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Abstract 
 

A recurrence relation is an equation that defines a sequence as a function of the preceding 

terms.  The order of the recurrence is defined to be the number of previous terms needed to determine 

the next term in the sequence.  A recurrence is linear if these terms are all to the first power and 

separate.  When the resulting sequence repeats after 𝑘 terms, we call the solution periodic with period 

𝑘.  Much is already known about the periodic behavior of linear recurrence relations.  In this project we 

consider a nonlinear variation on a class of second order recurrence relations.  The system that we 

looked at is 

𝑎𝑛 = {
𝑥(𝑃𝑎𝑛−1 − 𝑄𝑎𝑛−2), 𝑥(𝑃𝑎𝑛−1 − 𝑄𝑎𝑛−2) ∈ ℤ

𝑃𝑎𝑛−1 − 𝑄𝑎𝑛−2, otherwise,
 

where 𝑥 is a rational number, 𝑃 and 𝑄 are integers, and {𝑎𝑛} is the resulting sequence.  We are 

interested in finding when periodic solutions occur.  In other words, we want 𝑥 values and initial 

conditions for specific values of 𝑃 and 𝑄 which lead to a periodic solution.  Using a common linear 

algebra method for solving recurrence relations, we developed a search method.  In our search, 𝑃 and 𝑄 

were restricted such that 1 ≤ 𝑃 ≤ 20 and −20 ≤ 𝑄 ≤ 20 and 𝑄 ≠ 0.  
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1   Introduction 
 

A recurrence relation is an equation that defines a sequence as a function of the preceding 

terms.  The order of the recurrence is defined to be the number of previous terms needed to determine 

the next term in the sequence.  A recurrence is linear if these terms are all to the first power and 

separate.  Therefore, a 𝑘th order linear recurrence relation is an equation of the form:  𝑎𝑛 = 𝑐1𝑎𝑛−1 +

𝑐2𝑎𝑛−2 + ⋯ + 𝑐𝑘𝑎𝑛−𝑘 + 𝑓(𝑛).  The relation is homogeneous if 𝑓(𝑛) = 0.  Thus a first order linear 

homogeneous recurrence relation with constant coefficients has the form 𝑎𝑛 = 𝑐𝑎𝑛−1 where 𝑐 is a 

constant.  Here, the type of linear recurrence we are most concerned with is a second order of the form 

 𝑎𝑛 = 𝑃𝑎𝑛−1 − 𝑄𝑎𝑛−2 (1.1) 

 

where initial conditions 𝑎0 and 𝑎1 are needed to determine a sequence and 𝑃 and 𝑄 are constant 

coefficients.  We use this form to be consistent with [5, p.44], [6, p.107] and [9]. 

The characteristic polynomial associated with this relation is 𝑥2 − 𝑃𝑥 + 𝑄.  The roots of this 

polynomial are known as the characteristic roots and allow us to find the general solution to the system.  

The general solution has one of two possible forms depending on whether there are two distinct roots 

or one repeated root.  If there are two distinct roots, the general solution will be of the form 𝑎𝑛 =

𝐴𝑐1
𝑛 + 𝐵𝑐2

𝑛 where 𝑐1 and 𝑐2 are the characteristic roots and 𝐴 and 𝐵 are constants.  For example, when 

𝑎𝑛 = 5𝑎𝑛−1 − 4𝑎𝑛−2 the characteristic polynomial is 𝑥2 − 5𝑥 + 4.  In this case, the characteristic roots 

are 𝑥 = 1 and 𝑥 = 4.  Thus the general solution is 𝑎𝑛 = 𝐴4𝑛 + 𝐵.  If the initial conditions are 𝑎0 = 1 

and 𝑎1 = 10, then the solution is 𝑎𝑛 = 3 ∙ 4𝑛 − 2.  If there is a single repeated root 𝑐, the general 

solution will have the form 𝑎𝑛 = (𝐴 + 𝐵𝑛)𝑐𝑛 again with 𝐴 and 𝐵 as constants.  For instance, when 𝑎𝑛 =

6𝑎𝑛−1 − 9𝑎𝑛−2 , the characteristic polynomial is 𝑥2 − 6𝑥 + 9  which has a repeated root, 𝑥 = 3 .  

Therefore, the general solution is 𝑎𝑛 = (𝐴 + 𝐵𝑛)3𝑛.  If the initials conditions are 𝑎0 = 1 and 𝑎1 = 9, 

then the solution is 𝑎𝑛 = (1 + 2𝑛)3𝑛.  More information on linear recurrence relations can be found in 

[2, Ch.10], [7, Ch.6] and [8, Ch.3.3]. 
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A common Linear Algebra approach to solving recurrence relations is to convert (1.1) to a first 

order system, namely,  

 𝒗𝑛 = 𝑨𝒗𝑛−1 (1.2) 

 

where 𝒗𝑛 = [
𝑎𝑛+1

𝑎𝑛
] .  This method can be seen in numerous Linear Algebra textbooks, including [1, 

p.243] and [10, p.307].  We want [
𝑎𝑛+1

𝑎𝑛
] = 𝒗𝑛 = 𝑨𝒗𝑛−1 = 𝑨 [

𝑎𝑛

𝑎𝑛−1
].  Thus, if we consider 𝑨 = [

𝑤 𝑥
𝑦 𝑧], 

then we need 𝑎𝑛+1 = 𝑤𝑎𝑛 + 𝑥𝑎𝑛−1 and 𝑎𝑛 = 𝑦𝑎𝑛 + 𝑧𝑎𝑛−1.  In this case, these conditions are satisfied 

when 𝑤 = 𝑃 , 𝑥 = −𝑄 , 𝑦 = 1 , 𝑧 = 0 , so 𝑨 = [
𝑃 −𝑄
1 0

] .  Notice the characteristic polynomials of 

(1.1) and 𝑨 are the same.  Thus the characteristic roots of the recurrence are the eigenvalues of 𝑨.  An 

advantage of this translation is that, by iteration, 𝒗𝑛 = 𝑨𝑛𝒗0. 

The Lucas sequences 𝑈𝑛 and 𝑉𝑛 are specific sequences that satisfy (1.1) [5, p.41][6, p.107].  

More specifically, for fixed 𝑃 and 𝑄, 𝑈𝑛 = 𝑃𝑈𝑛−1 − 𝑄𝑈𝑛−2 with 𝑈0 = 0 and 𝑈1 = 1.  As before, if the 

characteristic roots, 𝑐1 and 𝑐2, are distinct, then 𝑈𝑛 = 𝐴𝑐1
𝑛 + 𝐵𝑐2

𝑛.  Since 𝑈𝑛 is defined to always start 

with the same initial conditions, we can use 𝑈0 = 0 and 𝑈1 = 1 to find that 𝑈𝑛 =
𝑐1

𝑛−𝑐2
𝑛

𝑐1−𝑐2
 is the general 

solution.  In the previous example where 𝑎𝑛 = 5𝑎𝑛−1 − 4𝑎𝑛−2, the characteristic roots are 𝑥 = 4 and 

𝑥 = 1.  Thus 𝑈𝑛 =
1

3
(4𝑛 − 1) when 𝑃 = 5 and 𝑄 = 4.  Perhaps the most famous example of a Lucas 

sequence is the Fibonacci sequence which satisfies the above equation with 𝑃 = 1 and 𝑄 = −1. 

The second Lucas sequence, 𝑉𝑛, is defined similarly by 𝑉𝑛 = 𝑃𝑉𝑛−1 − 𝑄𝑉𝑛−2.  However the initial 

conditions are 𝑉0 = 2 and 𝑉1 = 𝑃.  When 𝑃 = 1 and 𝑄 = −1 the recurrence 𝑉𝑛 yields the sequence 2, 1, 

3, 4, 7, 11, … known as the Lucas numbers.  Again, we can use the initial conditions and the form of the 

general solution to find 𝑉𝑛.  When 𝑐1 and 𝑐2 are distinct characteristic roots, 𝑉𝑛 = 𝑐1
𝑛 + 𝑐2

𝑛.  So, for 

example, when 𝑃 = 5 and 𝑄 = 4, 𝑉𝑛 = 4𝑛 + 1. 

A common problem with recurrence relations deals with the search for periodic solutions.  

When considering second order linear recurrences, frequently the only periodic solution is the zero 

sequence.  A brief exploration of the periodic solutions of linear recurrences will be given later in this 

paper.  Since the existence of periodic solutions to these recurrences is generally lacking or already 
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known, a far more interesting problem deals with variations on the second order linear recurrence in 

(1.1).  Consider the nonlinear recurrence 

 𝑎𝑛 = {
𝑥(𝑎𝑛−1 + 𝑎𝑛−2), 𝑥(𝑎𝑛−1 + 𝑎𝑛−2) ∈ ℤ

𝑎𝑛−1 + 𝑎𝑛−2, otherwise,
 (1.3) 

 

where 𝑥 is a rational number.  When looking for periodic solutions to (1.3), one must not only look at 

the initial conditions, but also the possible values of 𝑥.  For example, consider  

 𝑎𝑛 = {

1

5
(𝑎𝑛−1 + 𝑎𝑛−2),

1

5
(𝑎𝑛−1 + 𝑎𝑛−2) ∈ ℤ

𝑎𝑛−1 + 𝑎𝑛−2, otherwise,
 (1.4) 

 

which is (1.3) when 𝑥 =
1

5
.  When starting with 𝑎0 = 3 and 𝑎1 = 1 as initial conditions, (1.4) has the 

periodic solution 3, 1, 4, 1, 1, 2, 3, 1, …  The problem here is finding initial conditions and 𝑥 values that 

allow for periodic solutions to appear.  Previously, Niedzielski [3] investigated the existence of periodic 

solutions of (1.3). 

Niedzielski [3] worked only with nonlinear adaptations of the Fibonacci numbers.  However, 

periodic behavior is not limited to (1.3).  For example, the relation 

 𝑎𝑛 = {

1

64
(2𝑎𝑛−1 − 6𝑎𝑛−2),

1

64
(2𝑎𝑛−1 − 6𝑎𝑛−2) ∈ ℤ

(2𝑎𝑛−1 − 6𝑎𝑛−2), otherwise
 (1.5) 

 

has a periodic solution with initial conditions 𝑎0 = 4 and 𝑎1 = −13, specifically 4, -13, -50, -22, 4, 140, 

4, -13, …  The generalization of this relation that was studied in this project is a nonlinear variation of the 

Lucas sequences, namely the system 

 𝑎𝑛 = {
𝑥(𝑃𝑎𝑛−1 − 𝑄𝑎𝑛−2), 𝑥(𝑃𝑎𝑛−1 − 𝑄𝑎𝑛−2) ∈ ℤ

𝑃𝑎𝑛−1 − 𝑄𝑎𝑛−2, otherwise,
 (1.6) 

 

where 𝑥 is a rational number and 𝑃 and 𝑄 are integers.  The question was when periodic behavior would 

occur.  More precisely, given fixed values of 𝑃 and 𝑄, which values of 𝑥 allow for periodic solutions? 
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 This paper will adapt the methods in [3] used for investigating recurrence (1.3) to the more 

general setting in (1.6).  Due to the increase in variables from (1.3) to (1.6), Niedzielski’s method became 

difficult.  Chapter 2 will include the essential theorems used to create the search method and reduce the 

number of cases to be examined.    The approach taken will be outlined in Chapter 3. 

The information in Chapter 2 and Chapter 3 made it possible to search for which pairs of 𝑃 and 

𝑄 had 𝑥 values which allowed for periodic solutions.  More specifically, the search included 𝑃 and 𝑄 

such that 1 ≤ 𝑃 ≤ 20 and −20 ≤ 𝑄 ≤ 20 and 𝑄 ≠ 0.  Chapter 4 contains the results from this search.  

This includes the values of 𝑃, 𝑄 and 𝑥 where periodic solutions were found.  Conjectures made about 

patterns in the data will be identified in Chapter 5.  Suggestions for further work and open questions will 

be contained within Chapter 6. 
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2   Theoretical Considerations 
 

 A general problem with recurrence relations deals with the search for initial conditions that lead 

to periodic solutions.  Below is a discussion of the periodic solutions of first and second order linear 

homogenous recurrence relations.  Some of the results of this project follow similar patterns to those 

outlined below. 

 

2.1   First Order Linear Recurrences 

 

Recall the form of the first order linear recurrence, 𝑎𝑛 = 𝑐𝑎𝑛−1.  Given initial condition 𝑎0, the 

general solution is 𝑎𝑛 = 𝑎0𝑐𝑛.  The most trivial periodic solution to 𝑎𝑛 = 𝑐𝑎𝑛−1 would be 𝑎𝑛 = 0.  With 

the general solution in mind, we can easily see that trivial solution can be achieved when 𝑎0 = 0 or 𝑐 =

0.  Slightly less trivial solutions would be nonzero constant solutions.  If we want 𝑎𝑛 to be some constant 

𝑎 for all 𝑛, we need 𝑎 = 𝑐𝑎.  Since we are looking for nonzero solutions, we need 𝑐 = 1.  As a matter of 

fact, when 𝑐 = 1, 𝑎𝑛 = 𝑎𝑛−1 so every solution will be periodic with period one. 

Consider possible solutions with longer period length.  A solution of period two would be of the 

form 𝑎, 𝑏, 𝑎, 𝑏, 𝑎, …  Thus, in order to achieve a solution of period two we need 𝑎 = 𝑐𝑏 and 𝑏 = 𝑐𝑎.  By 

substitution, we get the condition 𝑎 = 𝑐2𝑎.  Again, we are looking for nonzero solutions, therefore we 

need 𝑐2 = 1.  As mentioned above, 𝑐 = 1 leads to solutions with period one so we look at the case 

where 𝑐 = −1.  In this case, 𝑎𝑛 = −𝑎𝑛−1, thus all nonzero solutions will be periodic with period two. 

Using the concept above, notice that solutions with longer period length must satisfy 𝑎 = 𝑐𝑘𝑎 

where 𝑘 is the length of the period.  Therefore, when looking for periodic solutions, we are looking for 

values of 𝑐 such that 𝑐𝑘 = 1, values referred to as 𝑘th roots of unity.  Moreover, to ensure the period 

length is 𝑘, we need 𝑘 to be the smallest positive integer for which 𝑐𝑘 = 1.  In this case, 𝑐 is known as a 

primitive 𝑘th root of unity.  There is always a complex value of 𝑐 for which 𝑐𝑘 = 1.  This value is 𝑐 =
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𝑒2𝜋𝑖 𝑘⁄  which by Euler’s formula can be written as 𝑐 = 𝑒2𝜋𝑖 𝑘⁄ = cos (2𝜋 𝑘⁄ ) + 𝑖 sin (2𝜋 𝑘⁄ ).  In fact, all 

solutions are given by 𝑐 = 𝑒2𝜋𝑖𝑗 𝑘⁄  where 𝑗 is an integer.  The roots will be primitive when 𝑗 is relatively 

prime to 𝑘.  If we are looking for real values of 𝑐 we need sin (2𝜋 𝑘⁄ ) = 0.  Thus 𝑘 = 1 and 𝑘 = 2 are 

the only possible solutions.  Therefore, when considering first order linear homogeneous recurrence 

relations with constant coefficients, the only real periodic solutions that exist are of period length one or 

two.  Moreover, when a sequence of period two exists, all nontrivial sequences to that recurrence will 

have period two. 

 

2.2   Second Order Linear Recurrences 

 

 Although this project deals with a nonlinear variation of 𝑎𝑛 = 𝑃𝑎𝑛−1 − 𝑄𝑎𝑛−2, we will look 

briefly at the periodic solutions to this linear recurrence.  Again, similar to the first order relation, when 

looking at periodic solutions of period length one there are the trivial solution 𝑎𝑛 = 0 and the constant 

solution 𝑎𝑛 = 𝑎.  In the constant case we have 𝑎 = 𝑃𝑎 − 𝑄𝑎.  Since we are looking for nonzero 

solutions we can assume 𝑎 ≠ 0 and divide by 𝑎 to get 1 = 𝑃 − 𝑄, or 𝑃 = 𝑄 + 1.  Therefore, the 

constant solution will be present when 𝑃 = 𝑄 + 1 and 𝑎0 = 𝑎1.  For example, when 𝑃 = 5 and 𝑄 = 4, 

the initial conditions 𝑎0 = 𝑎1 = 5 result in the periodic solution 5, 5, 5, 5, … 

Yet again we will explore larger period lengths.  For a period of length two, we will have 𝑎 =

𝑃𝑏 − 𝑄𝑎 and 𝑏 = 𝑃𝑎 − 𝑄𝑏.  If we add these together we obtain 𝑎 + 𝑏 = 𝑃(𝑎 + 𝑏) − 𝑄(𝑎 + 𝑏).  There 

are two cases: either 𝑎 + 𝑏 ≠ 0 or 𝑎 + 𝑏 = 0.  If 𝑎 + 𝑏 ≠ 0 then we can divide by 𝑎 + 𝑏 and we have 

the condition 𝑃 = 𝑄 + 1  again.  Substituting this condition in to 𝑎 = 𝑃𝑏 − 𝑄𝑎  yields (𝑄 + 1)𝑎 =

(𝑄 + 1)𝑏.  Since 𝑎 ≠ 𝑏, this implies 𝑄 + 1 = 0.  Therefore, 𝑄 = −1 and 𝑃 = 0.  This gives us the 

recurrence 𝑎𝑛 = 𝑎𝑛−2, which is always periodic.  In order to assure a period length of two we must 

specify 𝑎0 ≠ 𝑎1, otherwise the period would be one.  If 𝑎 + 𝑏 = 0 then 𝑏 = −𝑎.  Again we substitute 

this in to 𝑎 = 𝑃𝑏 − 𝑄𝑎 to receive 𝑎 = −𝑃𝑎 − 𝑄𝑎 so 𝑃 = −𝑄 − 1.  When both of these conditions hold, 

all solutions will be periodic with period two.  For instance, if we choose 𝑄 = −4 then 𝑃 = 3 so 𝑎𝑛 =

3𝑎𝑛−1 + 4𝑎𝑛−2.  Starting with the initial conditions 𝑎0 = 1 and 𝑎1 = −1, we have the periodic solution 

1, −1, 1, −1, 1, …  In this case, however, we will not get periodic behavior when −𝑎0 ≠ 𝑎1.  For example, 

with the same recurrence, 𝑎𝑛 = 3𝑎𝑛−1 + 4𝑎𝑛−2, if the initial conditions are instead 𝑎0 = 1 and 𝑎1 = 4 

we have the non-periodic solution 1, 4, 16, 64, … 
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For larger periods, at least one of the roots of the characteristic polynomial must be a 𝑘th root of 

unity.  Similar to the first order case, we know 𝑐1 = 𝑒2𝜋𝑖𝑗 𝑘⁄  will work.  Since complex solutions must 

come in conjugate pairs, in order for 𝑃 and 𝑄 to be real, our second solution must be 𝑐2 = 𝑒−2𝜋𝑖𝑗 𝑘⁄ .  

With these solutions, 𝑃  must be 𝑐1 + 𝑐2  so 𝑃 = 2 cos(2𝜋𝑗/𝑘) and 𝑄 = 𝑐1 ⋅ 𝑐2 = 1.  This gives the 

relation 𝑎𝑛 = 2 cos(2𝜋𝑗/𝑘) 𝑎𝑛−1 − 𝑎𝑛−2 for some 𝑗 relatively prime to 𝑘.  It turns out that every 

solution will be periodic with a period length which divides 𝑘.  To see why this is true, let 𝜔 = 𝑒2𝜋𝑖𝑗 𝑘⁄  

then 𝜔 and 𝜔−1 are the roots of the characteristic polynomial.  Thus the general solution is 𝑎𝑛 = 𝐴𝜔𝑛 +

𝐵𝜔−𝑛  for some constants 𝐴 and 𝐵.  Since 𝜔𝑘 = 1 we have 𝑎𝑛+𝑘 = 𝐴𝜔𝑛+𝑘 + 𝐵𝜔−𝑛−𝑘 = 𝐴𝜔𝑛𝜔𝑘 +

𝐵𝜔−𝑛𝜔−𝑘 = 𝐴𝜔𝑛 + 𝐵𝜔−𝑛 = 𝑎𝑛 .  In this project, we focus on integer sequences.  Since 𝑎𝑛 =

2 cos(2𝜋𝑗/𝑘) 𝑎𝑛−1 − 𝑎𝑛−2, we know 𝑎𝑛 + 𝑎𝑛−2 = 2 cos(2𝜋𝑗/𝑘) 𝑎𝑛−1.  If we are only interested in 

integer sequences, this implies 2 cos(2𝜋𝑗/𝑘) must be a rational number. 

Niven’s Theorem:  If 𝜃 is rational in degrees, say 𝜃 = 2𝜋𝑟 for some rational number 𝑟, then the only 

rational values of the trigonometric functions of 𝜃  are as follows: sin 𝜃 , cos 𝜃 =

0, ±
1

2
, ±1; sec 𝜃 , csc 𝜃 = ±1, ±2 ; tan 𝜃 , cot 𝜃 = 0, ±1. [4, p.41] 

Consequently, the only angles which will make 2 cos(2𝜋𝑗/𝑘) a rational number are 
𝜋

3
,

𝜋

2
,

2𝜋

3
, 𝜋,

4𝜋

3
,

3𝜋

2
,

5𝜋

3
, 2𝜋.  Therefore, the only values for 𝑘 which allow for periodic solutions of period 𝑘 are 𝑘 =

1, 2, 3, 4, 6 .  For example, when  𝑘 = 4 , 2 cos(2𝜋𝑗/𝑘) = 2 cos(2𝜋𝑗/4) = 2 cos(𝜋𝑗/2) = 0  so 𝑎𝑛 =

−𝑎𝑛−2.  In this case, all nontrivial solutions will have period four.  For instance, when 𝑎0 = 1 and 𝑎1 = 4 

the solution will be periodic with period four, specifically 1, 4, −1, −4, 1, 4, …  Similarly, when 𝑘 = 6, 

𝑎𝑛 = 2 cos(2𝜋𝑗/6) 𝑎𝑛−1 − 𝑎𝑛−2 

= 2 cos(𝜋𝑗/3) 𝑎𝑛−1 − 𝑎𝑛−2 

= 2 (
1

2
) 𝑎𝑛−1 − 𝑎𝑛−2 

= 𝑎𝑛−1 − 𝑎𝑛−2. 

Here, all nontrivial solutions will have period six.  One such example occurs when 𝑎0 = 3 and 𝑎1 = 4 

where the solution is 3, 4, 1, −3, −4, −1, 3, 4, … 

As mentioned previously, for this project, we restricted our search to only positive values of 𝑃.  

We were able to do this because if 𝑎𝑛 = 𝑓(𝑛) is a solution to 𝑎𝑛 = −𝑃𝑎𝑛−1 − 𝑄𝑎𝑛−2 then 𝑏𝑛 =

(−1)𝑛𝑓(𝑛) is a solution to 𝑏𝑛 = 𝑃𝑏𝑛−1 − 𝑄𝑏𝑛−2.  To see this, let 𝑎𝑛 = 𝑓(𝑛) be a solution to 𝑎𝑛 =
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−𝑃𝑎𝑛−1 − 𝑄𝑎𝑛−2.  Then 𝑓(𝑛) = −𝑃𝑓(𝑛 − 1) − 𝑄𝑓(𝑛 − 2).  Let 𝑏𝑛 = (−1)𝑛𝑓(𝑛) so 𝑓(𝑛) = (−1)𝑛𝑏𝑛.  

Therefore, by substitution, (−1)𝑛𝑏𝑛 = 𝑃(−1)𝑛−1𝑏𝑛−1 − 𝑄(−1)𝑛−2𝑏𝑛−2.  If we divide by (−1)𝑛, we 

see that 𝑏𝑛 = 𝑃𝑏𝑛−1 − 𝑄𝑏𝑛−2.  Thus 𝑏𝑛 = (−1)𝑛𝑓(𝑛) is a solution to 𝑏𝑛 = 𝑃𝑏𝑛−1 − 𝑄𝑏𝑛−2 when 𝑎𝑛 =

𝑓(𝑛) is a solution to 𝑎𝑛 = −𝑃𝑎𝑛−1 − 𝑄𝑎𝑛−2.  Therefore, we know for any solution we find for positive 

𝑃, there is also a periodic solution in the negative 𝑃 case where the period is half that of the positive 

case.  For example, the recurrence 𝑎𝑛 = −𝑎𝑛−1 − 𝑎𝑛−2 when 𝑎0 = 5 and 𝑎1 = 3 has periodic solution 

5, 3, −8, 5, 3, …  This is the case of (1.1) where 𝑃 = −1 and 𝑄 = 1.  Consider what happens when 𝑃 = 1 

and 𝑄 = 1.  In this instance, 𝑎𝑛 = 𝑎𝑛−1 − 𝑎𝑛−2.  When the initial conditions are 𝑎0 = 5 and 𝑎1 = −3, 

this recurrence has the periodic solution 5, −3, −8, −5, 3, 8, 5, −3, …  As one can see, the period length 

of the positive case is merely double that of the case where 𝑃 is negative. 

 

2.3   A Nonlinear Variation on Second Order Recurrences 

 

In the search for periodic solutions to (1.3), Niedzielski [3] used the method outlined below to 

find values of 𝑥 which would allow for periodic solutions.  The approach used involved a shift to a first 

order system similar to (1.2).  Specifically, 

 𝒗𝑛 = {
𝑩𝒗𝑛−1, 𝑥(𝑎𝑛 + 𝑎𝑛−1) ∈ ℤ
𝑨𝒗𝑛−1, otherwise

 (2.1) 

 

where 𝒗𝑛 = [
𝑎𝑛+1

𝑎𝑛
] with 𝑎𝑛 and 𝑎𝑛+1 as sequence terms, 𝑨 = [

1 1
1 0

], and 𝑩 = [
𝑥 𝑥
1 0

].  To see the 

benefit of this transition, consider the example of (1.4) from the introduction.  The periodic solution was 

3, 1, 4, 1, 1, 2, 3, 1, … This corresponds to 𝒗0 = [
1
3

] , 𝒗1 = [
4
1

] , 𝒗2 = [
1
4

] , 𝒗3 = [
1
1

] , 𝒗4 = [
2
1

] , 𝒗5 =

[
3
2

] , 𝒗6 = [
1
3

] , ⋯ when we use (2.1).  Since 𝒗6 = 𝑩𝒗5, 𝒗5 = 𝑨𝒗4, 𝒗4 = 𝑨𝒗3, and so on, we see that 

𝒗0 = 𝑩𝑨2𝑩2𝑨𝒗0. That is, 𝒗0 is an eigenvector of 𝑩𝑨2𝑩2𝑨 with eigenvalue 1. 

More generally, a periodic solution to (2.1) of length 𝑚 means 𝒗𝑛+𝑚 = 𝒗𝑛 for all 𝑛.  Therefore, 

if the period length is 𝑚, 𝒗𝑚 = 𝒗0.  However, the solution to the recurrence is 𝒗𝑚 = 𝑾𝒗0 where 𝑾 is a 

product of 𝑚 𝐀’s and 𝐁’s.  This leads to the following: 
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Theorem 2.1:  For every periodic solution to (1.3), there is a corresponding matrix 𝑾, which is a product 

of 𝑨’s and 𝑩’s, that has an eigenvector 𝒗0, with eigenvalue 1.  The entries of 𝒗0 give the initial 

conditions for the periodic solution. 

Consider how this would change for our more generalized problem.  In (1.5) from the introduction, we 

no longer have one as coefficients.  Thus multiplying by 𝑨 and 𝑩 as defined above will not give us the 

desired result.  Instead, (1.5) can be considered as  

 𝒗𝑛 = {
𝑩𝒗𝑛−1,

1

64
(2𝑎𝑛 − 6𝑎𝑛−1) ∈ ℤ

𝑨𝒗𝑛−1, otherwise
 (2.2) 

where 𝒗𝑛 = [
𝑎𝑛+1

𝑎𝑛
] still has 𝑎𝑛  and 𝑎𝑛+1 as sequence terms.  However, now 𝑨 = [

2 −6
1 0

] and 𝑩 =

[
2

64

−6

64

1 0
] where 𝑨 and 𝑩 are determined in the same manner as (1.2).  With these specifications, the 

periodic solution 4, -13, -50, -22, 4, 140, 4, -13, … can now be written as 𝒗0 = [
−13

4
] , 𝒗1 = [

−50
−13

] , 𝒗2 =

[
−22
−50

] , 𝒗3 = [
4

−22
] , 𝒗4 = [

140
4

] , 𝒗5 = [
4

140
] , 𝒗6 = [

−13
4

] , ⋯   In this case, we see that 𝒗0 =

𝑩2𝑨𝑩𝑨2𝒗0.  Observe that the coefficients 2 and 6 correspond to 𝑃 and 𝑄 in our generalization. This 

leads to the following: 

Theorem 2.2:  For every periodic solution to (1.6), there is a corresponding matrix 𝑾, which is a  product 

of 𝑨’s and 𝑩’s, that has an eigenvector 𝒗0, with 1 as an eigenvalue.  Where the entries of 𝒗0 give the 

initial conditions for the periodic solution of the system 

 𝒗𝑛 = {
𝑩𝒗𝑛−1, 𝑥(𝑃𝑎𝑛 − 𝑄𝑎𝑛−1) ∈ ℤ
𝑨𝒗𝑛−1, otherwise.

 (2.3) 

 

Where 𝑨 and 𝑩 are defined as 𝑨 = [
𝑃 −𝑄
1 0

] and 𝑩 = [
𝑃𝑥 −𝑄𝑥
1 0

].  Recall that 𝑥 is a rational number 

and 𝑃 and 𝑄 are the integer coefficients from (1.6). 

With this in mind, we consider how to find the products of 𝑨 and 𝑩 which will have 1 as an 

eigenvalue.  It is known that a matrix 𝑾 has eigenvalue 1 if and only if det(𝑾 − 𝑰) = 0.  For a two by 

two matrix, the characteristic polynomial simplifies to the particularly nice form det(𝑾 − 𝑰) = 1 −



 
 

10 
 

tr 𝑾 + det 𝑾.  Now let 𝑾 be some product of the matrices 𝑨 and 𝑩 from above.  We can define the 

function 

 𝑓𝑊(𝑥) = − det(𝑾 − 𝑰) = tr 𝑾 − det 𝑾 − 1. (2.4) 

 

Notice that instead of using det(𝑾 − 𝑰), 𝑓𝑊(𝑥) is the negative of the characteristic polynomial.  This 

was done to make the leading coefficients in (3.1), (3.2), (3.3), and (3.4) look nicer. 

Thus 𝑾  will have 1  as an eigenvalue for exactly those 𝑥  values that satisfy 𝑓𝑊(𝑥) = 0 .  

Therefore, when given a specific product of 𝑨’s and 𝑩’s, where 𝑃 and 𝑄 are fixed, we can find all 𝑥 

values with 1 as an eigenvalue by solving 𝑓𝑊(𝑥) = 0.  For example, consider (2.2) from above.  Recall 

𝑃 = 2 and 𝑄 = 6, thus 𝑨 = [
2 −6
1 0

] and 𝑩 = [
2𝑥 −6𝑥
1 0

].  Therefore, 

𝑾 = 𝑩2𝑨𝑩𝑨2 = [64𝑥3 + 240𝑥2 − 72𝑥 −48𝑥3 + 144𝑥2 − 432𝑥
32𝑥2 + 24𝑥 −24𝑥2 + 144𝑥

]. 

With some simple calculations, we see that tr 𝑾 = 64𝑥3 + 240𝑥2 − 72𝑥 and det 𝑾 = 46656𝑥3, thus 

𝑓𝑊(𝑥) = 64𝑥3 + 240𝑥2 − 72𝑥 − 46656𝑥3 − 1 

= −46592𝑥3 + 216𝑥2 + 72𝑥 − 1 

= (64𝑥 − 1)(−728𝑥2 − 8𝑥 + 1). 

From here, it is easy to see that 𝑥 =
1

64
 is a root.  If we substitute this solution into our matrix, we get 

𝑾 = [
−

4367

4096
−

110019

16384
49

128

1149

512

]. 

We know this matrix has an eigenvalue of 1.  If we solve for the corresponding eigenvector, we obtain 

𝒗0 = [
−13

4
], which gives the initial condition leading to the periodic solution addressed above.  

However, as is, there are a couple of factors that we must consider before we can adopt this as the 

search method when looking for periodic solutions to (1.6). 
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 Unfortunately, Theorem 2.2 does not guarantee periodic behavior.  In other words, it is possible 

to have a solution to 𝑓𝑊(𝑥) = 0 that does not lead to a periodic solution.  For example, consider (2.3) 

where 𝑃 = 4 and 𝑄 = 6.  In this case, 

𝑾 = 𝑩𝑨2 = [
16𝑥 −60𝑥
10 −24

]. 

Thus 

𝑓𝑊(𝑥) = 16𝑥 − 24 − 216𝑥 − 1 

= −200𝑥 − 25. 

 Therefore, the matrix 𝑾 has an eigenvalue of 1 when 𝑥 = −
1

8
.  In this case, 𝑾 = [

−2
15

2

10 −24
] and the 

corresponding eigenvector is 𝒗0 = [
5
2

] .  However, this leads to the sequence 

2, 5, −1, −34, −130, −316, … which does not have the expected periodic behavior.  Typically, the 

problem in these cases is a division in the wrong place.  In this case, a division occurred right away and 

then not when expected.  If we were to not allow the division immediately after the initial conditions, 

the solution would be periodic.  In other words, if 𝑎0 = 2 and 𝑎1 = 5, then 𝑎𝑛 = 4𝑎𝑛−1 − 6𝑎𝑛−2 gives 

us 𝑎2 = 8.  This time, we don’t multiply by 𝑥 = −
1

8
.  Instead, we use our linear recurrence again to get 

𝑎3 = 2.  For 𝑎4, 𝑎𝑛 = 4𝑎𝑛−1 − 6𝑎𝑛−2 yields −40 which is divisible by −8.  We allow the division and 

thus have the periodic solution 2, 5, 8, 2, 5, … with period three as expected.  There were several other 

scenarios in which this occurred.  For instance, when 𝑃 = 4 and 𝑄 = −18 the matrix 𝑾 = 𝑩𝑨2𝑩 has a 

similar outcome.  Here, 

𝑾 = [832𝑥2 + 612𝑥 3744𝑥2

136𝑥 + 72 612𝑥
] 

so 

𝑓𝑊(𝑥) = 832𝑥2 + 1224𝑥 − 104976𝑥2 − 1 

= −104144𝑥2 + 1224𝑥 − 1 

= (92𝑥 − 1)(−1132𝑥 + 1). 

The value 𝑥 =
1

92
 is one of the solutions to 𝑓𝑊(𝑥) = 0 that guarantees 𝑾 has an eigenvalue of 1.  The 

eigenvector with 𝑥 =
1

92
 is 𝒗0 = [

−1
13

] .  Using (2.3), we get the sequence 
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13, −1, 230, 902, 7748, 47228, … which is, once again, not periodic.  Here, it turns out that while 𝒗0 =

[
−1
13

] is an eigenvector, it does not lead to periodic behavior.  If we instead started with 2𝒗0 = [
−2
26

], the 

resulting sequence would be 26, −2, 5, −16, 26, −2, … which is periodic as expected.  The second 𝑥 

value, 𝑥 =
1

1132
, also did not lead to periodic behavior because of the same problem.  There are also 

cases where one 𝑥 value leads to periodic behavior, but the second 𝑥 value does not.  For instance, 

when 𝑃 = 5 and 𝑄 = −7, the matrix (𝑩𝑨3)2 has two 𝑥 values that guarantee an eigenvalue of 1.  These 

values are 𝑥 =
223

1202
 and 𝑥 = −

1

16
.  The first, 𝑥 =

223

1202
, has corresponding eigenvector [

−223
195

] which 

leads to the periodic solution 195, −223, 250, −311, 195, −223, …  However, the eigenvector, [
−15
13

], 

corresponding to the second solution, 𝑥 = −
1

16
, does not lead to a periodic solution.  The resulting 

sequence is 13, −15, −1, −110, −557, −3555, …  This was yet another case where the multiplications 

by 𝑥 did not follow the expected pattern.  Based on these cases, it is clear to see that each result must 

be tested to verify that the solution was indeed periodic. 

Another difficulty is the number of possible cases.  To begin with, even if we limit the length of 

products of 𝑨’s and 𝑩’s to 24, we would still have over 16 million possible products.  In addition to that, 

we are interested in multiple values of 𝑃 and 𝑄 for each product of 𝑨’s and 𝑩’s.  As mentioned in the 

introduction, we limited the possible values of 𝑃 and 𝑄 to the range 1 ≤ 𝑃 ≤ 20 and −20 ≤ 𝑄 ≤ 20.  

This still leaves nearly 800 possible pairs of 𝑃’s and 𝑄’s for each of the 16 million possible products of 

𝑨’s and 𝑩’s.  In other words, the number of possible cases that we would currently need to check is 

daunting at best.  In an attempt to minimize the number of cases that must be considered, we look at 

the order in which the 𝑨’s and 𝑩’s appear in our products.  Looking at equation (2.4), we note that the 

order of our product will only affect the equation in the same manner that the determinant and trace 

are affected by order.  The determinant of 𝑾 is not dependent on the order of 𝑨’s and 𝑩’s since 

det 𝑨𝑩 = det 𝑨 det 𝑩 = det 𝑩 det 𝑨 = det 𝑩𝑨.  Therefore, the only term in (2.4) that depends on the 

order of the product of 𝑨’s and 𝑩’s is tr 𝑾. 

Next, it is known that cyclic permutations of matrix products have the same trace.  Therefore, 

any cyclic permutations of 𝑨’s and 𝑩’s will have the same periodic solution.  For example, consider (2.2) 

from above.  In this example, 𝑃 = 2, 𝑄 = 6 and 𝑥 =
1

64
.  A periodic solution begins with 𝑎0 = 4, 𝑎1 =

−13, corresponding to 𝑣0 = [
−13

4
], an eigenvector of 𝑩2𝑨𝑩𝑨2 with eigenvalue 1.  However, 𝒗0 =
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𝑩2𝑨𝑩𝑨2𝒗0 is not the only possibility; if we were to pick any two consecutive terms in the periodic 

solution, they could be used to form a periodic solution with the same numbers, but different initial 

conditions.  However, our product of 𝑨’s and 𝑩’s would differ.  Suppose an initial condition of [
−50
−13

] is 

used instead of [
−13

4
].  Our periodic solution now corresponds to 𝒗0 = [

−50
−13

] , 𝒗1 = [
−22
−50

] , 𝒗2 =

[
4

−22
] , 𝒗3 = [

140
4

] , 𝒗4 = [
4

140
] , 𝒗5 = [

−13
4

] , 𝒗6 = [
−50
−13

] ⋯  Here we see that 𝒗6 = 𝑨𝒗5, 𝒗5 = 𝑩𝒗4,

𝒗4 = 𝑩𝒗3, … which leads us to 𝒗0 = 𝑨𝑩𝟐𝑨𝑩𝑨𝒗0.  Recall that when 𝒗 = [
−13

4
] the product of 𝑨’s and 

𝑩’s which resulted was 𝒗 = 𝑩2𝑨𝑩𝑨2𝒗.  Notice that these are merely cyclic permutations of each other.  

Therefore, cyclic permutations of 𝑨’s and 𝑩’s will result in the same periodic solution only shifted 

depending on the initial conditions.  Below is the proof for the two by two case that the trace does not 

change for cyclically permuted products. 

Theorem 2.3:  Let 𝑨1, 𝑨2, ⋯ , 𝑨𝑛 be 2x2 matrices. Then  

tr(𝑨1 𝑨2 ∙ ⋯ ∙ 𝑨𝑛) = tr(𝑨𝑛 𝑨1 ∙ ⋯ ∙ 𝑨𝑛−1). 

Proof:  Let 𝑨1 = [
𝑎 𝑏
𝑐 𝑑

] and 𝑨2 = [
𝑒 𝑓
𝑔 ℎ

]. Then  

𝑨1𝑨2 = [
𝑎𝑒 + 𝑏𝑔 𝑎𝑓 + 𝑏ℎ
𝑐𝑒 + 𝑑𝑔 𝑐𝑓 + 𝑑ℎ

], 

so  

tr(𝑨1𝑨2) = 𝑎𝑒 + 𝑏𝑔 + 𝑐𝑓 + 𝑑ℎ. 

Also, 

𝑨2𝑨1 = [
𝑒𝑎 + 𝑓𝑐 𝑒𝑏 + 𝑓𝑑
𝑔𝑎 + ℎ𝑐 𝑔𝑏 + ℎ𝑑

] 

has  

tr(𝑨2𝑨1) = 𝑒𝑎 + 𝑓𝑐 + 𝑔𝑏 + ℎ𝑑. 

Therefore tr(𝑨1𝑨2) = tr(𝑨2𝑨1). In general, for matrices 𝑨1, 𝑨2, ⋯ , 𝑨𝑛, let   

𝑩 = 𝑨1 𝑨2 ∙ ⋯ ∙ 𝑨𝑛−1 

Then by the above calculations, 

tr(𝑩𝑨𝑛) = tr(𝑨𝑛𝑩) 

or 

tr(𝑨1 𝑨2 ∙ ⋯ ∙ 𝑨𝑛) = tr(𝑨𝑛 𝑨1 ∙ ⋯ ∙ 𝑨𝑛−1). 

Thus the trace is invariant under cyclic permutations.   ∎ 
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Corollary 2.4:  Let 𝑨1, 𝑨2, ⋯ , 𝑨𝑛 be 2x2 matrices of the form [
𝑃 −𝑄
1 0

] or [
𝑃𝑥 −𝑄𝑥
1 0

]. If   

𝑾1 = 𝑨1 𝑨2 ∙ ⋯ ∙ 𝑨𝑛 and 𝑾2 = 𝑨𝑛 𝑨1 ∙ ⋯ ∙ 𝑨𝑛−1, then 𝑓𝑾1
(𝑥) = 𝑓𝑾2

(𝑥). 

 

Proof:  By (2.4) and Theorem 2.3,  

𝑓𝑾1
(𝑥) = tr(𝑨1 𝑨2 ∙ ⋯ ∙ 𝑨𝑛) − 1 − det(𝑨1 𝑨2 ∙ ⋯ ∙ 𝑨𝑛) 

                       = tr(𝑨𝑛 𝑨1 ∙ ⋯ ∙ 𝑨𝑛−1) − 1 − det(𝑨𝑛 𝑨1 ∙ ⋯ ∙ 𝑨𝑛−1) 

= 𝑓𝑾2
(𝑥).   ∎ 

Fortunately, this reduces the number of cases that must be looked at by a factor of about 𝑛 when 

dealing with strings of length 𝑛. 

As an example of Corollary 2.4, we saw two different matrices that led to periodic solutions for 

(2.2).  Let us examine 𝑓𝑊(𝑥) in both of these cases.  In the first example, 𝑾1 = 𝑩2𝑨𝑩𝑨2 so 

𝑾1 = [64𝑥3 + 240𝑥2 − 72𝑥 −48𝑥3 + 144𝑥2 − 432𝑥
32𝑥2 + 24𝑥 −24𝑥2 + 144𝑥

]. 

From here, we can easily determine the trace and determinant of 𝑾1.  As a result, 

tr 𝑾1 = 64𝑥3 + 240𝑥2 − 72𝑥 − 24𝑥2 + 144𝑥 

= 64𝑥3 + 216𝑥2 + 72𝑥 

and 

det 𝑾1 = (64𝑥3 + 240𝑥2 − 72𝑥)(−24𝑥2 + 144𝑥) − (−48𝑥3 + 144𝑥2 − 432𝑥)(32𝑥2 + 24𝑥) 

= 46656𝑥3. 

In the second example, 𝑾2 = 𝑨𝑩𝟐𝑨𝑩𝑨.  Thus 

𝑾2 = [16𝑥3 − 72𝑥2 + 288𝑥 96𝑥3 + 432𝑥2 − 864𝑥
8𝑥3 − 24𝑥2 + 72𝑥 48𝑥3 + 288𝑥2 − 216𝑥

]. 

Again, we find the trace and determinant as follows: 

tr 𝑾2 = 16𝑥3 − 72𝑥2 + 288𝑥 + 48𝑥3 + 288𝑥2 − 216𝑥 

= 64𝑥3 + 216𝑥2 + 72𝑥 

and 
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det 𝑾2 = (16𝑥3 − 72𝑥2 + 288𝑥)(48𝑥3 + 288𝑥2 − 216𝑥)

− (96𝑥3 + 432𝑥2 − 864𝑥)(8𝑥3 − 24𝑥2 + 72𝑥) 

= 46656𝑥3. 

Note that 𝑾1 ≠ 𝑾2.  However, as expected, 𝑓𝑾1
(𝑥) = 𝑓𝑾2

(𝑥) since 𝑾1 and 𝑾2 have the same trace 

and determinant. 

 Now we focus on searching for periodic solutions.  Instead of attempting an exhaustive search 

by looking at the total number of matrices multiplied together, consider products based on how many 

times the matrix 𝑩 appears in the complete product.  Note, without loss of generality, we can represent 

any product of 𝑨 ’s and 𝑩 ’s as the product of matrices of the form of 𝑩𝐀n .  For example, 

𝑨𝑨𝑨𝑩𝑨𝑩𝑩𝑨𝑨𝑩𝑨 can be replaced by 𝑩𝑨1𝑩𝑨0𝑩𝑨2𝑩𝑨4 by cyclically reordering the 𝑨’s and 𝑩’s.  In 

other words, 𝑾 = 𝑩𝑨𝑛1𝑩𝑨𝑛2 … 𝑩𝑨𝑛𝑘.  It is convenient to write 𝑾 in this form because of the facts 

below. 

Lemma 2.5:  If 𝑨 = [
𝑃 −𝑄
1 0

], then 𝑨𝑛 = [
𝑈𝑛+1 −𝑄𝑈𝑛

𝑈𝑛 −𝑄𝑈𝑛−1
] where {𝑈𝑛} is the Lucas sequence described 

in Chapter 1. 

Proof:  If 𝑨 = [
𝑃 −𝑄
1 0

], then 𝑨2 = [
𝑃2 − 𝑄 −𝑃𝑄

𝑃 −𝑄
] and 𝑨3 = [

𝑃3 − 2𝑃𝑄 −𝑃2𝑄 + 𝑄2

𝑃2 − 𝑄 −𝑃𝑄
].  Assume that 

𝑨𝑛 = [
𝑈𝑛+1 −𝑄𝑈𝑛

𝑈𝑛 −𝑄𝑈𝑛−1
] 

for some integer 𝑛. Then  

𝑨𝑛+1 = [
𝑃 −𝑄
1 0

] ∗ [
𝑈𝑛+1 −𝑄𝑈𝑛

𝑈𝑛 −𝑄𝑈𝑛−1
] 

= [
𝑃𝑈𝑛+1 − 𝑄𝑈𝑛 −𝑃𝑄𝑈𝑛 + 𝑄2𝑈𝑛−1

𝑈𝑛+1 −𝑄𝑈𝑛
]. 

But  

𝑈𝑛+2 = 𝑃𝑈𝑛+1 − 𝑄𝑈𝑛 and −𝑄𝑈𝑛+1 = −𝑄(𝑃𝑈𝑛 − 𝑄𝑈𝑛−1) 

so 

𝑨𝑛+1 = [
𝑈𝑛+2 −𝑄𝑈𝑛+1

𝑈𝑛+1 −𝑄𝑈𝑛
]. Thus 𝑨𝑛 = [

𝑈𝑛+1 −𝑄𝑈𝑛

𝑈𝑛 −𝑄𝑈𝑛−1
].    ∎ 

 

Corollary 2.6:  If 𝐀 = [
P −Q
1 0

] and 𝑩 = [
𝑃𝑥 −𝑄𝑥
1 0

], then 𝑩𝐀n = [
𝑥Un+2 −Q𝑥Un+1

Un+1 −QU𝑛
]. 
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Proof:  By Lemma 2.5, 

𝑩𝐀n = [
𝑃𝑥 −𝑄𝑥
1 0

] ∗ [
Un+1 −QUn

Un −QUn−1
] 

= [
𝑃𝑥Un+1 − 𝑄𝑥Un −𝑃𝑄𝑥Un + 𝑄2𝑥Un−1

Un+1 −𝑄Un
] 

= [
𝑥Un+2 −Q𝑥Un+1

Un+1 −QU𝑛
]. 

 

Lemma 2.7:  𝑈𝑛
2 − 𝑈𝑛+1𝑈𝑛−1 = 𝑄𝑛−1 

Proof:  Given 𝑨𝑛 = [
𝑈𝑛+1 −𝑄𝑈𝑛

𝑈𝑛 −𝑄𝑈𝑛−1
], −𝑄𝑈𝑛+1𝑈𝑛−1 + 𝑄Un

2 = det(𝑨𝑛) = (det 𝑨)𝑛 = 𝑄𝑛. 

 thus Un
2 − Un+1Un−1 = Qn−1.    ∎ 
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3   The Polynomial 𝒇𝑾(𝒙) When 𝑾 Has a Small Number of 𝑩’s 
 

From Corollary 2.6, we have a formula for 𝑩𝐀n.  By Corollary 2.4 this is the only product of 

length 𝑛 + 1 with a single 𝑩 that we must consider.  In other words, if we are concerned with the 

product 𝑨2𝑩𝑨3, we know from Chapter 2 that 𝑓𝑨2𝑩𝑨3(𝑥) = 𝑓𝑩𝑨3𝑨2(𝑥) = 𝑓𝑩𝑨5(𝑥).  More generally, as 

mentioned previously, we can write any 𝑾 in the form 𝑩𝑨𝑛1𝑩𝑨𝑛2 … 𝑩𝑨𝑛𝑘. 

As we focus on 𝑓𝑊(𝑥), it is important to note some commonly occurring solutions.  There are 

several cases where 𝑥 = 1, 𝑥 = −1 or 𝑥 = 0 might arise.  It is easy to classify all cases of 𝑃 and 𝑄 in 

which 𝑥 = 1 will occur.  This is because, when 𝑥 = 1, 𝑨 = 𝑩, so 𝑾 = 𝑩𝑨𝑛1𝑩𝑨𝑛2 … 𝑩𝑨𝑛𝑘 = 𝑨𝑚 where 

𝑚 = 𝑘 + 𝑛1 + 𝑛2 + ⋯ + 𝑛𝑘.  We know if 𝑐1 and 𝑐2 are eigenvalues of 𝑨 then 𝑐1
𝑚 and 𝑐2

𝑚 are 

eigenvalues of 𝑨𝑚 [1, p.250].  Since 𝑨𝑚 must have an eigenvalue of 1, at least one of 𝑐1 and 𝑐2 must be 

a root of unity.  In other words, suppose, without loss of generality, 𝑐1
𝑚 = 1.  This brings us back to the 

cases discussed in Section 2.2. There are three possible scenarios.  Either 𝑐1 = 1, 𝑐1 = −1 or 𝑐1 is 

complex.  When 𝑐1 = 1, 1 − 𝑃 + 𝑄 = 0 thus 𝑃 = 𝑄 + 1.  When 𝑐1 = −1, 𝑃 = −𝑄 − 1.  Finally, if 𝑐1 is 

complex, 𝑐2 must be it’s conjugate pair.  As a result, 𝑃 = 𝑐1 + 𝑐2 = 2 cos(2𝜋𝑗/𝑘) and 𝑄 = 𝑐1 ⋅ 𝑐2 = 1.  

These lead to the cases 𝑃 = 0, 𝑃 = 1 and 𝑃 = −1, all discussed in Section 2.2.  To summarize, if 𝑾 =

𝑨𝑚, then 𝑓𝑊(𝑥) has 𝑥 = 1 as a zero if and only if one of the following holds: 

𝑐1 𝑃 𝑄 𝑚 

1 arbitrary 𝑃 − 1 no restrictions 

−1 arbitrary −𝑃 − 1 even 

𝑒2𝜋𝑖 3⁄  −1 1 divisible by 3 

𝑖 0 1 divisible by 4 

𝑒𝜋𝑖 3⁄  1 1 divisible by 6 

 

Unlike 𝑥 = 1, it is difficult to characterize the cases where 𝑥 = −1 or 𝑥 = 0.  More information on the 

consequence of these values will be addressed in Chapter 4. 
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 Since we can write 𝑾 = 𝑩𝑨𝑛1𝑩𝑨𝑛2 … 𝑩𝑨𝑛𝑘, we can determine 𝑓𝑊(𝑥) based on the number of 

𝑩’s in the product.  In general, 𝑓𝑊(𝑥) is a polynomial with integer coefficients.  The degree of 𝑓𝑊(𝑥) is 

almost always the number of 𝑩’s in 𝑾.  Below are applications of this with a small number of 𝑩’s. 

 

3.1   𝒇𝑾(𝒙) for Products with One 𝑩 

 

Recall, from Corollary 2.6, 

𝑩𝐀n = [
𝑥Un+2 −Q𝑥Un+1

Un+1 −QU𝑛
]. 

Let 𝑾 = 𝑩𝐀n, then 

𝑓𝑊(𝑥) = tr 𝑾 − det 𝑾 − 1 

= tr 𝑾 − det 𝑩 (det 𝑨)𝑛 − 1 

= 𝑥Un+2−QU𝑛 − 𝑄𝑥(𝑄𝑛) − 1 

= 𝑥Un+2 − 𝑄𝑛+1𝑥−QU𝑛 − 1. 

Thus 

 𝑓𝑊(𝑥) = 𝑥(Un+2 − 𝑄𝑛+1) − (QU𝑛 + 1). (3.1) 

 

 Let us examine 𝑓𝑊(𝑥) for some interesting values of 𝑃 and 𝑄.  We know from the introduction 

that 𝑈𝑛 =
1

3
(4𝑛 − 1) when 𝑃 = 5 and 𝑄 = 4.  In this case, 

𝑓𝑊(𝑥) = 𝑥(
1

3
(4𝑛+2 − 1) − 4𝑛+1) − (4 (

1

3
(4𝑛 − 1)) + 1). 

With some basic algebra, we get 

𝑓𝑊(𝑥) =
1

3
(𝑥 − 1)(4𝑛+1 − 1). 
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Just as above, there are several instances where 𝑓𝑊(𝑥) simplifies quite nicely.  For example, when 𝑃 = 2 

and 𝑄 = 1.  In this case, the characteristic polynomial is 𝑥2 − 2𝑥 + 1, thus 𝑥 = 1 is a repeated 

characteristic root.  Using this, and the initials conditions, we get 𝑈𝑛 = 𝑛.  Therefore, 

𝑓𝑊(𝑥) = 𝑥(𝑛 + 2 − 1) − (𝑛 + 1) 

= (𝑥 − 1)(𝑛 + 1) = (𝑥 − 1)𝑈𝑛+1. 

As expected, 𝑥 = 1 is always a solution when 𝑃 = 2 and 𝑄 = 1 just as it is when 𝑃 = 5 and 𝑄 = 4.  In 

fact, when 𝑃 = 𝑄 + 1, not only is 𝑥 = 1 always a root, but there is a general form for 𝑓𝑊(𝑥).  When 𝑃 =

𝑄 + 1, the characteristic polynomial is 𝑥2 − (𝑄 + 1)𝑥 + 𝑄.  Thus 𝑈𝑛 =
𝑄𝑛−1

𝑄−1
 since the characteristic 

roots are 𝑥 = 1 and 𝑥 = 𝑄.  We can use this information to rewrite 𝑓𝑊(𝑥) as 

𝑥 ((
𝑄𝑛+2 − 1

𝑄 − 1
) − 𝑄𝑛+1) − (𝑄 (

𝑄𝑛 − 1

𝑄 − 1
) + 1). 

With some algebra, we get 

𝑓𝑊(𝑥) =
1

𝑄 − 1
(𝑥 − 1)(𝑄𝑛+1 − 1) = (𝑥 − 1)𝑈𝑛+1 

whenever 𝑃 = 𝑄 + 1. 

Another interesting case of 𝑓𝑊(𝑥) occurs when 𝑃 = 𝑄 = 1.  In this case, the characteristic roots 

are imaginary.  Therefore, it is easiest to look at the sequence which satisfies 𝑈𝑛 = 𝑈𝑛−1 − 𝑈𝑛−2.  This 

sequence is 0, 1, 1, 0, −1, −1, 0, 1, 1, …  Thus we have the following table. 

𝑛 𝑓𝑊(𝑥) 

0 −1 

1 −𝑥 − 2 

2 −2𝑥 − 2 

3 −2𝑥 − 1 

4 −𝑥 

5 0 

 

It turns out that 𝑨6 = 𝐼.  As a result, 𝑓𝐵𝐴𝑛(𝑥) = 𝑓𝐵𝐴𝑛+6(𝑥).  This means one need only consider the 

cases where 0 ≤ 𝑛 ≤ 5. 
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3.2   𝒇𝑾(𝒙) for Products with Two 𝑩’s 

 

As mentioned above, we can look at any string of 𝑨’s and 𝑩’s as the product of matrices of the 

form of 𝑩𝐀n.  For instance, the matrix representing a string of length 𝑛 + 𝑚 + 2 with two 𝑩’s is 

𝑩𝐀n𝑩𝐀𝑚 = [
𝑥Un+2 −Q𝑥Un+1

Un+1 −QU𝑛
] ∗ [

𝑥𝑈𝑚+2 −𝑄𝑥𝑈𝑚+1

𝑈𝑚+1 −𝑄𝑈𝑚
] 

= [
𝑥2Un+2U𝑚+2−Q𝑥Un+1U𝑚+1 −Q𝑥2Un+2U𝑚+1 + 𝑄2𝑥Un+1U𝑚

𝑥Un+1U𝑚+2−QU𝑛U𝑚+1 −Q𝑥Un+1U𝑚+1 + 𝑄2UnU𝑚
]. 

Here, we let 𝑾 = 𝑩𝐀n𝑩𝐀𝑚 and can again easily find 𝑓𝑊(𝑥).  Using Lemma 2.7 we get 

 𝑓𝑊(𝑥) = 𝑥2(Un+2U𝑚+2 − 𝑄𝑛+𝑚+2) − 𝑥(2𝑄Un+1U𝑚+1) + (𝑄2UnU𝑚 − 1). (3.2) 

 

 Again, let us examine 𝑓𝑊(𝑥) for certain values of 𝑃 and 𝑄.  From above, we know 𝑈𝑛 = 𝑛  when 

𝑃 = 2 and 𝑄 = 1.  Therefore, 

𝑓𝑊(𝑥) = 𝑥2[(𝑛 + 2)(𝑚 + 2) − 1] − 𝑥[2(𝑛 + 1)(𝑚 + 1)] + (𝑛𝑚 − 1). 

 

Also mentioned previously, we know 𝑥 = 1 must be a solution to this.  With some algebra, we get 

𝑓𝑊(𝑥) = (x − 1)[𝑥(𝑛𝑚 + 2𝑛 + 2𝑚 + 3) − 𝑛𝑚 + 1]. 

Once again, we can use the fact that 𝑃 = 𝑄 + 1 to find a nice formula for 𝑓𝑊(𝑥).  As a reminder, in this 

case, 𝑈𝑛 =
𝑄𝑛−1

𝑄−1
.  With substitution, we get 

𝑓𝑊(𝑥) = 𝑥2 ((
𝑄𝑛+2 − 1

𝑄 − 1
) (

𝑄𝑚+2 − 1

𝑄 − 1
) − 𝑄𝑛+𝑚+2) − 𝑥 (2𝑄 (

𝑄𝑛+1 − 1

𝑄 − 1
) (

𝑄𝑚+1 − 1

𝑄 − 1
))

+ (𝑄2 (
𝑄𝑛 − 1

𝑄 − 1
) (

𝑄𝑚 − 1

𝑄 − 1
) − 1). 

As noted above, we know 𝑥 = 1 is a factor, therefore we can factor and simplify 𝑓𝑊(𝑥) to 

1

(𝑄 − 1)2
(𝑥 − 1)[𝑥((2𝑄 − 1)𝑄𝑛+𝑚+2 − 𝑄𝑛+2 − 𝑄𝑚+2 + 1) − (𝑄𝑛+𝑚+2 − 𝑄𝑛+2 − 𝑄𝑚+2 + 2𝑄 − 1)]. 
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In the case with one 𝑩, we saw the six possible values for 𝑓𝑊(𝑥) when 𝑃 = 1 and 𝑄 = 1.  When 

we increase to two 𝑩‘s the number of possibilities increases to 21.  A sample of these cases is below. 

𝑛 𝑚 𝑓𝑊(𝑥) 

0 0 −2𝑥 − 1 

1 0 −𝑥2 − 2𝑥 − 1 

2 2 0 

3 2 −1 

4 2 −𝑥2 − 2 

5 3 −2𝑥2 − 1 

 

 

3.3   𝒇𝑾(𝒙) for Products with Three 𝑩’s 

 

If there are three 𝑩’s, we can write 𝑾 in the form 𝑩𝐀n𝑩𝐀𝑚𝑩𝐀k.  In this case, 

𝑾 = [
𝑥2Un+2U𝑚+2−Q𝑥Un+1U𝑚+1 −Q𝑥2Un+2U𝑚+1 + 𝑄2𝑥Un+1U𝑚

𝑥Un+1U𝑚+2−QU𝑛U𝑚+1 −Q𝑥Un+1U𝑚+1 + 𝑄2UnU𝑚
] ∗ [

𝑥𝑈𝑘+2 −𝑄𝑥𝑈𝑘+1

𝑈𝑘+1 −𝑄𝑈𝑘
]. 

Therefore, 

𝑾 = [
𝑎 𝑏
𝑐 𝑑

] 

where 

𝑎 = 𝑥3Un+2U𝑚+2𝑈𝑘+2−Q𝑥2Un+1U𝑚+1𝑈𝑘+2−Q𝑥2Un+2U𝑚+1𝑈𝑘+1 + 𝑄2𝑥Un+1U𝑚𝑈𝑘+1, 

𝑏 = −𝑄𝑥3Un+2U𝑚+2U𝑘+1 + Q2𝑥2Un+1U𝑚+1U𝑘+1+Q2𝑥2Un+2U𝑚+1U𝑘 − 𝑄3𝑥Un+1U𝑚U𝑘 , 

𝑐 = 𝑥2Un+1U𝑚+2𝑈𝑘+2−Q𝑥U𝑛U𝑚+1𝑈𝑘+2−Q𝑥Un+1U𝑚+1𝑈𝑘+1 + 𝑄2UnU𝑚𝑈𝑘+1, 

𝑑 = −𝑄𝑥2Un+1U𝑚+2𝑈𝑘+1+Q2𝑥U𝑛U𝑚+1𝑈𝑘+1+Q2𝑥Un+1U𝑚+1U𝑘 − 𝑄3UnU𝑚U𝑘. 

This gives us  
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𝑓𝑊(𝑥) = 𝑥3(Un+2U𝑚+2U𝑘+2 − 𝑄𝑛+𝑚+𝑘+3)

− 𝑥2𝑄(Un+2U𝑚+1𝑈𝑘+1 + Un+1U𝑚+2𝑈𝑘+1 + Un+1U𝑚+1𝑈𝑘+2)
+ 𝑥𝑄2(UnU𝑚+1𝑈𝑘+1 + Un+1U𝑚𝑈𝑘+1 + Un+1U𝑚+1𝑈𝑘)
− (𝑄3UnU𝑚𝑈𝑘 + 1). 

(3.3) 

 

Again, let us take a look at 𝑓𝑊(𝑥) when 𝑃 = 2 and 𝑄 = 1.  Recall, in this case 𝑈𝑛 = 𝑛 thus 

 

𝑓𝑊(𝑥) = 𝑥3((𝑛 + 2)(𝑚 + 2)(𝑘 + 2) − 1)

− 𝑥2((𝑛 + 2)(𝑚 + 1)(𝑘 + 1) + (𝑛 + 1)(𝑚 + 2)(𝑘 + 1) + (𝑛 + 1)(𝑚 + 1)(𝑘 + 2))

+ 𝑥((𝑛)(𝑚 + 1)(𝑘 + 1) + (𝑛 + 1)(𝑚)(𝑘 + 1) + (𝑛 + 1)(𝑚 + 1)(𝑘)) − (𝑛𝑚𝑘 + 1). 

As before, 𝑥 = 1 must be a root, therefore 

𝑓𝑊(𝑥) = (𝑥 − 1)(𝑥2(𝑛𝑚𝑘 + 2𝑚𝑛 + 2𝑚𝑘 + 2𝑛𝑘 + 4𝑛 + 4𝑚 + 4𝑘 + 7)

− 𝑥(2𝑛𝑚𝑘 + 2𝑚𝑛 + 2𝑚𝑘 + 2𝑛𝑘 + 𝑛 + 𝑚 + 𝑘 − 1) + 𝑛𝑚𝑘 + 1). 

 

3.4   𝒇𝑾(𝒙) for Products with Four 𝑩’s 

 

 As you can see, we are able to continue this process for any number of 𝑩’s.  As mentioned 

previously, the degree of 𝑓𝑊(𝑥) is usually the number of 𝑩’s in 𝑾.  Consequently, the larger the number 

of 𝑩’s in the product, the more complicated 𝑓𝑊(𝑥) will be.  For example, when 𝑾 = 𝑩𝐀n𝑩𝐀𝑚𝑩𝐀k𝑩𝐀j 

we have 

tr 𝑾 = 𝑥4(Un+2U𝑚+2𝑈𝑘+2𝑈𝑗+2)

− 𝑥3𝑄(Un+1U𝑚+1𝑈𝑘+2𝑈𝑗+2 + Un+2U𝑚+1𝑈𝑘+1𝑈𝑗+2 + Un+2U𝑚+2U𝑘+1𝑈𝑗+1

+ Un+1U𝑚+2𝑈𝑘+2𝑈𝑗+1)

+ 𝑥2𝑄2(Un+1U𝑚𝑈𝑘+1𝑈𝑗+2 + 2Un+1U𝑚+1U𝑘+1𝑈𝑗+1 + Un+2U𝑚+1U𝑘𝑈𝑗+1

+ U𝑛U𝑚+1𝑈𝑘+2𝑈𝑗+1 + Un+1U𝑚+2𝑈𝑘+1𝑈𝑗)

− 𝑥𝑄3(Un+1U𝑚U𝑘𝑈𝑗+1 + UnU𝑚𝑈𝑘+1𝑈𝑗+1 + U𝑛U𝑚+1𝑈𝑘+1𝑈𝑗 + Un+1U𝑚+1U𝑘𝑈𝑗)

+ 𝑄4U𝑛U𝑚U𝑘𝑈𝑗 

and 

det 𝑾 = 𝑄𝑛+𝑚+𝑘+𝑗+4𝑥4. 

Therefore, 
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𝑓𝑊(𝑥) = 𝑥4(Un+2U𝑚+2𝑈𝑘+2𝑈𝑗+2 − 𝑄𝑛+𝑚+𝑘+𝑗+4)

− 𝑥3𝑄(Un+1U𝑚+1𝑈𝑘+2𝑈𝑗+2 + Un+2U𝑚+1𝑈𝑘+1𝑈𝑗+2

+ Un+2U𝑚+2U𝑘+1𝑈𝑗+1 + Un+1U𝑚+2𝑈𝑘+2𝑈𝑗+1)

+ 𝑥2𝑄2(Un+1U𝑚𝑈𝑘+1𝑈𝑗+2 + 2Un+1U𝑚+1U𝑘+1𝑈𝑗+1

+ Un+2U𝑚+1U𝑘𝑈𝑗+1 + U𝑛U𝑚+1𝑈𝑘+2𝑈𝑗+1 + Un+1U𝑚+2𝑈𝑘+1𝑈𝑗)

− 𝑥𝑄3(Un+1U𝑚U𝑘𝑈𝑗+1 + UnU𝑚𝑈𝑘+1𝑈𝑗+1 + U𝑛U𝑚+1𝑈𝑘+1𝑈𝑗

+ Un+1U𝑚+1U𝑘𝑈𝑗) + (𝑄4U𝑛U𝑚U𝑘𝑈𝑗 − 1). 

 

(3.4) 

Just as above, we examine 𝑓𝑊(𝑥) for a case where we know 𝑥 = 1 will occur.  Using the fact 

that 𝑈𝑛 = 𝑛 when 𝑃 = 2 and 𝑄 = 1, we can rewrite 𝑓𝑊(𝑥) as 

𝑥4((n + 2)(𝑚 + 2)(𝑘 + 2)(𝑗 + 2) − 1)

− 𝑥3((n + 1)(𝑚 + 1)(𝑘 + 2)(𝑗 + 2) + (n + 2)(𝑚 + 1)(𝑘 + 1)(𝑗 + 2)

+ (n + 2)(𝑚 + 2)(𝑘 + 1)(𝑗 + 1) + (n + 1)(𝑚 + 2)(𝑘 + 2)(𝑗 + 1)) + 𝑥2((n

+ 1)(𝑚)(𝑘 + 1)(𝑗 + 2) + 2(n + 1)(𝑚 + 1)(𝑘 + 1)(𝑗 + 1) + (n + 2)(𝑚 + 1)(𝑘)(𝑗

+ 1) + (𝑛)(𝑚 + 1)(𝑘 + 2)(𝑗 + 1) + (n + 1)(𝑚 + 2)(𝑘 + 1)(𝑗) )

− 𝑥((n + 1)(𝑚)(𝑘)(𝑗 + 1) + (n)(𝑚)(𝑘 + 1)(𝑗 + 1) + (𝑛)(𝑚 + 1)(𝑘 + 1)(𝑗) + (n

+ 1)(𝑚 + 1)(𝑘)(𝑗)) + (𝑛𝑚𝑘𝑗 − 1). 

As mentioned previously, we know 𝑥 = 1 is a root in this case.  Therefore, we can factor 𝑓𝑊(𝑥) in to 

(𝑥 − 1)(𝑥3(𝑛𝑚𝑘𝑗 + 2𝑛𝑚𝑘 + 2𝑛𝑚𝑗 + 2𝑛𝑗𝑘 + 2𝑚𝑘𝑗 + 4𝑛𝑚 + 4𝑛𝑘 + 4𝑛𝑗 + 4𝑚𝑘 + 4𝑚𝑗 + 4𝑘𝑗 + 8𝑛

+ 8𝑚 + 8𝑘 + 8𝑗 + 15)

− 𝑥2(3𝑛𝑚𝑘𝑗 + 4𝑛𝑚𝑘 + 4𝑛𝑚𝑗 + 4𝑛𝑘𝑗 + 4𝑚𝑘𝑗 + 5𝑛𝑚 + 4𝑛𝑘 + 5𝑛𝑗 + 5𝑚𝑘 + 4𝑚𝑗

+ 5𝑘𝑗 + 4𝑛 + 4𝑚 + 4𝑘 + 4𝑗 + 1)

+ 𝑥(3𝑛𝑚𝑘𝑗 + 2𝑛𝑚𝑘 + 2𝑛𝑚𝑗 + 2𝑛𝑘𝑗 + 2𝑚𝑘𝑗 + 𝑛𝑚 + 𝑛𝑗 + 𝑚𝑘 + 𝑘𝑗 + 1) − 𝑛𝑚𝑘𝑗

+ 1). 

 

 

  



 
 

24 
 

 

 

4   Results 
 

Using the functions found in Chapter 3, we can now look for periodic solutions associated with 

𝑾 where 𝑾 has a specific number of 𝑩’s.  Below we address the 𝑥 value and initial conditions that we 

expect to lead to periodic solutions.  Recall, as mentioned previously, the initial conditions which allow 

for periodic behavior can be found from the eigenvector.  In general, if 𝑨 = [
𝑎 𝑏
𝑐 𝑑

] has 1 as an 

eigenvalue, then [
1 − 𝑑

𝑐
] is an eigenvector, unless 𝑐 = 0 and 𝑑 = 1.  We will use this to find the initial 

conditions for cases with a small number of 𝑩’s below.  In all of these cases, Mathematica was used to 

solve for 𝑥 given a specific 𝑃 and 𝑄 and then calculate the initial conditions as defined below.  Finally, as 

mentioned previously, Theorem 2.2 is necessary but not sufficient to achieve periodic behavior.  

Therefore, results were tested to verify that they did indeed lead to periodic solutions.  The results of 

this search are also included below. 

As mentioned previously, there are three commonly occurring 𝑥  values which must be 

addressed.  These three values are 𝑥 = 1, 𝑥 = −1, and 𝑥 = 0.  In Chapter 3 we addressed what we can 

say about the occurrence of these values, here we will address the consequence of their occurrence.  

First, when 𝑥 = 1, the solution is already periodic.  In this instance, (1.6) would simply become (1.1).   

These were the linear cases addressed in Section 2.2.  Similar to 𝑥 = 1, when 𝑥 = −1, the recurrence 

would merely be 𝑎𝑛 = −𝑃𝑎𝑛−1 + 𝑄𝑎𝑛−2.  As mentioned in Section 2.2, this would have a periodic 

solution with a period half the length of 𝑎𝑛 = 𝑃𝑎𝑛−1 + 𝑄𝑎𝑛−2.  Again, these were the linear cases 

addressed in Section 2.2.  In the case where 𝑥 = 0, we would receive the trivial solution 𝑎0, 𝑎1, 0, 0, 0, …  

Therefore, these cases were uninteresting to our overall search and were therefore disregarded.  Also, it 

seems likely that the only time periodic behavior is possible is when |𝑥| < 1.  While we did not prove 

this, there were no cases in our research in which a periodic solution had |𝑥| > 1. 
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4.1   Products with One 𝑩 

 

Recall, we are interested in the 𝑥 values for which 𝑓𝑊(𝑥) = 0.  Therefore, we solve 

𝑥(Un+2 − 𝑄𝑛+1) − (QU𝑛 + 1) = 0 

for 𝑥.  Thus for fixed 𝑃 and 𝑄, we need 𝑥 =
1+𝑄𝑈𝑛

𝑈𝑛+2−𝑄𝑛+1 to allow for periodic behavior.  Also, as discussed 

above, since 

𝑾 = [
𝑥Un+2 −Q𝑥Un+1

Un+1 −QU𝑛
], 

an eigenvector with eigenvalue 1 is 

[
QU𝑛 + 1

Un+1
]. 

Thus when 𝑥 =
1+𝑄𝑈𝑛

𝑈𝑛+2−𝑄𝑛+1 , 𝑎0 = Un+1 and 𝑎1 = QU𝑛 + 1 it is possible to achieve periodic solutions.  

Note that in order for 𝑥 to be defined we need 𝑈𝑛+2 ≠ 𝑄𝑛+1.  In our search, 𝑥 was rarely undefined.  

There were two scenarios where this occurred.  The first is when 𝑃 = 𝑄 = 1.  In this case, 𝑥 is undefined 

when 𝑛 = 0 and 𝑛 = 5, as can be seen in the table in Section 3.1.  Recall, as mentioned previously, we 

only need to consider 0 ≤ 𝑛 ≤ 5 in this case.  The second problematic case occurs when 𝑃 = 𝑄 and 𝑛 =

0.  This causes 𝑈𝑛+2 = 𝑄𝑛+1 and thus 𝑥 is undefined.  We ignored the cases where 𝑥 was undefined. 

 As a reminder, in this search, we restrict 𝑃 and 𝑄 such that 1 ≤ 𝑃 ≤ 20 and −20 ≤ 𝑄 ≤ 20 and 

𝑄 ≠ 0.  Furthermore, as mentioned before, the 𝑃 = 𝑄 = 1 case was frequently problematic.  Therefore, 

from now on we will disregard this case.  Often, we considered only products with 0 ≤ 𝑛 ≤ 30.  

However, occasionally that limit was expanded to search for possible patterns.  Given our restrictions 

above, there are 24,764 cases to be considered.  Ignoring the cases where 𝑥 = 1, 𝑥 = −1 or 𝑥 = 0, 

there are 23,836 cases remaining.  Of these, only 48 do not lead to periodic solutions.  Below is a table 

outlining these cases. 

𝑷, 𝑸 𝒏 𝒂𝟎, 𝒂𝟏 𝒙 

𝑃, 𝑃 1 𝑃, 𝑃 + 1 −(𝑃 + 1) 𝑃⁄  

𝑃, −𝑃 (𝑃 ≠ 1) 1 𝑃, −(𝑃 − 1) −(𝑃 − 1) 𝑃⁄  

3, −3 5 81, −64 −8 27⁄  
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4, 6 2 2, 5 −1 8⁄  

6, 3 3 9, 5 1 9⁄  

8, −8 3 128, −115 −23 64⁄  

9, 11 5 24, 35 −1 35⁄  

10, 10 5 1000, 1127 −161 1000⁄  

10, 12 2 8, 11 −1 8⁄  

11, −11 5 1331, −1228 −307 1331⁄  

12, 14 2 10, 13 −1 8⁄  

18, 20 2 16, 19 −1 8⁄  

Table 4.1 
 

 Consider the entries in Table 4.1 where 𝑛 = 2.  We noticed that in all of these cases 𝑥 = −
1

8
.  As 

a result, we believe when 𝑃 ≡ 2(𝑚𝑜𝑑 8) or 𝑃 ≡ 4(𝑚𝑜𝑑 8), 𝑄 = 𝑃 + 2 and 𝑛 = 2 there will not be a 

periodic solution.  An explanation for this is given in Section 5.1.  There is one case where there is a 

solution which is actually periodic, yet not as expected.  When 𝑃 = 2, 𝑄 = −2 and 𝑛 = 1 our method 

gives us 𝑥 = −
1

2
 and suggests that starting with 𝑎0 = 2 and 𝑎1 = −1 should lead to a periodic solution 

with period two.  Instead, the result is actually 2, −1, −1, 2, −1, … which is periodic, but with period 

three rather than the expected period of two. 

 

4.2   Products with Two 𝑩’s 

 

Recall, generally, the degree of 𝑓𝑊(𝑥) is the number of 𝑩’s in 𝑾. Since 𝑾 = 𝑩𝑨𝑛𝑩𝑨𝑚, our 

formula for 𝑓𝑊(𝑥)  is now a quadratic.  Therefore, instead of finding a specific formula for 𝑥 , 

Mathematica was used to solve for 𝑥 given a specific 𝑃, 𝑄, 𝑚, and 𝑛.  Just as in the One 𝑩 case, we use 

the eigenvector to determine the initial conditions.  Recall from Section 3.2, that 

𝑾 = [
𝑥2Un+2U𝑚+2−Q𝑥Un+1U𝑚+1 −Q𝑥2Un+2U𝑚+1 + 𝑄2𝑥Un+1U𝑚

𝑥Un+1U𝑚+2−QU𝑛U𝑚+1 −Q𝑥Un+1U𝑚+1 + 𝑄2UnU𝑚
]. 

From the introduction to this chapter, we know that 

[
Q𝑥Un+1U𝑚+1 − 𝑄2UnU𝑚 + 1

 𝑥Un+1U𝑚+2−QU𝑛U𝑚+1
] 



 
 

27 
 

is an eigenvector with eigenvalue 1 .  Unlike the One 𝑩  case, we cannot simply take 𝑎0 =

 𝑥Un+1U𝑚+2−QU𝑛U𝑚+1  and 𝑎1 = Q𝑥Un+1U𝑚+1 − 𝑄2UnU𝑚 + 1 .  This is because 𝑥  is a rational 

number, yet we want integers for our initial conditions.  Consequently, Mathematica was used to 

determine the eigenvector and properly scale it so that the initial conditions are always integers. 

 As mentioned in Chapter 3, there are times where 𝑥 = 1, 𝑥 = −1 or 𝑥 = 0 can occur.  However, 

unlike the single 𝑩 case, when there are two 𝑩’s there is an additional solution for 𝑥 in all of these cases 

since 𝑓𝑊(𝑥) is a quadratic.  To determine what the remaining 𝑥 value is for each case, consider the 

generic polynomial 𝑎𝑥2 + 𝑏𝑥 + 𝑐.  Let 𝑟1 and 𝑟2 denote the roots of this polynomial.  From Vieta’s 

formulas we can relate these roots and the coefficients of the polynomial.  Therefore, we know 𝑟1 +

𝑟2 = −
𝑏

𝑎
.  Since we know one of the roots, we subtract 𝑟2 to get 𝑟1 = −

𝑏

𝑎
− 𝑟2.  Thus when 𝑥 = 1, the 

remaining solution is 

𝑥 =
2𝑄Un+1U𝑚+1

Un+2U𝑚+2 − 𝑄𝑛+𝑚+2
− 1. 

Similarly, when 𝑥 = −1, the other solution is 

𝑥 =
2𝑄Un+1U𝑚+1

Un+2U𝑚+2 − 𝑄𝑛+𝑚+2
+ 1. 

Finally, when 𝑥 = 0, the remaining solution is 

𝑥 =
2𝑄Un+1U𝑚+1

Un+2U𝑚+2 − 𝑄𝑛+𝑚+2
. 

 Another case where we know the quadratic will factor is when 𝑛 = 𝑚, with  𝑾 = (𝑩𝑨𝑛)2.  

Recall if 𝑐1 and 𝑐2 are eigenvalues of 𝑾 then 𝑐1
𝑚 and 𝑐2

𝑚 are eigenvalues of 𝑾𝑚.  Therefore, if 1 is an 

eigenvalue of 𝑩𝑨𝑛 then 1 is also an eigenvalue of (𝑩𝑨𝑛)2.  This means that the 𝑥 value from the One 𝑩 

case will be one of the solutions to 𝑓𝑊(𝑥) in the Two 𝑩 case.  Therefore, we are able to find an explicit 

formula for the second root.  As mentioned above, we are interested in the cases where 𝑛 = 𝑚, thus 

𝑓𝑊(𝑥) = 𝑥2(Un+2
2 − 𝑄2𝑛+2) − 𝑥(2𝑄Un+1

2) + (𝑄2Un
2 − 1). 

We can use Lemma 2.7 to rewrite 𝑓𝑊(𝑥) as 

𝑥2(Un+2
2 − 𝑄2𝑛+2) − 𝑥(2𝑄(𝑄𝑛 + 𝑈𝑛+2𝑈𝑛)) + (𝑄2Un

2 − 1). 
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From here, we can easily factor 𝑓𝑊(𝑥).  Thus we have 

𝑓𝑊(𝑥) = ((𝑈𝑛+2 − 𝑄𝑛+1)𝑥 − (𝑄𝑈𝑛 + 1))((𝑈𝑛+2 + 𝑄𝑛+1)𝑥 − (𝑄𝑈𝑛 − 1)). 

As a reminder, the solution from the One 𝑩 case is 𝑥 =
𝑄𝑈𝑛+1

𝑈𝑛+2−𝑄𝑛+1.  Therefore, we have 

𝑥 =
𝑄𝑈𝑛 − 1

𝑈𝑛+2 + 𝑄𝑛+1
 

as the second root when 𝑾 = (𝑩𝑨𝑛)𝟐.  In this case, the initial conditions are 𝑎0 = 𝑈𝑛+1 and 𝑎1 =

𝑄𝑈𝑛 − 1. 

 Since we know the product (𝑩𝑨𝑛)𝟐 has two clearly defined 𝑥 values, we expect there to 

frequently be two periodic solutions when 𝑛 = 𝑚.  We found some cases where there is only one 

solution.  To begin with, all of the cases in Table 4.1, that do not lead to periodic behavior in the One 𝑩 

case, attribute to a missing solution in the Two 𝑩 case.  Additionally, when 𝑛 = 1, 𝑃 is arbitrary and 𝑄 =

1 or 𝑄 = −1, 𝑥 = 0 is one of the roots, thus there is only one 𝑥 value used to look for a periodic 

solution.  Additionally, two new patterns arose.  Finally, there was one outlier.  These cases are listed in 

the table below. 

𝑃 𝑄 𝑾 𝑎0, 𝑎1 𝑥 

2 1 (𝑩𝑨4𝑘+1)𝟐, 𝑘 ∈ ℤ 4𝑘 + 2, 4𝑘 𝑘

𝑘 + 1
 

4(𝑚𝑜𝑑 8) or 6(𝑚𝑜𝑑 8) −𝑃 + 2 (𝑩𝑨2)𝟐 𝑃 + 2, 1 − 𝑃 
−

1

8
 

5 −7 (𝑩𝑨3)𝟐 13, −15 
−

1

16
 

 

 By Corollary 2.4, 𝑾 = 𝑩𝐀n𝑩𝐀𝑚 and 𝑾 = 𝑩𝐀𝑚𝑩𝐀n have the same function 𝑓𝑊(𝑥).  Therefore, 

without loss of generality, we can restrict our search to cases with 𝑛 ≥ 𝑚.  Furthermore, as mentioned 

previously, the 𝑃 = 𝑄 = 1 case was frequently problematic.  Therefore, as before, we will disregard this 

case.  There are 396,304 possible combinations of 𝑃, 𝑄, 𝑚, and 𝑛 given our restrictions.  Of these, 

𝑓𝑊(𝑥) does not factor in 356,988 cases.  Of the 39,316 remaining cases which factor, there are 63,618 

𝑥 values with 𝑥 ≠ −1, 0, 1.  These 𝑥 values lead to 62,975 periodic solutions.  There are 643 cases 

where a rational 𝑥 value does not lead to periodic behavior. 
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 As mentioned earlier, we can characterize when 𝑥 = 1 is a root.  Previously, we determined that 

𝑥 = 1 occurs when 𝑃 = 𝑄 + 1 and 𝑃 = −𝑄 − 1.  We know that in these cases there will be a second 

solution.  In fact, there are 14,367 occurrences of 𝑥 = −1, 0, 1.  Of these, only 30 of the subsequent 𝑥 

values do not lead to periodic behavior.  This only appears to happen when 𝑃 = 2 and 𝑄 = 1.  Of these 

cases, there appears to be a pattern, however we were unable to decipher exactly what it is.  However, 

after finding 𝑓𝑊(𝑥) in Section 3.2, specifically when 𝑃 = 2 and 𝑄 = 1, we are able to state exactly what 

the second 𝑥 value is.  In this case, our second root is 𝑥 =
𝑛𝑚−1

𝑛𝑚+2𝑛+2𝑚+3
.  For this 𝑥 value, the initial 

conditions become 𝑎0 = 𝑚𝑛 + 2𝑚 + 1 and 𝑎1 = 𝑚𝑛 − 1. 

 

 

4.3   Products with Three 𝑩’s 

 

 Just as before, we need to solve for 𝑥 and the initial conditions.  Since 𝑓𝑊(𝑥) is cubic, we again 

used Mathematica to solve for 𝑥.  Additionally, we know that 

[
𝑄𝑥2Un+1U𝑚+2𝑈𝑘+1−Q2𝑥U𝑛U𝑚+1𝑈𝑘+1−Q2𝑥Un+1U𝑚+1U𝑘 + 𝑄3UnU𝑚U𝑘 + 1

𝑥2Un+1U𝑚+2𝑈𝑘+2−Q𝑥U𝑛U𝑚+1𝑈𝑘+2−Q𝑥Un+1U𝑚+1𝑈𝑘+1 + 𝑄2UnU𝑚𝑈𝑘+1
] 

is an eigenvector, with eigenvalue 1, of 𝑾 from Section 3.3.  Just as in the Two 𝑩 case, we cannot use 

these values directly as our initial conditions.  Thus, once again, we used Mathematica to find and scale 

the eigenvector appropriately. 

 Just as in the Two 𝑩 case, we can limit the exponents on 𝑨 to avoid double counting cyclic 

permutations.  In this case, we want 𝑛 ≥ 𝑚 and 𝑛 ≥ 𝑘.  With these restrictions, we have 8,322,384 

possible combinations of 𝑃, 𝑄, 𝑛, 𝑚 and 𝑘.  Of these, 7,985,175 cases did not factor and thus did not 

have any rational 𝑥 values.  Of the remaining combinations, 329,689 cases had one rational 𝑥 value, 22 

cases had two distinct rational 𝑥 values and 7,498 cases had three 𝑥 values. 

 When looking at products of the form (𝑩𝑨𝑛)3, we expect to have at least one periodic solution.  

This comes from the 𝑥 value and periodic solution from the One 𝑩 case.  That is, if 𝒗 is an eigenvector 

for 𝑩𝑨𝑛, then 𝒗 is also an eigenvector for (𝑩𝑨𝑛)3.  In most cases, this was the only periodic solution.  In 

a few cases, solutions one might expect to find were missing.  For example, when 𝑾 = (𝑩𝑨)3, the cases 



 
 

30 
 

𝑃 = 𝑄, −𝑃 = 𝑄, and 𝑄 = −1 did not have any periodic solutions.  This is because in the One 𝑩 case 

these cases also did not have a periodic solution.  Table 4.1 outlines the first two cases, and when 𝑃 is 

arbitrary and 𝑄 = −1 the resulting 𝑥 value is zero.  This was frequently the problem with missing 

solutions.  For instance, when 𝑃 = −𝑄 − 1 we saw in Chapter 3 that 𝑥 = −1 will be a solution.  As a 

result, the product (𝑩𝑨𝑛)3 does not have periodic solutions when 𝑛 is odd in this case.  Similarly, when 

𝑃 = 𝑄 + 1 we know 𝑥 = 1 is a solution.  Consequently, there are no periodic solutions in this case, for 

𝑃 ≥ 3. 

 

 

4.4   Products with Four 𝑩’s 

 

 As mentioned before, the matrix 𝑾, and thus the function 𝑓𝑊(𝑥), becomes increasingly more 

complicated when the number of 𝑩’s in the product increases.  Therefore, for products with Four 𝑩’s, 

we will not list the matrix 𝑾 or an eigenvector with eigenvalue 1.  Recall, we are looking for the rational 

roots of (3.4).  These 𝑥 values have the potential to lead to periodic solutions.  Once again, Mathematica 

was used to find the rational 𝑥 values for which 𝑓𝑊(𝑥) = 0.  Additionally, Mathematica was used to find 

the eigensystem and scale the eigenvector appropriately for the initial conditions. 

Similar to previous cases, we restricted the exponents of 𝑨 to avoid double counting cyclic 

permutations.  When 𝑾 = 𝑩𝐀n𝑩𝐀𝑚𝑩𝐀k𝑩𝐀j our limits are 𝑛 ≥ 𝑚, 𝑛 ≥ 𝑘 and 𝑛 ≥ 𝑗.  As a reminder, 

the case where 𝑃 = 𝑄 = 1 was also disregarded.  This gives 42,635,439 possible combinations of 𝑃, 𝑄, 

𝑛, 𝑚, 𝑘 and 𝑗.  Of these, 41,064,688 cases had no rational 𝑥 values.  Of the remaining cases that 

factored, 1,515,213 cases had one rational 𝑥 value, 55,488 cases had two distinct rational 𝑥 values, 49 

cases had three distinct rational 𝑥 values and 1 case had four distinct rational 𝑥 values. 

The only case where there were four rational 𝑥 values occurred when 𝑃 = 20, 𝑄 = −5 and 

𝑾 = (𝑩2𝑨)2.  In this case, 

𝑓𝑊(𝑥) = 65,594,375𝑥4 + 3,240,000𝑥3 + 40,250𝑥2 − 1 

= (235𝑥 − 1)(145𝑥 + 1)(55𝑥 + 1)(35𝑥 + 1) 
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so the rational 𝑥 values we get are 𝑥 = −
1

35
,  𝑥 = −

1

55
,  𝑥 = −

1

145
,  𝑥 =

1

235
.  The values 𝑥 = −

1

35
 and 

𝑥 =
1

235
 were the two periodic solutions from the Two 𝑩 case.  The remaining values, 𝑥 = −

1

55
 and 𝑥 =

−
1

145
 lead to two new periodic solutions in this Four 𝑩 case. 

For the 49 cases with three rational 𝑥 values, we know 𝑓𝑊(𝑥) must factor into linear terms.  In 

fact, in all of these cases 𝑓𝑊(𝑥) factored into the quadratic from the Two 𝑩 case and a quadratic which 

was a perfect square.  In other words, all of these cases had the two 𝑥 values from the Two 𝑩 case and 

then a new 𝑥 value, of multiplicity two, from the Four 𝑩 case.  For all 49 cases, the new 𝑥 value led to an 

additional periodic solution. 

The majority of the time 𝑓𝑊(𝑥) factored into the quadratic from the Two 𝑩 case and another 

quadratic which did not factor.  For example, when 𝑃 = 3 and 𝑄 = −1, the matrix (𝑩𝐀2)2 yields the 

function 

𝑓𝑊(𝑥) = 1088𝑥2 + 200𝑥 + 8 

= 8(8𝑥 + 1)(17𝑥 + 1) 

Thus 𝑥 = −
1

8
 and 𝑥 = −

1

17
 were the rational roots which allowed for the possibility of periodic 

behavior.  In the Four 𝑩 case, (𝑩𝐀2)4, 

𝑓𝑊(𝑥) = 1185920𝑥4 + 435600𝑥3 + 59600𝑥2 + 3600𝑥 + 80 

= 80(109𝑥2 + 20𝑥 + 1)(17𝑥 + 1)(8𝑥 + 1). 

In other words, no new periodic solutions were found in this Four 𝑩 case. 
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5   Conjectures 
 

 As mentioned before, there are several scenarios where patterns seem to arise in our data.  

Below we will address the patterns we believe exist.  Although we believe these to be actual patterns 

that will be true for all cases, this has not been proven.  Proving that these are indeed infinite families is 

one of the suggestions for future work.  Other ideas for future work are also given below. 

 

5.1   Patterns for Products with One 𝑩 

 

 As most of the solutions in the One 𝑩 case were periodic, we outline patterns where periodic 

solutions do not appear to exist.  As you can see from Table 4.1, there were two patterns we identified.  

We found that when 𝑃 = 𝑄 and 𝑛 = 1 the result is probably not periodic.  Also, when 𝑄 = −𝑃 and 𝑛 =

1 we did not find any periodic solutions.  The final suspected pattern was also noted in Section 4.1.  We 

believe when 𝑃 ≡ 2(𝑚𝑜𝑑 8) or 𝑃 ≡ 4(𝑚𝑜𝑑 8) , 𝑄 = 𝑃 + 2  and 𝑛 = 2  there will not be a periodic 

solution.  To check whether this holds, we expanded our restrictions on 𝑃 and 𝑄.  In this case, we 

checked −100 ≤ 𝑄 ≤ 100.  The results were consistent with the patterns we expected.  In fact, if we 

look at the general case 𝑄 = 𝑃 + 2, we see why this happens.  When 𝑃 is arbitrary and 𝑄 = 𝑃 + 2, since 

𝑛 = 2 is quite small, we can easily find 𝑓𝑊(𝑥) for this case.  Given these circumstances, 𝑓𝑊(𝑥) =

(𝑃 + 1)2(−8𝑥 − 1).  Therefore, when 𝑃  is arbitrary, 𝑄 = 𝑃 + 2  and 𝑛 = 2 , 𝑥 = −
1

8
 is always the 

solution.  Note, in this case, 

𝑩𝑨2 = [
−

1

8
(𝑃3 − 2𝑃2 − 4𝑃)

1

8
(𝑃 − 2)(𝑃 + 2)(𝑃 + 1)

(𝑃 − 2)(𝑃 + 1) −𝑃(𝑃 + 2)
]. 

Thus 

[
1 − (−𝑃(𝑃 + 2))

(𝑃 − 2)(𝑃 + 1)
] = [

(𝑃 + 1)2

(𝑃 − 2)(𝑃 + 1)
] 
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is an eigenvector with eigenvalue 1.  When scaling the eigenvector to find the initial conditions, we 

receive 𝑎0 = 𝑃 − 2 and 𝑎1 = 𝑃 + 1.  Since 𝑛 = 2, we expect there to be two terms before we can 

multiply by 𝑥 to achieve periodic behavior as expected.  If we look at the sequence resulting from the 

initial conditions, we have 𝑃 − 2, 𝑃 + 1, 𝑃 + 4, 𝑃 − 2, −8(𝑃 + 1).  In order to multiply by 𝑥 in the 

appropriate place, we need 𝑃 + 4 and 𝑃 − 2 to not be divisible by 8.  Otherwise, the multiplication will 

occur in the wrong place and probably cause the sequence to not be periodic.  This explains why we did 

not find a periodic solution when 𝑃 ≡ 2(𝑚𝑜𝑑 8) or 𝑃 ≡ 4(𝑚𝑜𝑑 8).  There is some evidence that these 

three families, and the six exceptions in Table 4.1, are the only cases without periodic solutions. 

5.2   Patterns for Products with Two 𝑩’s 

 

 Unlike the One 𝑩 case, here we characterize patterns that lead to periodic solutions.  For 

instance, when 𝑄 = 𝑃 − 1, for 𝑃 ≥ 3, all 496 possible combinations of 𝑚 and 𝑛 result in periodic 

behavior.  As a reminder, this is one of the cases where 𝑥 = 1 is a root.  In these cases, we found that 

the subsequent 𝑥 value always led to a periodic solution.  Similarly, when 𝑄 = −𝑃 − 1 the solution will 

be periodic when 𝑚 and 𝑛 have matching parity. 

 As mentioned previously, there were some cases where (𝑩𝑨𝑛)2 would not lead to periodic 

behavior.  One of these cases, as mentioned in Section 4.2, was when 𝑃 ≡ 4(𝑚𝑜𝑑 8) or 𝑃 ≡ 6(𝑚𝑜𝑑 8), 

𝑄 = −𝑃 + 2 and 𝑛 = 2.  This pattern is quite similar to the one explained in Section 5.1.  When 

determining our sequence, we get 𝑃 + 2, 1 − 𝑃, 𝑃 − 4, −𝑃 − 2, 8(1 − 𝑃), …  As you can see, whenever 

𝑃 ≡ 4(𝑚𝑜𝑑 8) or 𝑃 ≡ 6(𝑚𝑜𝑑 8) we end up multiplying by −
1

8
 before the expected point.  This causes 

the solution to not be periodic. 

As mentioned previously, the square of the One 𝑩 case leads to a second solution.  In most 

cases this second 𝑥 value leads to a periodic solution.  All of the following cases led to periodic solutions 

when 𝑾 = (𝑩𝑨𝑛)2 unless noted in Section 4.2.  In addition to the square case, some combinations of 𝑃 

and 𝑄 have an additional pattern which is addressed below. 

𝑃 𝑄 𝑾 𝑥 value 𝑎0, 𝑎1 

arbitrary −1 𝑩𝑨𝑛+2𝑩𝑨𝑛 when 𝑛 is odd 
−𝑈𝑛−1

𝑈𝑛+1
 𝑈𝑛+1, 𝑈𝑛 − 1 

𝑘2 + 1, 𝑘 ∈ ℤ 1 𝑩𝑨𝑛+1𝑩𝑨𝑛 for all 𝑛 undetermined 
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arbitrary 𝑃2 𝑩𝑨𝑛+6𝑘𝑩𝑨𝑛, 𝑘 ∈ ℤ undetermined 

even 
1

2
𝑃2 𝑩𝑨𝑛+8𝑘𝑩𝑨𝑛, 𝑘 ∈ ℤ undetermined 

divisible by 3 
1

3
𝑃2 𝑩𝑨𝑛+12𝑘𝑩𝑨𝑛, 𝑘 ∈ ℤ undetermined 

 

When 𝑃 and 𝑄 are defined as above, the corresponding product appears to lead to periodic behavior.  In 

almost all of these cases, we checked values for 𝑃 and 𝑄 greater than 20 to verify what we suspected to 

be an infinite family.  While this doesn’t prove it is indeed a family, it makes us slightly more confident in 

our assumption. 

 

5.3   Patterns for Products with Three 𝑩’s 

 

 Similar to the Two 𝑩 case, below are conditions we believe lead to periodic solutions.  Again, 

these are patterns in addition to the result from the One 𝑩 case.  In other words, when 𝑾 = (𝑩𝑨𝑛)3, 

we expect there to be one periodic solution which results from the periodic solution of 𝑩𝑨𝑛.  Any cases 

where this is not true were addressed in Section 4.3. 

𝑃 𝑄 𝑾 𝒙 value 

arbitrary −1 𝑩𝑨2𝑛+3𝑩𝑨𝑛+2𝑩𝑨𝑛 
−𝑈𝑛+1

𝑈𝑛+3
 

arbitrary 1 𝑩𝑨2𝑛+3𝑩𝑨𝑛+2𝑩𝑨𝑛  

arbitrary 𝑃2 undetermined 

even 
1

2
𝑃2 undetermined 

divisible by 3 
1

3
𝑃2 undetermined 

 

Unfortunately, these patterns were harder to determine than cases with a smaller number of 𝑩’s.  It is 

clear that the same combinations of 𝑛, 𝑚 and 𝑘 appear for any given pattern of 𝑃 and 𝑄, however the 

pattern that 𝑛, 𝑚 and 𝑘 follows is not easily decipherable.  Therefore, we suspect these are infinite 

families, but have not been able to determine exactly when we suspect periodic solutions to occur. 
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5.4   Patterns for Products with Four 𝑩’s  

  As mentioned previously, there were several occurrences where 𝑓𝑊(𝑥) factored into the 

quadratic from the Two 𝑩 case and another quadratic which did not factor.  In fact, it appears as though 

most products of the form (𝑩𝑨𝑛𝑩𝑨𝑚)2, including those where 𝑛 = 𝑚, have only periodic solutions 

from the Two 𝑩 case.  For instance, when 𝑄 = 𝑃 − 1, for 𝑃 ≥ 3, the only periodic solutions found were 

of the form (𝑩𝑨𝑛𝑩𝑨𝑚)2.  These are the solutions addressed in Section 5.2.  Additionally, when 𝑄 =

−𝑃 − 1, the only periodic solutions were from the similar pattern in Section 5.2.  In other words, there 

were frequently no new periodic solutions in the Four 𝑩 case. 

 There were 50 cases where 𝑓𝑊(𝑥) factored in to all linear terms.  The results of these cases 

were addressed in Section 4.4.  Excluding the single case with four rational 𝑥 values, most of these cases 

appear to fall in to patterns.  We suspect 𝑓𝑊(𝑥) will factor in to linear terms for the patterns below. 

𝑃 𝑄 𝑾 

2 1 (𝑩𝑨𝑛+2𝑩𝑨𝑛)2 

4 −1 (𝑩𝑨𝑛+2𝑩𝑨𝑛)2 where 𝑛 is even 

10 1 (𝑩𝑨𝑛+2𝑩𝑨𝑛)2 

 

In addition to the patterns above, there was the case where 𝑃 = 4, 𝑄 = −2 and 𝑾 = (𝑩𝑨𝑩)2 which 

had three distinct rational 𝑥 values.  This case did not appear to fall into any pattern. 

 The remaining new periodic solutions found appear to fall into patterns similar to those from 

cases with a smaller number of 𝑩’s.  These suspected patterns are outlined below. 

𝑃 𝑄 𝑾 

arbitrary −1 𝑩𝑨2𝑛+3𝑩𝑨2𝑛+3𝑩𝑨𝑛+2𝑩𝑨𝑛 

arbitrary 𝑃2 undetermined 

even 
1

2
𝑃2 undetermined 

divisible by 3 
1

3
𝑃2 undetermined 
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The last three cases included periodic solutions in addition to the squares of the two 𝑩 patterns.  

Unfortunately, just like the Three 𝑩 case, it was too difficult to determine the matrices which led to 

periodic solutions.  
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6   Future Work 

 
There are several ways in which this project might be extended.  To begin with, there is simple 

expansion.  In this project, we limited 𝑃 and 𝑄 to relatively small intervals.  One could consider many 

more cases of 𝑃 and 𝑄.  This might lead to a realization of patterns which we were unable to see.  In 

that respect, another logical step is to prove that what we suspect are infinite families are indeed just 

that.  Furthermore, we only looked at cases with a small number of 𝐵’s, one could consider products 

with a larger number of 𝐵’s.  Additionally, in this project we looked at a nonlinear variation on second 

order homogeneous recurrence relations.  One could consider nonhomogeneous systems next.  
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A   Mathematica Code 

 

Here we give the Mathematica code used for this project.  The code below was used to generate 

a list of the 𝑈𝑛 sequence for a specific 𝑃 and 𝑄, which was needed to calculate 𝑓𝑊(𝑥).  A similar list is 

generated and stored for the 𝑎𝑛 sequence.  Furthermore, the function isPeriodic will determine whether 

or not a sequence is periodic.  It uses the fact that we can determine the expected length of the period 

based on the number of matrices in the product being examined.  This code, PeriodicFunctions.nb, was 

run as an initialization for some of the programs in the following sections. 

PeriodicFunctions.nb 
Usize=200; 

Asize=200; 

Areset[a1_,a2_]:=Module[{}, 

   A=Table[0,{i,1,Asize}]; 

   A[[1]]=a1;A[[2]]=a2; 

   Alength=2; 

   ]; 

Ureset[]:=Module[{}, 

   U=Table[0,{i,1,Usize}]; 

   U[[1]]=0;U[[2]]=1; 

   Ulength=2; 

   ]; 

ExpandU[index_]:=Module[{i}, 

   For[i=Ulength+1,i index,i++, 
     Ulength++; 

     U[[Ulength]]=p*U[[Ulength-1]]-q*U[[Ulength-2]]; 

     ]; 

   ]; 

ExpandA[index_]:=Module[{i}, 

   For[i=Alength+1,i index,i++, 
     Alength++; 

     A[[Alength]]=Piecewise[{{x*(p*A[[Alength-1]]-q*A[[Alength-

2]]),IntegerQ[x*(p*A[[Alength-1]]-q*A[[Alength-2]])]}},p*A[[Alength-1]]-q*A[[Alength-

2]]]]; 

   ]; 

u[m_]:=Module[{Uindex=m+1}, 

   If[Uindex>Ulength,ExpandU[Uindex]]; 

   U[[Uindex]] 

   ]; 

a[m_]:=Module[{Aindex=m+1}, 

   If[Aindex>Alength,ExpandA[Aindex]]; 

   If[IntegerQ[x*(p*A[[Aindex-1]]-q*A[[Aindex-2]])]&&x*(p*A[[Aindex-1]]-q*A[[Aindex-

2]])0,Flag=Flag<>"B";,Flag=Flag<>"A";]; 
   A[[Aindex]] 

   ]; 
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isPeriodic[s_]:=Module[{positions,first=First[s],second=s[[2]],seconds, 

out={0,0},periods}, 

   positions=Position[s,first]//Flatten; 

   positions=Select[positions,2<#<Length[s]&]; 

   periods=Select[positions+1,s[[#]]second&]; 
   If[Length[periods]>0, 

    out={1,First[periods]-2}; 

    ]; 

   out 

   ];  
 

 

A.1   Mathematica Code for Products with One 𝑩 

 

 This section contains the code used to achieve the results outlined in Section 4.1.  It was run in 

conjunction with PeriodicFunctions.nb. 

X[m_]:=(1+q*u[m])/(u[m+2]-q^(m+1)); 

periodic=0; 

nonperiodic=0; 

undefined=0; 

disregard=0; 

 For[p=1,p20,p++, 

  For[q=-20,q20,q++, 
    Ureset[]; 

    If[q0,Continue[]]; 

    For[n=1,n30,n++, 

     If[(u[n+2]-q^(n+1))0, 
      undefined++; 

      Print["p=",p,", q=",q,", n=",n]; 

      Continue[]; 

      ]; 

     x=X[n]; 

     g=GCD[q*u[n]+1,u[n+1]]; 

     If[g0|| x1||x0||x-1, 
      disregard++; 

      Continue[]]; 

     Areset[(u[n+1])/g,(q*u[n]+1)/g]; 

     Flag=""; 

     output=Table[a[i],{i,0,n+2}]; 

     If[isPeriodic[output][[1]]1,periodic++,nonperiodic++] 
     ]; 

    ];]; 

periodic 

nonperiodic 

undefined 

disregard 

 

 

 



 
 

41 
 

A.2   Mathematica Code for Products with Two 𝑩’s 

 

  This section contains the code used to achieve the results outlined in Section 4.2.  It was run in 

conjunction with PeriodicFunctions.nb. 

f[x_]:=(x^2)*(u[m+2]*u[n+2]-(q^(n+m+2)))+x*(-2q*u[m+1]*u[n+1])+(q^2)*u[m]*u[n]-1; 

periodic=0; 

nonperiodic=0; 

irrational=0; 

rational=0; 

disregard=0; 

Periodic=List[]; 

Nonperiodic=List[]; 

Irrational=List[]; 

Disregard=List[]; 

 For[p=1,p20,p++, 

  For[q=-20,q20,q++, 
    Ureset[]; 

    If[q0,Continue[]]; 

    For[m=0,m30,m++, 

     For[n=m,n30,n++, 

       If[Length[Solve[f[t]0,t,Rationals]]>0, 
        rational++; 

        s=t/.Solve[f[t]0,t,Rationals];, 
        AppendTo[Irrational,{p,q,m,n}]; 

        irrational++; 

        Continue[]; 

        ]; 

       For[i=1,iLength[s],i++, 
        x=s[[i]]; 

        g=GCD[(q*x*u[m+1]*u[n+1]-q*q*u[n]u[m]+1),(x*u[m+1]*u[n+2]-q*u[n+1]u[m])]; 

        If[g0||!NumberQ[x],Continue[]]; 

        If[x1||x0||x==-1, 
         AppendTo[Disregard,{p,q,m,n}]; 

         disregard++; 

         Continue[]; 

         ]; 

        Areset[(x*u[m+1]*u[n+2]-q*u[n+1]u[m])/g, 

         (q*x*u[m+1]*u[n+1]-q*q*u[n]u[m]+1)/g]; 

        Flag=""; 

        output=Table[a[i],{i,0,n+m+3}]; 

        If[isPeriodic[output][[1]]1, 
         AppendTo[Periodic,{p,q,m,n,x,output[[1;;isPeriodic[output][[2]]+2]]}]; 

         periodic++, 

         AppendTo[Nonperiodic,{p,q,m,n,x,output[[1;;isPeriodic[output][[2]]+2]]}]; 

         nonperiodic++]; 

        ]; 

       ]; 

     ]; 

    ]; 

  ]; 

 periodic 

nonperiodic 

irrational 

rational 

disregard 

Export["C:\\Users\\mathoffice\\Desktop\\Final Runs\\nonperiodic2Bs.xls",Nonperiodic]; 

Export["C:\\Users\\mathoffice\\Desktop\\Final Runs\\periodic2Bs.xls",Periodic]; 
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Export["C:\\Users\\mathoffice\\Desktop\\Final Runs\\irrational2Bs.xls",Irrational]; 

 

 

A.3   Mathematica Code for Products with Three 𝑩’s 

 

 This section contains the code used to achieve the results outlined in Section 4.3.  Due to the 

higher complexity, the periodic solutions were calculated separately from determining the number of 

rational roots.  Factor3.nb was used to determine how many rational roots occurred in each case.  

Periodic3.nb used the rational 𝑥 values to find periodic solutions.  Both programs were run in 

conjunction with PeriodicFunctions.nb. 

Factor3.nb 
f[x_]:=(x^3)*(u[k+2]*u[m+2]*u[n+2]-(q^(k+n+m+3)))-

q*(x^2)*(u[k+1]*u[m+1]*u[n+2]+u[k+1]*u[m+2]*u[n+1]+u[k+2]*u[m+1]*u[n+1])+(q^2)*x*(u[k+

1]*u[m+1]*u[n]+u[k+1]*u[m]*u[n+1]+u[k]*u[m+1]*u[n+1])-(q^3)*u[k]*u[m]*u[n]-1; 

nofactor=0; 

onefactor=0; 

twofactor=0; 

threefactor=0; 

solutions=0; 

total=0; 

 Monitor[For[p=1,p20,p++, 

   For[q=-20,q20,q++, 
     Ureset[]; 

     If[q==0||(pq1),Continue[]]; 

     For[k=0,k30,k++, 

      For[m=k,m30,m++, 

        For[n=m,n30,n++, 
          total++; 

          solution=Solve[f[t]0,t]; 
          firstN=t/.solution[[1,1]]; 

          secondN=t/.solution[[2,1]]; 

          If[Length[solution]3,thirdN=t/.solution[[3,1]],thirdN="na"]; 
          solutions=0; 

          

If[NumberQ[firstN]&&Element[firstN,Rationals],solutions++];If[NumberQ[secondN]&&Elemen

t[secondN,Rationals],solutions++];If[NumberQ[thirdN]&&Element[thirdN,Rationals],soluti

ons++]; 

          Switch[solutions,0,nofactor++,1,onefactor++,2,twofactor++,3,threefactor++]; 

          ]; 

        ]; 

      ]; 

     ]; 

   ];,{p,q,k,m,n}] 

nofactor 

onefactor 

twofactor 

threefactor 

total 

 

Periodic3.nb 
f[x_]:=(x^3)*(u[k+2]*u[m+2]*u[n+2]-(q^(k+n+m+3)))-
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q*(x^2)*(u[k+1]*u[m+1]*u[n+2]+u[k+1]*u[m+2]*u[n+1]+u[k+2]*u[m+1]*u[n+1])+(q^2)*x*(u[k+

1]*u[m+1]*u[n]+u[k+1]*u[m]*u[n+1]+u[k]*u[m+1]*u[n+1])-(q^3)*u[k]*u[m]*u[n]-1; 

data=List[]; 

 For[p=1,p20,p++, 
  AppendTo[data,{}]; 

  AppendTo[data[[p]],{"n","m","k","p","q","period","","An","X"}]; 

  For[q=-20,q20,q++, 
   Ureset[]; 

   If[qp1||q==0,Continue[]]; 

   For[k=0,k30,k++, 

    For[m=0,m30,m++, 

      For[n=0,n30,n++, 
        

If[Length[Solve[f[t]0,t,Rationals]]>0,s=t/.Solve[f[t]0,t,Rationals],Continue[]]; 

        For[i=1,iLength[s],i++, 
         x=s[[i]]; 

         g=GCD[((x*u[k+2]*(x*u[n+1]*u[m+2]-q*u[n]u[m+1]))+u[k+1]*((-

q*x*u[m+1]*u[n+1]+q*q*u[n]u[m]))), 

           ((q*x*u[k+1]*(x*u[n+1]*u[m+2]-q*u[n]u[m+1]))+q*u[k]*((-

q*x*u[m+1]*u[n+1]+q*q*u[n]u[m]))+1)]; 

         If[g0||!NumberQ[x]|| x==-2||x1||x0||x==-1,Continue[]]; 
         Areset[((x*u[k+2]*(x*u[n+1]*u[m+2]-q*u[n]u[m+1]))+u[k+1]*((-

q*x*u[m+1]*u[n+1]+q*q*u[n]u[m])))/g, 

          ((q*x*u[k+1]*(x*u[n+1]*u[m+2]-q*u[n]u[m+1]))+q*u[k]*((-

q*x*u[m+1]*u[n+1]+q*q*u[n]u[m]))+1)/g]; 

         Flag=""; 

         output=Table[a[i],{i,0,(k+m+n+4)}]; 

         

If[isPeriodic[output][[1]]1,AppendTo[data[[p]],{n,m,k,p,q,isPeriodic[output],Flag,out
put[[1;;isPeriodic[output][[2]]+2]],StringForm[x]}] 

          ]; 

         ]; 

        ]; 

      ]; 

    ];] 

  ]; 

Export["C:\\Users\\mathoffice\\Desktop\\Final Runs\\threeBsmore.xls",data]; 

 
 
 

A.4   Mathematica Code for Products with Four 𝑩’s 

 

 This section contains the code used to achieve the results outlined in Section 4.4.  Once again, 

the periodic solutions were calculated separately from determining the number of rational roots.  

Factor4.nb was used to determine how many rational roots occurred in each case.  Periodic4.nb used 

the rational 𝑥 values to find periodic solutions.  Both programs contain the necessary code from 

PeriodicFunctions.nb, thus each program was run without an initialization program. 

Factor4.nb 
Usize=200; 

Ureset[]:=Module[{}, 

   U=Table[0,{i,1,Usize}]; 

   U[[1]]=0;U[[2]]=1; 

   Ulength=2; 
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   ]; 

ExpandU[index_]:=Module[{i}, 

   For[i=Ulength+1,i index,i++, 
     Ulength++; 

     U[[Ulength]]=p*U[[Ulength-1]]-q*U[[Ulength-2]]; 

     ];]; 

u[m_]:=Module[{Uindex=m+1}, 

   If[Uindex>Ulength,ExpandU[Uindex]]; 

   U[[Uindex]]]; 

f[x_]:=(x^4)*a-q*(x^3)*b+(q^2)*(x^2)*c-(q^3)*x*d+e; 

none=0; 

one=0; 

two=0; 

three=0; 

four=0; 

total=0; 

 Monitor[For[p=1,p20,p++, 

    For[q=-20,q20,q++, 
      Ureset[]; 

      If[q0||(pq1),Continue[];]; 

      For[j=0,j20,j++, 

       For[k=j,k20,k++, 

         For[m=j,m20,m++, 

           For[n=j,n20,n++, 
             total++; 

             a=(u[j+2]*u[k+2]*u[m+2]*u[n+2]-(q^(j+k+n+m+4))); 

             

b=(u[j+2]*u[k+1]*u[m+1]*u[n+2]+u[j+1]*u[k+2]*u[m+2]*u[n+1]+u[j+2]*u[k+2]*u[m+1]*u[n+1]

+u[j+1]*u[k+1]*u[m+2]*u[n+2]); 

             

c=(u[j+1]*u[k]*u[m+1]*u[n+2]+u[j]*u[k+1]*u[m+2]*u[n+1]+u[j+1]*u[k+2]*u[m+1]*u[n]+u[j+2

]*u[k+1]*u[m]*u[n+1]+2*u[j+1]*u[k+1]*u[m+1]*u[n+1]); 

             

d=(u[j+1]*u[k]*u[m]*u[n+1]+u[j+1]*u[k+1]*u[m]*u[n]+u[j]*u[k+1]*u[m+1]*u[n]+u[j]*u[k]*u

[m+1]*u[n+1]); 

             e=(q^4)*u[j]*u[k]*u[m]*u[n]-1; 

             fact=FactorList[f[x]]; 

             If[a0, 

              If[Length[fact]5, 
               four++; 

               Continue[];]; 

              If[Length[fact]4&&Exponent[fact[[4,1]],x]2, 
               three++; 

               Continue[];]; 

              

If[(Length[fact]2&&fact[[2,2]]4)||(Length[fact]3&&Exponent[fact[[3,1]],x]3)||(Leng

th[fact]3&&fact[[2,2]]2&&Exponent[fact[[3,1]],x]2), 
               one++; 

               Continue[];]; 

              

If[(Length[fact]4&&Exponent[fact[[4,1]],x]2)||(Length[fact]3&&fact[[2,2]]1&&fact[[

3,2]]3)||(Length[fact]3&&fact[[2,2]]3&&fact[[3,2]]1)||(Length[fact]3&&fact[[2,2]]

2&&fact[[3,2]]2),two++;Continue[];]; 
              

If[(Length[fact]2&&fact[[2,2]]2&&Exponent[fact[[2,1]],x]2)||(Length[fact]2&&Expone

nt[fact[[2,1]],x]4)||(Length[fact]3&&Exponent[fact[[2,1]],x]2&&Exponent[fact[[3,1]]

,x]2), 
               none++; 

               Continue[];]; 

              , 
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              If[b0, 

                If[Length[fact]4,three++;Continue[];]; 

                If[Length[fact]2&&fact[[2,2]]1,none++;Continue[];]; 
                

If[(Length[fact]2&&fact[[2,2]]3)||(Length[fact]3&&Exponent[fact[[3,1]],x]2),one++;
Continue[];]; 

                If[Length[fact]3&&Exponent[fact[[3,1]],x]2,two++;Continue[];]; 
                , 

                If[c0, 

                  If[Length[fact]3,two++;Continue[];]; 

                  If[Length[fact]2&&fact[[2,2]]2,one++;Continue[];]; 

                  If[Length[fact]2&&Exponent[fact[[2,1]],x]2,none++;Continue[];]; 
                  , 

                  If[d0,one++;Continue[];,none++;Continue[];];];];]; 
             Print[fact,"p=",p,"q=",q,"n=",n,"m=",m,"k=",k,"j=",j]; 

             ];];];];];];,{p,q,n,m,k,j}]; 

none 

one 

two 

three 

four 

total 
 

Periodic4.nb 
CloseKernels[]; 

 machineOpt={ 

   {"blitzen",11}, 

   {"rigel",5}, 

   {"sirius",11}, 

   {"comet",10}, 

   {"merak",11}, 

   {"santa",12}, 

   {"zeus",23} 

   }; 

 Needs["SubKernels`RemoteKernels`"] 

 LaunchKernels[RemoteMachine[#[[1]],#[[2]]]]&/@machineOpt; 

 saveTask=CreateScheduledTask[FrontEndExecute[FrontEndToken["Save"]],5*60]; 

StartScheduledTask[saveTask]; 

ParallelEvaluate[ 

  $MaxExtraPrecision=1000; 

  $HistoryLength=0; 

  Asize=200; 

  Areset[a1_,a2_]:=Module[{}, 

    A=Table[0,{i,1,Asize}]; 

    A[[1]]=a1;A[[2]]=a2; 

    Alength=2; 

    ]; 

  ExpandA[index_]:=Module[{i}, 

    For[i=Alength+1,i index,i++, 

      Alength++; 

      A[[Alength]]=Piecewise[{{x*(p*A[[Alength-1]]-q*A[[Alength-

2]]),IntegerQ[x*(p*A[[Alength-1]]-q*A[[Alength-2]])]}},p*A[[Alength-1]]-q*A[[Alength-

2]]]]; 

    ]; 

  a[m_]:=Module[{Aindex=m+1}, 

    If[Aindex>Alength,ExpandA[Aindex]]; 

    A[[Aindex]] 

    ]; 

  isPeriodic[s_]:=Module[{positions,first=First[s],second=s[[2]],seconds, 

out={0,0},periods}, 

    positions=Position[s,first]//Flatten; 
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    positions=Select[positions,2<#<Length[s]&]; 

    periods=Select[positions+1,s[[#]]second&]; 
    If[Length[periods]>0, 

     out={1,First[periods]-2}; 

     ]; 

    out 

    ]; 

   

  Amat={{p,-q},{1,0}}; 

  B={{p*x,-q*x},{1,0}}; 

  

W=B.MatrixPower[Amat,n].B.MatrixPower[Amat,m].B.MatrixPower[Amat,k].B.MatrixPower[Amat

,j]; 

   

  disregard=0; 

  periodic=0; 

  nonperiodic=0; 

  counter=0; 

  iDontCare=0; 

   

  DrittIMidten[vector_]:= 

   Block[{system,xvaluesone,sol,xvaluestwo,i,solution,gcd,output}, 

    Check[ 

      p=vector[[1]]; 

      q=vector[[2]]; 

      j=vector[[3]]; 

      k=vector[[4]]; 

      m=vector[[5]]; 

      n=vector[[6]]; 

      If[q0||pq1||(nmjk),Return[]]; 
      counter++; 

      Clear[x]; 

      Quiet[Check[system=Eigensystem[W],Return[]]]; 

      system[[2]]=Select[system[[2]],#  {0,0}&]; (* select nonzero eigenvectors *) 

      iDontCare+=Length[Select[system[[2]],#{0,0}&]]; 
      (*Print[system];*) 

       

      If[Length[system[[2]]]0,Return[]]; (* Nothing to work with *) 
      system[[2]]=Simplify[#/PolynomialGCD[#[[1]],#[[2]]]&/@system[[2]]]; 

      

xvaluesone=Select[Solve[system[[1,1]]1,x],Element[#[[1,2]],Rationals]&&NumberQ[#[[1,2
]]]&]; 

      sol=Partition[Riffle[xvaluesone, system[[2,1]]/.xvaluesone],2]; 

      If[Length[system[[2]]]>1, 

       xvaluestwo=Select[Solve[system[[1,2]]1,x], 
         Element[#[[1,2]],Rationals]&&NumberQ[#[[1,2]]]&]; 

       sol=Union[sol,Partition[Riffle[xvaluestwo, system[[2,2]]/.xvaluestwo],2]]; 

       ]; 

      If[Length[sol]1, 

       If[sol[[1]]{}, 

        sol=Drop[sol,1]; 

        ] 

       ]; 

      For[i=1,iLength[sol],i++, 
       solution=sol[[i]]; 

       x=x/.solution[[1]]; 

       If[x1||x-1||x0, 
        disregard++; 

        Continue[];]; 

       If[solution[[2]]{0,0}, 
        iDontCare++; 
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        Continue[];]; 

       gcd=GCD[solution[[2,1]],solution[[2,2]]]; 

       solution[[2]]/=gcd; 

       Areset[solution[[2,2]],solution[[2,1]]]; 

       output=Table[a[i],{i,0,n+m+k+j+4}]; 

       If[isPeriodic[output][[1]]1, 
        periodic++; 

        Print["p=",p," q=",q," n=",n," m=",m," k=",k," j=",j," x=",x,output[[1;;2]]];, 

        nonperiodic++]; 

       ]; 

      ,Print["ERROR: p=",p," q=",q," n=",n," m=",m," k=",k," j=",j]]; 

    ]; 

  ]; 

 T=Flatten[Table[{p,q,j,k,m,n},{p,1,1},{q,-

20,20},{j,0,20},{k,j,20},{m,j,20},{n,j,20}],5]; 

len=Length[T]; 

positionNext=100000; 

Print["Length = ",len]; 

Monitor[ 

 For[i=0,i len/100000,i++, 
   positionNext=(i+1)*100000; 

   If[positionNext len,positionNext=len]; 
   T2=T[[i*100000+1;;positionNext]]; 

   SetSharedVariable[T2]; 

   Parallelize[ 

     DrittIMidten/@T2; 

     ] 

    ParallelEvaluate[ClearSystemCache[]]; 

   ];,Refresh[i*100000,UpdateInterval1]] 

 counter=Total[ParallelEvaluate[counter]]; 

disregard=Total[ParallelEvaluate[disregard]]; 

nonperiodic=Total[ParallelEvaluate[nonperiodic]]; 

periodic=Total[ParallelEvaluate[periodic]]; 

iDontCare=Total[ParallelEvaluate[iDontCare]]; 

periodic 

nonperiodic 

disregard 

iDontCare 

counter 

CloseKernels[]; 

 


