tr(A2B4)

matches the sign of Tr(ABAB) − Tr(A2B2). This means that columns where B has

real eigenvalues should match the corresponding columns in Tables 2.6 and 2.7. This

explains why columns 1,2,5 and 6 are equal in both Tables.

In general, if M1,M2 are each products of mA’s and nB’s, based on the involution

Tr(M1) > Tr(M2) with probability 1
2 if either m or n is odd. Thus, the most interesting

case is when m and n are both even.



Chapter 3

More Trace Data

In this chapter we investigate the frequencies of the possible orderings for products of

matrices with mA’s and nB’s. For 2A’s and 4B’s there are three necklaces and we first

investigated the frequencies of the 6 possible orderings of these necklaces.

Table 3.1 shows the count of each necklace when m = 2 and n = 4 and 5. We use

numbers to represent the possible orderings. In general, with 2A’s and nB’s, neck-

lace 1 represents the necklace with the A’s separated (cyclically) as far as possible. If

n = 2m, necklace 1 would be ABmABm and the kth necklace would be represented

by ABm−k+1ABm+k−1. If n = 2m + 1, necklace 1 would be ABmABm+1 and the kth

necklace would be represented by ABm−k+1ABm+k.

As an example, with twoA’s and fourB’s let the ordering 123 correspond to Tr(AB2AB2) >

Tr(ABAB3) > Tr(A2B4), and a count of 300975 means the the ordering Tr(AB2AB2) >

Tr(ABAB3) > Tr(A2B4) occurs 300975 out of 1,000,000 trials.

14
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2A4B 2A5B

Ordering Count Ordering Count

123 300975 123 159214

132 123560 132 28918

213 281835 213 311967

231 0 231 29048

312 217850 312 311800

321 75780 321 159053

5 permutations 6 permutations

1 = ABBABB 1 = ABBABBB

2 = ABABBB 2 = ABABBBB

3 = AABBBB 3 = AABBBBB

Table 3.1: Initial Data for 2× 2 products containing 2A’s and 4− 5B’s.

Notice that for 2A’s and four B’s the ordering 231 is, at best, very unlikely to occur,

yet with 2A’s and five B’s the order 231 occurs with probability ≈ 0.029. We call an

order that is not possible a forbidden order.

Table 3.2 lists our simulation results for m = 2, n = 6, 7, 8 and 9. We only list those

orderings that occurred a positive number of times in a sample size of 1, 000, 000 trials.

Notice that of the 4! possible orderings that could occur for two A’s and six B’s, only

eight appear to be occurring. Similarly, only twelve of the twenty four possible order-

ings are occurring for two A’s and seven B’s. As we increase the number of B’s, the

proportion of the number of possible orderings appears to significantly decrease.
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2A6B 2A7B 2A8B 2A9B

Ordering Count Ordering Count Ordering Count Ordering Count

1234 211402 1234 133813 12345 177271 12345 121673

1243 32432 1243 9990 12354 13281 12354 4732

1342 74880 1423 16273 12534 19865 12534 6768

1423 57865 2314 29034 13452 21283 15243 9905

1432 48690 2413 24458 13542 53833 23514 12164

3124 282379 3124 287396 14325 48936 24513 9117

4213 217214 3142 24531 14523 33747 25314 16696

4321 75138 3241 16047 15243 31961 25413 15087

3421 9909 15423 24324 31452 15074

4132 29248 42135 282247 31542 9182

4213 286197 53124 217801 32415 15921

4321 133104 54321 75451 34251 9841

35124 10708

41352 16738

41532 12207

42135 276783

42153 10646

43521 6488

45321 4560

51423 16154

53124 276980

54321 122576

8 permutations 12 permutations 12 permutations 22 permutations

1 = AB3AB3 1 = AB3AB4 1 = AB4AB4 1 = AB4AB5

2 = AB2AB4 2 = AB2AB5 2 = AB3AB5 2 = AB3AB6

3 = ABAB5 3 = ABAB6 3 = AB2AB6 3 = AB2AB7

4 = A2B6 4 = A2B7 4 = ABAB7 4 = ABAB8

5 = A2B8 5 = A2B9

Table 3.2: 2× 2 products products containing 2A’s and 6− 9B’s.



17

2A10B 2A11B

Ordering Count Ordering Count Ordering Count

123456 161878 123456 116679 362451 12075

123465 6693 135642 271004 416253 9120

123645 9196 146325 15198 426153 10650

126354 13055 154263 12188 435261 9899

135642 41912 162534 9773 451362 8910

136542 12057 213456 2531 453162 6963

145236 33811 231456 3420 512463 4892

146325 30306 246513 6012 521463 11887

154263 24392 246531 270519 523641 15154

156243 18284 261354 6935 532614 9330

162534 19935 263154 9051 615243 6558

163452 21166 315642 5870 651423 4523

164325 18369 324156 4579 654132 3247

165243 14161 342516 6619 654312 2545

531246 282602 351624 10686 654321 116472

642135 217271 364125 11797

654321 74912 364215 4914

17 permutations 32 permutations

1 = AB5AB5 1 = AB5AB6

2 = AB4AB6 2 = AB4AB7

3 = AB3AB7 3 = AB3AB8

4 = AB2AB8 4 = AB2AB9

5 = ABAB9 5 = ABAB10

6 = A2B10 6 = A2B11

Table 3.3: 2× 2 products products containing 2A’s and 10− 11B’s.



18

2A12B 2A13B

Ordering Count Ordering Count Ordering Count

1234567 152945 1234567 112376 5146237 9214

1234576 3949 1234576 1483 5164273 6945

1234756 5006 1234756 1931 5371264 6073

1237465 6546 1237465 2531 5463721 3267

1273645 9125 1273645 3274 5647321 2427

1356742 7685 1726354 4548 5731246 3847

1357642 34103 2563147 11822 6157243 5445

1365427 11779 2574136 10953 6175243 4374

1457236 10051 2653174 4943 6235714 4459

1467325 8421 2754136 4226 6237514 7655

1475236 23701 3425716 4523 6314572 4118

1476325 22039 3427516 5468 6314752 10813

1542673 15343 3516724 6325 6421357 267482

1542763 8964 3517624 4404 6421375 3760

1562473 18048 3615427 9049 6574321 1946

1634527 21247 3724615 7005 6754321 1555

1643725 18735 4157326 7634 7162534 6418

1652743 14186 4175326 4514 7245163 9241

1672534 10979 4267153 4339 7326415 9130

1726354 13018 4276153 6259 7413652 11914

1762534 8727 4352617 6560 7531246 267934

6421357 282070 4536271 4527 7654321 112507

7531246 217631 4621735 5958

7654321 75702 4713562 4824

24 permutations 46 permutations

1 = AB6AB6 1 = AB6AB7

2 = AB5AB7 2 = AB5AB8

3 = AB4AB8 3 = AB4AB9

4 = AB3AB9 4 = AB3AB10

5 = AB2AB10 5 = AB2AB11

6 = ABAB11 6 = ABAB12

7 = A2B12 7 = A2B13

Table 3.4: 2× 2 products products containing 2A’s and 12− 13B’s.
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2A2B 2A3B 2A4B 2A5B

Ordering Count Ordering Count Ordering Count Ordering Count

12 296661 12 500326 123 74577 123 177022

21 703339 21 499674 132 161431 132 230613

213 57709 213 92866

231 190259 231 231017

312 205206 312 91911

321 310818 321 176571

2 permutations 2 permutations 6 permutations 6 permutations

1 = AABB 1 = AABBB 1 = AABBBB 1 = AABBBBB

2 = ABAB 2 = ABABB 2 = ABABBB 2 = ABABBBB

3 = ABBABB 3 = ABBABBB

Table 3.5: 3× 3 products products containing 2A’s and 2− 5B’s.
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2A6B 2A7B

Ordering Count Ordering Count

1234 26553 1234 81316

1243 28380 1243 45753

1324 10030 1324 16247

1342 79288 1342 144234

1423 35135 1423 40839

1432 52934 1432 45216

2134 8269 2134 23458

2143 10482 2143 22765

2314 5343 2314 17967

2341 43015 2341 45040

2413 35209 2413 43483

2431 117052 2431 144552

3124 11664 3124 7496

3142 34169 3142 43933

3214 3461 3214 10328

3241 25662 3241 41151

3412 21080 3412 22972

3421 49502 3421 46018

4123 42170 4123 10408

4132 56190 4132 17979

4213 56418 4213 7500

4231 55809 4231 16306

4312 52518 4312 23414

4321 139667 4321 81625

24 permutations 24 permutations

1 = AABBBBBB 1 = AABBBBBBB

2 = ABABBBBB 2 = ABABBBBBB

3 = ABBABBBB 3 = ABBABBBBB

4 = ABBBABBB 4 = ABBBABBBB

Table 3.6: 3× 3 products products containing 2A’s and 6− 7B’s.
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3A3B 3A4B 3A5B

Ordering Count Ordering Count Ordering Count Ordering Count

123 323986 1234 121637 12345 100129 35124 3229

132 114744 1243 13075 12354 5150 35421 9992

213 61405 1324 148925 12453 10151 41235 15723

231 114507 1342 27105 12543 21308 41325 11314

312 61084 1423 32342 13245 7507 41352 25033

321 324274 1432 28101 13254 3553 42153 3223

2134 18789 13524 4284 42513 1856

2143 5280 14235 9423 42531 4154

2314 20331 14325 2532 43125 11860

2341 28133 14352 15439 43152 11894

2413 16791 15243 1967 43512 24263

2431 27248 15342 9552 45213 1103

3124 51770 21435 149840 45231 3482

3142 16411 21534 24670 45321 5082

3214 15942 24135 21772 51243 15002

3241 32306 24315 3334 51342 3453

3412 5006 24351 9507 52134 11951

3421 12967 25134 11893 52314 11411

4123 15814 25314 24882 52341 2377

4132 20411 25341 15420 53142 21873

4213 51907 31245 12806 53214 15463

4231 149568 31254 1123 53241 9252

4312 18799 31524 1845 53412 150054

4321 121342 34215 14974 54213 12510

34251 2001 54231 7460

34521 21389 54321 100535

6 permutations 24 permutations 52 permutations

1 = ABABAB 1 = ABABABB 1 = ABABBABB

2 = AABABB 2 = AABBABB 2 = ABABABBB

3 = AAABBB 3 = AABABBB 3 = AABBABBB

4 = AAABBBB 4 = AABABBBB

5 = AAABBBBB

Table 3.7: 2× 2 products products containing 3A’s and 3− 5B’s.



Chapter 4

Forbidden Orders

In this chapter we demonstrate that certain orders are forbidden. For the remainder of

this chapter, let Tr(B) = x, Det(B) = y and Tr(ABAB −A2B2) = z.

From Lemma 2.1 we know that B2 = xB − yI. Lets consider higher powers of such a

matrix B.

B3 = BB2 = B(xB − yI)

= xB2 − yBI

= x(xB − yI)− yBI

= (x2 − y)B − xyI

In a similar fashion we find:

B4 = BB3 = (x3 − 2xy)B − (x2y − y2)I

B5 = BB4 = (x4 − 3x2y + y2)B − (x3y − 2xy2)I

B6 = BB5 = (x5 − 4x3y + 3xy2)B − (x4y − 3x2y2 + y3)I.

We now introduce two variable Lucas polynomials.

Definition 4.1. Define a sequence of polynomials
{
Un(x, y)

}
as

U0 = 0, U1 = 1, Un(x, y) = xUn−1(x, y)− yUn−2(x, y)

for all n ≥ 2

22
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The first several terms of the sequence are given by the following:

n 0 1 2 3 4 5 6 ...

Un(x, y) 0 1 x x2 − y x3 − 2xy x4 − 3x2y + y2 x5 − 4x3y + 3xy2 ...

Table 4.1: Two variable Lucas Polynomials

Lucas polynomials, or Lucas sequences, have many uses in linear algebra and number

theory. See [2, pp. 393-411], and [8, pp. 41-61], for general discussions of these poly-

nomials.

Lemma 4.1. If B is a 2× 2 matrix with Tr(B) = x and Det(B) = y, then

Bn = Un(x, y)B − yUn−1(x, y)I

where I is the 2× 2 identity matrix.

Proof. We prove this Lemma by induction on n.

Suppose n = 1. Then B1 = 1 ·B − 0 · I = U1B − yU0I as desired.

Suppose n = 2. Then by Lemma 2.1, B2 = xB − yI = U2B − yU1I as desired.

Inductive Hypothesis: Bn = Un(x, y)B − yUn−1(x, y)I.

We will show that Bn+1 = Un+1(x, y)B − yUn(x, y)I. We have

Bn+1 = BnB = [Un(x, y)B − yUn−1(x, y)I]B by inductive hypothesis

= Un(x, y)B2 − yUn−1(x, y)BI

= Un(x, y)[xB − yI]− yUn−1(x, y)B by Lemma 2.1

= xUn(x, y)B − yUn(x, y)I − yUn−1(x, y)B

= [xUn(x, y)− yUn−1(x, y)]B − yUn(x, y)I

= Un+1(x, y)B − yUn(x, y)I by Definition 4.1.
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Lemma 4.2.

Um+n = xUmUn − yUmUn−1 − yUm−1Un

−yUm+n−1 = y2Um−1Un−1 − yUmUn.

Proof. Using Lemma 4.1

BmBn = Um+nB − yUm+n−1I

= (UmB − yUm−1I)(UnB − yUn−1)I

= UmUnB
2 − yUmUn−1B − yUm−1UnB + y2Um−1Un−1I

= (xUmUn − yUmUn−1 − yUm−1Un)B + (y2Um−1Un−1 − yUmUn)I.

This tells us that

Um+n = xUmUn − yUmUn−1 − yUm−1Un

−yUm+n−1 = y2Um−1Un−1 − yUmUn.

as desired.

We now introduce a formula that relates a polynomial to the difference for the traces

of a product of 2× 2 matrices A and B.

Theorem 4.3. If 0 ≤ k ≤ m ≤ n then

Tr(ABmABn −ABm−kABn+k) = cTr(ABAB −A2B2)

where c = ym−kUkUn−m+k.

Proof. Using Lemma 4.1,

BnBk = Bn+k = UnB
k+1 − yUn−1B

k,

⇒ Bn = Un−kB
k+1 − yUn−k−1B

k,

⇒ Bn = UkB
n−k+1 − yUk−1B

n−k.
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Now

ABmABn = UmABAB
n − yUm−1A

2Bn,

= UmUn−1ABAB
2 − yUmUn−2ABAB

−yUm−1Un−1A
2B2 + y2Um−1Un−2A

2B.

This means that

ABmABn −ABm−kABn+k = ABAB2(UmUn−1 − Um−kUn+k−1)

−yABAB(UmUn−2 − Um−kUn+k−2)

−yA2B2(Um−1Un−1 − Um−k−1Un+k−1)

+y2A2B(Um−1Un−2 − Um−k−1Un+k−2).

If we write ABAB2 = xABAB − yABA then we have

ABmABn −ABm−kABn+k = ABAB(xUmUn−1 − xUm−kUn+k−1)

−yABAB(UmUn−2 − Um−kUn+k−2)

−yA2B2(Um−1Un−1 − Um−k−1Un+k−1)

−yABA(UmUn−1 − Um−kUn+k−1)

+y2A2B(Um−1Un−2 − Um−k−1Un+k−2).

The expression multiplying ABAB

is xUmUn−1 − xUm−kUn+k−1 − yUmUn−2 + yUm−kUn+k−2

= Um(xUn−1 − yUn−2)− Um−k(xUn+k−1 − yUn+k−2)

= UmUn − Um−kUn+k.

This means that

ABmABn −ABm−kABn+k = ABAB(UmUn − Um−kUn+k)

−yA2B2(Um−1Un−1 − Um−k−1Un+k−1)

−yABA(UmUn−1 − Um−kUn+k−1)

+y2A2B(Um−1Un−2 − Um−k−1Un+k−2).
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Using Lemma 4.2 we find that UmUn = Um+n−1 + yUm−1Un−1. If we apply this to the

coefficient of ABAB we have

UmUn − Um−kUn+k = Um+n−1 + yUm−1Un−1 − (Um+n−1 + yUm−1−kUn−1+k)

= y(Um−1Un−1 − Um−1−kUn−1+k).

That is, at the cost of a factor of y, all induces were dropped by 1. If we iterate this

m− k times we get

UmUn − Um−kUn+k = y(Um−1Un−1 − Um−1−kUn−1+k)

= y2(Um−2Un−2 − Um−2−kUn−2+k)

= ...

= ym−k(Um−(m−k)Un−(m−k) − Um−(m−k)−kUn−(m−k)+k)

= ym−k(UkUn−m+k − U0Un−m+2k)

= ym−kUkUn−m+k, since U0 = 0.

This means the whole expression simplifies. We have

UmUn − Um−kUn+k = ym−kUkUn−m+k,

−y(Um−1Un−1 − Um−k−1Un+k−1) = −y · ym−1−kUkUn−m+k,

−y(UmUn−1 − Um−kUn+k−1) = −y · ym−kUkUn−m−1+k,

y2(Um−1Un−2 − Um−1−kUn−2+k) = y2 · ym−1−kUkUn−m−1+k.

This means

ABmABn −ABm−kABn+k = ym−kUkUn−m+k(ABAB −A2B2)

−ym+1−kUkUn−m−1+k(ABA−A2B).

Finally, taking the trace and noting that Tr(ABA−A2B) = 0 we have

Tr(ABmABn −ABm−kABn+k) = ym−kUkUn−m+kTr(ABAB −A2B2)

as desired.

As an example, if we let z = Tr(ABAB − A2B2), when m = n = k = 1 we have

Tr(AB1AB1 −AB1−1AB1+1) = Tr(ABAB −A2B2) = z.
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For n = 2 we find

Tr(ABAB2 −A2B3) = xz

Tr(AB2AB2 −ABAB3) = yz

Tr(AB2AB2 −A2B4) = x2z

We can use the formula in Theorem 4.3 to derive such tables, then use polynomial

inequalities to show certain permutations cannot occur. For example, in Table 3.2, for

two A’s and six B’s the ordering 4312 corresponding to Tr(A2B6) > Tr(ABAB5) >

Tr(AB3AB3) > Tr(AB2AB4) occurred 0 times from 1,000,000 trials. With 1,000,000

trials we expect approximately three decimal places of accuracy, therefore we should

be able to show this ordering cannot occur, or that this ordering is forbidden. Using

Theorem 4.3

Tr(A2B6) > Tr(ABAB5) > Tr(AB3AB3) > Tr(AB2AB4)

translates to the set of inequalities

−(x4 − 3x2y + y2)z > 0 (4.1)

−x2yz > 0 (4.2)

y2z > 0. (4.3)

Now (4.3) forces z > 0, so (4.2) implies that y < 0. Now (4.1) forces (x4−3x2y+y2)z < 0,

a contradiction.

Many such forbidden orders can be demonstrated in this fashion. Some are trickier. For

example, in Table 3.1 the ordering 231 corresponding to Tr(ABAB3) > Tr(A2B4) >

AB2AB2 occurred 0 times from 1,000,000 trials. Using Theorem 4.3

Tr(ABAB3) > Tr(A2B4) > AB2AB2

translates to

(x2 − y)z > 0 (4.4)

−x2z > 0. (4.5)

There is no obvious reason that we cannot have z < 0 and x2− y < 0. To explain these

results we need the following:
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Theorem 4.4. If Tr(ABAB −A2B2) < 0 then x2 − 4y ≥ 0.

Proof. If Tr(ABAB −A2B2) = z < 0 then B has real eigenvalues,

call them λ1 and λ2.

Then x2 − 4y = (λ1 + λ2)2 − 4(λ1λ2) by Lemma 2.2

= λ2
1 + 2λ1λ2 + λ2

2 − 4λ1λ2

= λ2
1 − 2λ1λ2 + λ2

2

= (λ1 − λ2)2 ≥ 0, as desired.

We can now confirm that Tr(ABAB3) > Tr(A2B4) > AB2AB2 is not possible be-

cause (4.4) forces z < 0, which implies x2 − 4y ≥ 0 by Theorem 4.4. Now this implies

x2 − y ≥ 0, a contradiction.

Using Theorem 4.3 and Table 4.1 we are able to eliminate cases of trace inequali-

ties to more efficiently verify which orders are forbidden. We use the same nota-

tion found in Table 3.2, for example 1 > 2 if Tr(AB3AB3) > Tr(AB2AB4). The

associated polynomial with this order is obtained using Theorem 4.3. For 1 > 2

we have m = 3, n = 3 and k = 1, so the resulting polynomial inequality will be

y3−1U1U3−3+1Tr(ABAB −A2B2) > 0 so y2U1U1z > 0, or y2z > 0.

For m+ n = 6 we have:

Order 1 > 2 1 > 3 1 > 4 2 > 3 2 > 4 3 > 4

Polynomial y2U2
1 z y1U2

2 z y0U2
3 z y1U1U3z y0U2U4z y0U1U5z

Table 4.2: 2A6B Polynomials

or,

Order 1 > 2 1 > 3 1 > 4 2 > 3 2 > 4 3 > 4

Polynomial y2z yx2z (x2 − y)2z y(x2 − y)z x2(x2 − 2y)z (x4 − 3x2y + y2)z

Table 4.3: 2A6B Trace Inequalities
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For two A’s and six B’s we can obtain all possible polynomials from Table 4.3, The

order 2 > 1 would correspond to Tr(AB3AB3) > Tr(AB2AB4), or −1(Tr(AB3AB3 −
AB2AB4) > 0) or −y2z > 0. That is, 1 is to the left of 2 in any allowable permutation

when y2z is positive and 1 is to the right of 2 when y2z is negative. In general, if there

are an even number of B’s, say 2n total, then the product will have the form yjUkU2n+kz

for some j and k.

Theorem 4.5. If n−m is even, y > 0 and z < 0 then UkUn−m+k > 0.

Proof. Since z < 0 we know that x2 − 4y > 0 by Theorem 4.4. By formula (IV.8) in [8]

we have the formula

2n−1Un =

(
n

1

)
xn−1 +

(
n

3

)
xn−3D +

(
n

5

)
xn−5D2 + ...

where D = x2 − 4y. This means that

2k−1Uk2n−m+k−1Un−m+k

= (
(
k
1

)
xk−1 +

(
k
3

)
xk−3D +

(
k
5

)
xk−5D2 + ...)(

(
j
1

)
xj−1 +

(
j
3

)
xj−3D +

(
j
5

)
xj−5D2 + ...)

=
(
k
1

)(
j
1

)
xj+k−2+(

(
k
1

)(
j
3

)
+
(
k
3

)(
j
1

)
)xj+k−4(x2−4y)+(

(
k
1

)(
j
5

)
+
(
k
3

)(
j
3

)
+
(
k
5

)(
j
1

)
)xj+k−6(x2−

4y)2 + ...

where j = n −m + k. This means that j + k = n −m + 2k is even, so all powers of x

are even. Thus, we have collections of binomial coefficients, which are positive, times

even powers of x, which are positive, times powers of x2 − 4y, which are positive. That

is, every term in the product of UkUn−m+k is positive, meaning that the product itself

must be positive.

Now, if y < 0, Table 4.3 becomes:

Order 1 > 2 1 > 3 1 > 4 2 > 3 2 > 4 3 > 4

Polynomial z −z z −z z z

Table 4.4: 2A6B Trace Inequalities for y < 0
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This leads to two possible sign patterns, depending on when z is positive or z is negative.

When z is positive, the only permutation possible is 3124, similarly when z is negative

the only permutation possible is 4213.

Now if y > 0 and z < 0 then by Theorem 4.5, Table 4.3 has the form:

Order 1 > 2 1 > 3 1 > 4 2 > 3 2 > 4 3 > 4

Polynomial (−) (−) (−) (−) (−) (−)

Table 4.5: 2A6B Trace Inequalities for y > 0 and z < 0

This leads to only one possible permutation, namely 4321.

Finally, if y > 0 and z > 0, Table 4.3 becomes:

Order 1 > 2 1 > 3 1 > 4 2 > 3 2 > 4 3 > 4

Polynomial (+) (+) (+) x2 − y x2 − 2y x4 − 3x2y + y2

Table 4.6: 2A6B Trace Inequalities for y > 0 and z > 0

We quickly see the only possible orderings remaining will begin with 1. Now everything

depends on the possible signs of the polynomials involved. These signs depend on how

x2 compares to y. We can scale the y away by setting it equal to 1, and the problem

reduces to how the zeros of Un(x, 1) are arranged. We also replace x2 by x so the degrees

drop by a factor of 2 while everything else remains unchanged. Thus we need to know

about the zeros of x−1, x−2, and x2−3x+1. Note that the zeros of x2−3x+1 are ap-

proximately 0.382 and 2.618. Now, if we take all these zeros and put them in numerical

order, then every time x passes from one range to another, some collection of signs will

change. It is not hard to check that all sign patterns are different, as shown in Table 4.7.
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x ∈ (0, .382) x ∈ (0.382, 1) x ∈ (1, 2) x ∈ (2, 2.618) x = (2.618,∞)

x− 1 (-) (-) (+) (+) (+)

x− 2 (-) (-) (-) (+) (+)

x2 − 3x+ 1 (+) (-) (-) (-) (+)

Table 4.7: Sign Patterns

Since we have verified that all sign patterns are different, we find the number of pos-

sible permutations is one more than the total number of distinct zeros among the Un.

Counting these zeros we get 1 + 1 + 2 = 4 distinct zeros, and thus 5 total permutations.

Putting everything together, we have shown that of the 24 possible orderings when con-

sidering a product of two A’s and six B’s, only 8 permutations are actually possible;

three which do not begin with 1 and five which do being with 1. Note, we are not saying

these permutations must occur, but rather that these are the only permutations which

could possible occur. Our data in Table 3.2 verifies these orders do indeed occur, so we

have verified there are 16 forbidden orders.

Table 4.8 summarizes the number of occurring orders vs the number of possible orders

for our simulations.
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Number of B’s Necklaces Possible Orders Orders Occurring

2 2 2 2

3 2 2 2

4 3 6 5

5 3 6 6

6 4 24 8

7 4 24 12

8 5 120 12

9 5 120 22

10 6 720 17

11 6 720 32

12 7 5040 24

13 7 5040 46

14 8 40320 32

15 8 40320 64

Table 4.8: Confirmed Simulations

This same process can be extended to other combinations with more B’s. The advan-

tage of this process is the ability to eliminate large numbers of possibilities at once. For

example, with two A’s and ten B’s there are 720 possible orderings, of which only 17

occurred. It would be a tedious exercise to verify each of the 703 forbidden orders one

by one. We construct Table 4.10 to demonstrate. In this table, we write 12 rather than

1 > 2. The meaning is the same as before, 1 is to the left of 2 if and only if y4z is positive.
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Order Polynomial Order Polynomial

12 y4z 26 x2(x2 − y)(x2 − 2y)(x2 − 3y)z

13 x2y3z 34 y2(x4 − 3x2y + y2)z

14 y2(x2 − y)2z 35 x2y(x2 − y)(x2 − 3y)z

15 x2y(x2 − 2y)2z 36 (x2 − y)(x6 − 5x4y + 6x2y2 − y3)z

16 (x4 − 3x2y + y2)2z 45 y(x6 − 5x4y + 6x2y2 − y3)z

23 y3(x2 − y)z 46 x2(x2 − 2y)(x4 − 4x2y + 2y2)z

24 x2y2(x2 − 2y)z 56 (x2 − y)(x6 − 6x4y + 9x2y2 − y3)z

25 y(x2 − y)(x4 − 3x2y + y2)z

Table 4.9: 2A10B Trace Inequalities

If y < 0, Table 4.10 reduces to:

Order Polynomial Order Polynomial

12 z 26 z

13 −z 34 z

14 z 35 −z
15 −z 36 z

16 z 45 −z
23 −z 46 z

24 z 56 z

25 −z

Table 4.10: 2A10B Trace Inequalities for y < 0

This leads to two possible sign patterns, depending on when z is positive or z is neg-

ative. When z is positive, the only permutation possible is 531246, similarly when z

is negative the only permutation possible is 642135. Next, much like the 2A6B case,

when (y > 0 and z < 0), all polynomials are negative by Theorem 4.5, resulting in one

possible permutation, 654321. In general, when considering both y < 0 or (y > 0 and

z < 0), if the number of B’s is even, there will be a total of 3 possible permutations,

all of which do not begin with 1. All other allowable permutations are determined by

combinations of the signs of the polynomials when (y > 0 and z > 0). This leads us to
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the following conjectures.

Conjecture 4.1. For a product of 2× 2 matrices containing two A’s with nB’s, where

n is even, if y > 0 and z > 0, there are 1 + k possible permutations, where k is the

number of distinct positive zeros of Um(x, 1), for 3 ≤ m ≤ n − 1. Consequently, the

total number of possible permutations is 4 + k.

For the case above, n = 10, the number of distinct zeros is 13, therefore we have

4 + 13 = 17 possible permutations as observed in Table 4.8.

When there is an odd number n of B’s, the permutations which arise from both y < 0

or (y > 0 and z < 0) are repeated in the situation with (y > 0 and z > 0). So it is

enough to only consider this case.

Conjecture 4.2. For a product of 2× 2 matrices containing two A’s with nB’s, where

n is odd, there are 2(1 + k) possible permutations, where k is the number of distinct

positive zeros of Um(x, 1), for 3 ≤ m ≤ n− 1.

As an example, when considering the case of two A’s seven B’s, it can be shown using

Theorem 4.3 that there are 5 distinct positive zeros. Therefore we expect 2(1 + 5) = 12

possible permutations, as observed in Table 4.8.
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Future Work

There are several ways this work might be extended. To begin with, there is a simple

extension to larger matrices. Data collected on products consisting of larger matrices

suggests that forbidden orders are not limited to only the 2×2 case. We collected some

data on products of two A’s with nB’s for 3 × 3 and 4 × 4 matrices A and B. For

relatively small values of n, there appeared to be no forbidden orders. However, as n

increases data suggests that orderings are a best, very unlikely, which leads us to believe

that forbidden orders are prevalent for larger and larger n. In the 3 × 3 case, it was

not until the number of B’s reached seven until zeros start appearing in our simulations.

Another extension would include products of matrices with more A’s and B’s. For a

product of mA’s with nB’s, we only looked at the case of m = 3 and n = 3, 4, 5 for 2×2

matrices A and B, forbidden orders started to appear when n = 5. Extending this to

larger matrices and increasing both m and n could yield interesting results. One could

also consider the effect that eigenvalues are having on products with more A’s and B’s.

Finally, it would be worth looking into proving the conjectures listed in Chapter 4.

With these one could potentially derive a formula for the number of forbidden orders

when taking a product of mA’s and nB’s. Or in another direction, deriving a formula

similar to Theorem 4.3 but extending this to products with more than two A’s would

be extremely useful.
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Chapter 6

Appendix. Source Code

In this section we provide several examples of the code used for our simulations. All

code presented is written in Mathematica, and a brief description of what each piece of

code does is presented.
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Here is a sample of code used to collect data on nxn matrices, as n varies from 2 to 1000.  This code takes advantage of parallel
computing to increase the speed.  The main idea behind this code is to have several different workstations collecting and sending
data into one global list.

globalTable = Table@0, 8i, 1, 2<D;

set@D := Module@8<,

localTable = Table@0, 8i, 1, 2<D;

D;

unset@D := Module@8<,

Clear@localTableD;

D;

do@D := Module@8a, b, c, d<,

a = RandomReal@NormalDistribution@0, 1D, 81000, 1000<D;

b = RandomReal@NormalDistribution@0, 1D, 81000, 1000<D;

c = SetPrecision@Tr@Dot@a, a, b, bDD, 100D;

d = SetPrecision@Tr@Dot@a, b, a, bDD, 100D;

If@c > d, localTable@@1DD++, localTable@@2DD++D
D;

gether@D := Module@8<,

globalTable += localTable;

D;

DistributeDefinitions@set, unset, do, getherD;

SetSharedVariable@globalTableD;

globalTable = Table@0, 8i, 1, 2<D;

ParallelEvaluate@set@DD;

AbsoluteTiming@
ParallelDo@

Monitor@do@D, 8i, 1, 100<D;, iD
ParallelEvaluate@gether@DD;

ParallelEvaluate@unset@DD;

D
825 728.1080503, Null<

glovalTable is where all the individual simulations were collected, 281519 represents the number of occurances that Tr(AAB-
B)>Tr(ABAB), and 718481 represents the number of occurances that Tr(ABAB)>Tr(AABB).

globalTable

8281 519, 718 481<

Here I am verifying that the globalTable sums to 1,000,000.

Total�globalTable

1 000 000



This is a sample of code used to collect eigenvalue data for 2x2 matrices A and B.  g and h represent the discriminant of the
characteristic polynomial of matrix A or B, respectively.   The given matrix has complex eigenvalues if  this  discriminant is
negative.

f = Table@0, 8i, 1, 8<D;

AbsoluteTimingAForAi = 10^6, i > 0, i--,

a = RandomReal@NormalDistribution@0, 1D, 82, 2<D;

b = RandomReal@NormalDistribution@0, 1D, 82, 2<D;

c = SetPrecision@Tr@Dot@a, a, b, b, bDD, 100D;

d = SetPrecision@Tr@Dot@a, b, a, b, bDD, 100D;

g = Ha@@1, 1DDL2
+ 4 Ha@@1, 2DDL Ha@@2, 1DDL - 2 Ha@@1, 1DDL Ha@@2, 2DDL + Ha@@2, 2DDL2;

h = Hb@@1, 1DDL2
+ 4 Hb@@1, 2DDL Hb@@2, 1DDL - 2 Hb@@1, 1DDL Hb@@2, 2DDL + Hb@@2, 2DDL2;

H*real real*L
If@g > 0 && h > 0,

If@c > d, f@@1DD++, H*12*L
If@d > c, f@@2DD++DDD; H*21*L

H*real complex*L
If@g > 0 && h < 0,

If@c > d, f@@3DD++, H*12*L
If@d > c, f@@4DD++DDD; H*21*L

H*complex real*L
If@g < 0 && h > 0,

If@c > d, f@@5DD++, H*12*L
If@d > c, f@@6DD++DDD; H*21*L

H*complex complex*L
If@g < 0 && h < 0,

If@c > d, f@@7DD++, H*12*L
If@d > c, f@@8DD++DDD;H*21*L

E
E
8106.7074112, Null<

f

8250 007, 249 826, 103 847, 103 658, 103 445, 103 554, 42 791, 42 872<

Sum@f@@iDD, 8i, 1, 8<D
1 000 000



This is a sample of code used to collect eigenvalue data for 4x4 matrices A and B.  Here we also take advantage of parallel
computing to increase speed.  To determine if a 4x4 matrix A has 0, 2, or 4 real eigenvalues we perform the following algorithm.
If the Discriminant of the Characteristic Polynomial  < 0 and the Minimum Value of this Discriminant > 0 then 4 real eigenvalues
, if the Discriminant of the Characteristic Polynomial  < 0 and the Minimum Value of this Discriminant < 0 then 2 real eigenval-
ues and if the Discriminant of the Characteristic Polynomial  > 0 and the Minimum Value of this Discriminant > 0 then 0 real
eigenvalues.

globalTable = Table@0, 8i, 1, 18<D;

set@D := Module@8<,

localTable = Table@0, 8i, 1, 18<D;

D;

unset@D := Module@8<,

Clear@localTableD;

D;

do@D := Module@8a, b, c, d, e, f, g, h, i, j<,

a = RandomReal@NormalDistribution@0, 1D, 84, 4<D;

b = RandomReal@NormalDistribution@0, 1D, 84, 4<D;

c = CharacteristicPolynomial@a, xD;

d = CharacteristicPolynomial@b, xD;

e = Discriminant@c, xD;

f = Discriminant@d, xD;

g = NMinValue@c, x, MaxIterations ® 10D;

H* Global Min for Matrix a Characteristic Polynomial *L
h = NMinValue@d, x, MaxIterations ® 10D;

H* Global Min for Matrix b Characteristic Polynomial *L

i = SetPrecision@Tr@Dot@a, a, b, bDD, 20D;

j = SetPrecision@Tr@Dot@a, b, a, bDD, 20D;

If@e > 0 && g < 0,

If@f > 0 && h < 0 && i > j, localTable@@1DD++,

If@f > 0 && h < 0 && i < j, localTable@@2DD++,

If@f < 0 && i > j, localTable@@3DD++,

If@f < 0 && i < j, localTable@@4DD++,

If@f > 0 && h > 0 && i > j, localTable@@5DD++,

If@f > 0 && h > 0 && i < j, localTable@@6DD++

DDDDDDD;

If@e < 0 && f > 0,

If@h < 0 && i > j, localTable@@7DD++,

If@h < 0 && i < j, localTable@@8DD++,

If@h > 0 && i > j, localTable@@11DD++,

If@h > 0 && i < j, localTable@@12DD++

DDDDD;



If@e < 0 && f < 0,

If@i > j, localTable@@9DD++,

If@i < j, localTable@@10DD++DDD;

If@e > 0 && g > 0,

If@f > 0 && h < 0 && i > j, localTable@@13DD++,

If@f > 0 && h < 0 && i < j, localTable@@14DD++,

If@f < 0 && i > j, localTable@@15DD++,

If@f < 0 && i < j, localTable@@16DD++,

If@f > 0 && h > 0 && i > j, localTable@@17DD++,

If@f > 0 && h > 0 && i < j, localTable@@18DD++

DDDDDDD
D;

gether@D := Module@8<,

globalTable += localTable;

D;

DistributeDefinitions@set, unset, do, getherD;

SetSharedVariable@globalTableD;

globalTable = Table@0, 8i, 1, 18<D;

ParallelEvaluate@set@DD;

AbsoluteTiming@
ParallelDo@

do@D, 8i, 1, 10^6<D;

ParallelEvaluate@gether@DD;

ParallelEvaluate@unset@DD;

D
82338.3597465, Null<

globalTable

810 393, 5271, 34 885, 55 621, 4845, 14 395, 34 591, 55 706, 151 412,

369 583, 26 145, 84 145, 4650, 14 250, 26 065, 84 794, 5410, 17 839<

Total�globalTable

1 000 000

2   Summer Research Improved 2A2B (4x4).nb



This is a sample of code used to collect trace data for 2x2 matrices A and B.  Here we create a list of all the possible permuta-
tions of the string abcd.  We then compute the values for a,b,c,d and sort them.  Once sorted, we increase the count in our table
corresponding that that sorted permutation.  

z = Table@0, 8i, 1, 24<D;

p = List@"c", "d", "e", "f"D;

perm = Permutations@pD;

AbsoluteTiming@
For@i = 10^6, i > 0, i--,

a = SetPrecision@RandomReal@NormalDistribution@0, 1D, 82, 2<D, 100D;

b = SetPrecision@RandomReal@NormalDistribution@0, 1D, 82, 2<D, 100D;

c = SetPrecision@Tr@Dot@a, b, b, b, a, b, b, bDD, 100D;

d = SetPrecision@Tr@Dot@a, b, b, a, b, b, b, bDD, 100D;

e = SetPrecision@Tr@Dot@a, b, a, b, b, b, b, bDD, 100D;

f = SetPrecision@Tr@Dot@a, a, b, b, b, b, b, bDD, 100D;

temp = 88c, "c"<, 8d, "d"<, 8e, "e"<, 8f, "f"<<;

temp = Sort@tempD;

z@@Flatten�Position@perm, temp@@All, 2DDD@@1DDDD++;

D;

D
8445.0324544, Null<

Here we print the counts for each permutation of abcd.  Note: The permutations are listed in the reverse order, that is, {c,d,e,f} is
actually {f,e,d,c}, something we account for when inputing the data to a table.  

For@i = 0, i < 24, i++

If@z@@iDD > 0, Print@z@@iDD, perm@@iDDDDD
75 3168c, d, e, f<
48 7958d, e, f, c<
75 1278d, f, e, c<
217 0898e, c, d, f<
57 6838e, d, f, c<
32 1838e, f, d, c<
282 5908f, d, c, e<
211 2178f, e, d, c<

This is what all the counts look like, including those which do not occur.

z

875 316, 0, 0, 0, 0, 0, 0, 0, 0, 48 795, 0, 75 127,

217 089, 0, 0, 57 683, 0, 32 183, 0, 0, 282 590, 0, 0, 211 217<



This is a sample of code used to collect trace data for 2x2 matrices A and B.  Here we are verifying that the Lists code on the
previous page is working how we intended.  Each permutation of the string abcd is manually checked in nested If statements.
There is no speed advantage to the List code, however there is a huge advantage in that we do not have to write out 8! = 40,320
nested If statements when in the 2A14B case for example. 

In[1]:= z = Table@0, 8i, 1, 24<D;

In[2]:= AbsoluteTiming@For@i = 10^6, i > 0, i--,

a = SetPrecision@RandomReal@NormalDistribution@0, 1D, 82, 2<D, 100D;

b = SetPrecision@RandomReal@NormalDistribution@0, 1D, 82, 2<D, 100D;

c = SetPrecision@Tr@Dot@a, b, b, b, a, b, b, bDD, 100D;

d = SetPrecision@Tr@Dot@a, b, b, a, b, b, b, bDD, 100D;

e = SetPrecision@Tr@Dot@a, b, a, b, b, b, b, bDD, 100D;

f = SetPrecision@Tr@Dot@a, a, b, b, b, b, b, bDD, 100D;

If@c > d > e > f, z@@1DD++, H*1234*L
If@c > d > f > e, z@@2DD++, H*1243*L

If@c > e > d > f, z@@3DD++, H*1324*L
If@c > e > f > d, z@@4DD++, H*1342*L

If@c > f > d > e, z@@5DD++, H*1423*L
If@c > f > e > d, z@@6DD++, H*1432*L

If@d > c > e > f, z@@7DD++, H*2134*L
If@d > c > f > e, z@@8DD++, H*2143*L

If@d > e > c > f, z@@9DD++, H*2314*L
If@d > e > f > c, z@@10DD++, H*2341*L

If@d > f > c > e, z@@11DD++, H*2413*L
If@d > f > e > c, z@@12DD++, H*2431*L

If@e > c > d > f, z@@13DD++, H*3124*L
If@e > c > f > d, z@@14DD++, H*3142*L

If@e > d > c > f, z@@15DD++, H*3214*L
If@e > d > f > c, z@@16DD++, H*3241*L

If@e > f > c > d, z@@17DD++, H*3412*L
If@e > f > d > c, z@@18DD++, H*3421*L

If@f > c > d > e, z@@19DD++, H*4123*L
If@f > c > e > d, z@@20DD++, H*4132*L

If@f > d > c > e, z@@21DD++, H*4213*L
If@f > d > e > c, z@@22DD++, H*4231*L

If@f > e > c > d, z@@23DD++, H*4312*L
If@f > e > d > c, z@@24DD++ H*4321*L
DDDDDDDDDDDDDDDDDDDDDDDDD;

D

Out[2]= 8406.9942788, Null<



In[3]:= z

Out[3]= 8210 673, 31 829, 0, 75 256, 57 911, 48 940, 0, 0,

0, 0, 0, 0, 282 720, 0, 0, 0, 0, 0, 0, 0, 217 099, 0, 0, 75 572<

In[5]:= Sum@z@@iDD, 8i, 1, 24<D
Out[5]= 1 000 000

2   New 2A6B.nb
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