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1 Introduction

1.1 Real Numbers and Simple Continued Fractions

Take a moment to reflect on the real numbers and the fact that they fall into one of two
categories: rational or irrational. It is known that, when written in decimal form, all rational
numbers are either terminating, such as 11

4
“ 2.75, or are non-terminating but eventually

periodic, such as 10
3
“ 3.333 . . .. On the other hand, irrational numbers possess neither of

these properties, being non-terminating and non-periodic, such as π “ 3.14159 . . .. These
expansions rely on base-10 notation, which is the most common. However, one could just
as easily write these numbers using other bases, such as base-3, which would produce 11

4
“

2.2020 . . ., 10
3
“ 10.2, and π “ 11.001001 . . .. These examples show that a change of base may

produce expansions that have different properties (such as terminating). Notice that there
are many different ways to write the same number, including the relatively less common
method of continued fraction expansion. We will first introduce this technique and then
show why it may be useful.

A continued fraction is an expression of the form

a0 `
r0

a1 `
r1

a2`
r2

...

,

but we shall restrict ourselves to considering a constant r value, that is,

a0 `
r

a1 `
r

a2`
r

...

.

For a continued fraction of this form, we will occasionally use the notation

a0 `
r

a1 `

r

a2 ` ¨ ¨ ¨
,

but we will more often use the compact notation ra0, a1, a2, . . .sr. The r in this context will
usually be referred to as the “numerator” of the continued fraction. We may say that the
expansion is eventually periodic (generally referred to just as periodic) with period length n
if for some m, am`i “ am`n`i for i ě 0, and use the notation ra0, . . . , am´1, am, . . . , am`n´1sr.
Moreover, an expansion is purely periodic if m “ 0 in the context we just introduced.

The most common restriction imposed on continued fractions is to have r “ 1 and then
call the expression a simple continued fraction.

Example. To demonstrate the recursive approach to expanding a number into a simple
continued fraction, we will calculate the expansion for 20

7
. Follow each step as

20

7
“ 2`

6

7
“ 2`

1
7
6

“ 2`
1

1` 1
6

“ 2`
1

1` 1
5` 1

1

.

This calculation demonstrates an elementary fact of simple continued fractions — each ra-
tional number has exactly two expansions, differing only at the end of the expression. In
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general, ra0, a1, . . . , ans1 “ ra0, a1, . . . , an ´ 1, 1s1 if an ą 1. The method for expanding
negative numbers differs only in the first step, as seen with

´19

7
“ ´3`

2

7
“ ´3`

1
7
2

“ ´3`
1

3` 1
2

“ ´3`
1

3` 1
1` 1

1

.

Recall the earlier observation that some representations of a number have different prop-
erties (such as terminating or periodic) depending on the base being used. More precisely,
if x “ a0.a1a2 . . ., then 0 ď ai ď b ´ 1 where b is the base, so the values of each ai depend
on b. This is not a problem with continued fraction expansions since the entries are integers
and can be altered independently. Take as example that 10

3
“ r3, 1s1 with base-10 while

10
3
“ r10, 1s1 with base-3. This means that one could use a different base for a continued

fraction which only changes how the integers are expressed, but not what they are.
One of the frequently used tools for working with continued fractions is convergents.

Convergents are the values formed by partial expansions of a continued fraction. These
have many uses for simple continued fractions, such as finding rational approximations of
an irrational number. For ra0, a1, a2, . . .sr, the convergents are denoted as cn where cn “
ra0, a1, . . . , ansr.

Example. To demonstrate the convergents of a simple continued fraction, consider the
expansion of 20

7
“ r2, 1, 6s1. Then,

c0 “ 2, c1 “ 2`
1

1
“ 3, c2 “ 2`

1

1` 1
6

“
20

7
.

As mentioned, we can calculate rational approximations of irrational numbers such as π.
We know that the expansion of π begins as r3, 7, 15, 1, 292, 1, . . .s1[2]. By calculating the first
few convergents, we find

c0 “ 3, c1 “ 3`
1

7
“

22

7
, c2 “ 3`

1

7` 1
15

“
333

106
,

and see that 333
106
“ 3.141509 . . ., which is a decent approximation.

There are a number of interesting properties to find from convergents, in particular by
looking at the numerator and denominator parts. For this reason, we often write cn “

pn
qn

.

1.2 Generalized Continued Fractions

Simple continued fractions have many applications, particularly for number theory, and have
been studied thoroughly in the past as demonstrated in [2]. However, the same is not true
for more general forms of continued fractions. While [1] looks into the option of integer
numerator values, we wish to go further. The primary extension in this work is to allow for
positive rational numerators. That is, we will work with continued fractions of the form

a0 `
u{v

a1 `
u{v

a2`
u{v

...

,
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where u, v P Z`, a0 P Z, and ai P Z` for i ą 0. Additionally, we will suppose that u ě v and
gcdpu, vq “ 1. For a continued fraction of this form, we will similarly use the notation

a0 `
u{v

a1 `

u{v

a2 ` ¨ ¨ ¨

and the compact notation ra0, a1, a2, . . .su{v. An algorithm for computing continued fractions
of this form will be shown and examples given.

Section 2 of this paper works ground up, starting with an algorithm that we can use for
continued fractions with rational numerators. We develop relations that hold for convergents,
which end up having many similarities to those that hold for simple continued fractions. We
go on to find other theorems that have analogues to theorems for simple continued fractions.
Importantly, these findings are applicable to any expansion.

Section 3 of this paper has extra focus on continued fraction expansions of rational
numbers that are periodic. We develop relations that hold when an expansion is periodic,
which gives us a way to find and verify periodicity. Furthermore, there is a special case for
period length 1, to which we give attention.

Section 4 contains some potentially useful findings that do not necessarily apply to other
places or have yet to be proven. Section 5 gives future work possibilities, mostly relating to
unproven ideas.

1.3 Motivation

The motivation for this work comes from a common observation. When presenting continued
fractions, many authors start by giving the general form and then restricting to the simple
case. By allowing more generality and working out examples, it does not take long to see
potential patterns and wonder what can proven. In addition, one may wonder what happens
to theorems that have been found for simple continued fractions and if they carry over. This
work aims to fulfill some of these wonders.

2 General Results

2.1 Continued Fraction Algorithm and Convergents

We start by defining a recursive algorithm for computing continued fractions with rational
numerators and verifying that the algorithm gives successful results.

Theorem 2.1. Given x P R and r P Q` with r ě 1, choose sequences pxnq and panq by

x0 “ x, txnu´ tru ď an ď txnu, xn ´ an ď r, xn “
r

xn´1 ´ an´1
,

with ai ą 0 for i ą 0, and terminating when xn is an integer. This creates the expansion

ra0, a1, a2, . . .sr .

3



Proof. There is only one potential issue with this algorithm and it is analogous to the problem
discussed in [1, Theorem 1.5 on p.2445]. That is, an issue arises if xi ă 1 for some i ą 0, for
then no choice is available for ai. We can inductively show that this issue cannot arise. As
a base case, a valid choice exists for a0 since it is allowed to be 0. Then assume that a valid
ak ą 0 is chosen for some k ą 0. Subsequently, 0 ď xk ´ txku ď xk ´ ak ď r. As stated,
if xk is an integer, then the algorithm terminates, otherwise, 0 ă xk ´ txku ď xk ´ ak ď r
and xk`1 “

r
xk´ak

ě r
r
“ 1. Thus, xk`1 ě 1, so we can make a valid choice for ak`1. By the

principle of mathematical induction, a valid choice is available for any an.

Remark. A question that could be raised at this point is whether or not an infinite expansion
converges to the desired value. That is, for an infinite expansion, can we truly write x “
ra0, a1, . . .su{v. We can refer this question to the proof of [1, Theorem 1.4 on p.2444]. This
proof can be applied here after demonstrating that q2n ě pu ` vqn and q2n`1 ě vpu ` vqn,
both of which can be shown inductively. The rest of the proof follows, and we see that
convergence holds.

With the described algorithm, one can create many different expressions for a partic-
ular value. Each expansion depends on the choices of an, where there are as many as rrs
possibilities. Sometimes we will desire a certain method for the selections.

Definition 2.2. For a choice of an in the continued fraction algorithm, if an is the smallest
integer such that an ě txnu ´ tru and xn ´ an ď r, then it is the min choice for an. If
an “ txnu, then it is the max choice. If the min choice is used for every an, then this is
referred to as the min algorithm. Similarly, we define the max algorithm. Note that these
two may produce identical expansions in some cases.

With these algorithms, it is useful to demonstrate the numerous ways to apply them.

Example. We found earlier that 20
7
“ r2, 1, 6s1 . Now instead we can make an expression

that uses numerator 3
2
. Starting with the max algorithm,

20

7
“ 2`

6

7
“ 2`

3{2
7
4

“ 2`
3{2

1` 3{2
2

,

so 20
7
“ r2, 1, 2s3{2. With the min algorithm, tx0u ´ tru “ t20

7
u ´ t3

2
u “ 1, so 1 ď a0 ď 2.

However, x0´1 “ 13
7
ą 3

2
, so the only valid (and thus smallest) choice is a0 “ 2. Continuing in

this fashion, the min algorithm actually produces the same expansion as the max algorithm.
Suppose instead we wish to expand 20

7
with 5

2
as a numerator. While omitting the

calculations, we find 20
7
“ r2, 2, 2, 3, 5, 3, 5s5{2 with the max algorithm. Then, using the min

algorithm,

20

7
“ 1`

5{2
35
26

“ 1`
5{2

1` 5{2
65
9

“ 1`
5{2

1` 5{2

5` 5{2
9
8

“ 1`
5{2

1` 5{2

5` 5{2

1`
5{2
20

,

so 20
7
“ r1, 1, 5, 1, 20s5{2, a different expression!
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These examples have shown how rational numbers may have expansions that terminate.
In other cases however, we may find this does not happen. For example, when we attempt
to expand 10

3
with numerator 16

9
and the max algorithm, then

10

3
“ 3`

16{9
16
3

“ 3`
16{9

5` 16
3

“ 3`
16{9

5` 16{9
16
3

“ 3`
16{9

5` 16{9

5` 16{9

...

.

It appears that this pattern continues indefinitely, suggesting that 10
3
“
“

3, 5
‰

16{9
. Later, we

will show how this periodicity can be proved.
It also appears that some expansions of rational numbers can continue indefinitely with-

out becoming periodic. For example, when we expand 23
13

with numerator 29
14

and the max
algorithm, the expansion begins as 23

13
“ r1, 2, 2, 2, 22, . . .s29{14. This appears to never termi-

nate nor become periodic, even when checking up to one million iterations! Unfortunately,
we are unable to prove this continues indefinitely; it could, for example, terminate later in
the expansion.

Remark. When we calculate the expansion of 29
14

with numerator 23
13

and the max algorithm,
one million steps can be used without terminating or becoming periodic. However, some
expansions are quicker to expose behavior. Using the max algorithm up to 100 steps, neither
expansion of 10

3
with numerator 17

7
or 23

7
terminate or become periodic. However, using a

sufficiently large number of steps, both become periodic! The moral is that using a greater
number of iterations can potentially expose the true properties.

The convergents of continued fractions play a number of roles in these results, so they
are developed first in the generalized setting. We start by showing how we can determine
the convergents, cn “

pn
qn

, by “collapsing” an expansion.

Example. We wish to find the convergents of 40
11

when expanded with numerator 3
2

and the
max algorithm. A series of calculations gives 40

11
“ r3, 2, 4, 7, 3s3{2. Now, for example, the

calculation for c2 is

c2 “ r3, 2s3{2 “ 3`
3{2

2
“

3 ˚ 2` 3{2

2
“

15{2

2
“

15

4
.

We also calculate the rest of the convergents, but omit the calculations, to find

pcnq “

ˆ

3

1
,
15

4
,
69

19
,
1011

278
,
40

11

˙

.

The convergents of a continued fraction have many interesting uses, requiring a few
relations. The relations found here have known analogues for simple continued fractions.

Theorem 2.3. Suppose that x “ ra0, a1, . . . , an´1, an, . . .su{v. Let xn “ ran, an`1, . . .su{v, so

that x “ ra0, a1, . . . , an´1, xnsu{v. For the convergents of x, pn
qn

, the following relations are
satisfied:

p´1 “ 1 p0 “ a0 q´1 “ 0 q0 “ 1
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p2n “ a2np2n´1 ` up2n´2 p2n`1 “ va2n`1p2n ` up2n´1

q2n “ a2nq2n´1 ` uq2n´2 q2n`1 “ va2n`1q2n ` uq2n´1
(2.1)

pnqn´1 ´ pn´1qn “ p´1qn´1un (2.2)

x “ x0 x “
p2n´1x2n ` up2n´2
q2n´1x2n ` uq2n´2

x “
vp2nx2n`1 ` up2n´1
vq2nx2n`1 ` uq2n´1

(2.3)

Proof. The proof of (2.1) uses a similar strategy to that of [2, Theorem 1.3 on p.21]. As a
base case,

p1
q1
“ a0 `

u{v

a1
“
va0a1 ` u

va1
“
va1p0 ` up´1
va1q0 ` uq´1

and

p2
q2
“ a0 `

u{v

a1 `

u{v

a2
“
va0a1a2 ` ua0 ` ua2

va1a2 ` u
“
a2p1 ` up0
a2q1 ` uq0

.

Then, assume that (2.1) holds for integers 2k ´ 1 and 2k for some k P N. With this
assumption, we shall show that the relations also hold for 2k ` 1 and 2k ` 2. First, observe
that for any n,

pn`1
qn`1

“ a0 `
u{v

a1 ` ¨ ¨ ¨ `

u{v

an `

u{v

an`1
“ a0 `

u{v

a1 ` ¨ ¨ ¨ `

u{v

an´1 `

u{v

an `
u{v
an`1

,

which allows the calculation of p2k`1

q2k`1
by replacing a2k. There must be some care with this

observation, again following the strategy used in [2, Theorem 1.3 on p.21]. Note that if
we replace a2k, the values of p2k`1 and q2k`1 are unaltered. This is due to the manner of
calculation, where the values of p2k`1 and q2k`1 depend on the preceding equations and not
the further a values. Additionally, the same technique is used for calculating p2k`2 and q2k`2.
Now, starting with the assumptions for 2k ´ 1 and 2k, we calculate

p2k`1
q2k`1

“
pa2k `

u{v
a2k`1

qp2k´1 ` up2k´2

pa2k `
u{v

a2k`1
qq2k´1 ` uq2k´2

“
pva2ka2k`1 ` uqp2k´1 ` up2k´2
pva2ka2k`1 ` uqq2k´1 ` uq2k´2

“
va2k`1pa2kp2k´1 ` up2k´2q ` up2k´1
va2k`1pa2kq2k´1 ` uq2k´2q ` uq2k´1

“
va2k`1p2k ` up2k´1
va2k`1q2k ` uq2k´1

and

p2k`2
q2k`2

“
vpa2k`1 `

u{v
a2k`2

qp2k ` up2k´1

vpa2k`1 `
u{v

a2k`2
qq2k ` uq2k´1

“
pva2k`1a2k`2 ` uqp2k ` ua2k`2p2k´1
pva2k`1a2k`2 ` uqq2k ` ua2k`2q2k´1

“
a2k`2pva2k`1p2k ` up2k´1q ` up2k
a2k`2pva2k`1q2k ` uq2k´1q ` uq2k

“
a2k`2p2k`1 ` up2k
a2k`2q2k`1 ` uq2k

.
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By the principle of mathematical induction, (2.1) holds for any n P N.
Proof of (2.2) also follows from induction. For the base case, calculations show that

p0q´1 ´ p´1q0 “ a0 ˚ 0´ 1 ˚ 1 “ ´1 “ p´1q0´1u0

and

p1q0 ´ p0q1 “ va0a1 ` u´ va0a1 “ u “ p´1q1´1u1.

Now, assume that (2.2) holds for some 2k, k P N. We shall use this assumption to show that
the relation also holds for both 2k ` 1 and 2k ` 2. Assume that

p2k´1q2k “ p2kq2k´1 ´ p´1q2k`1u2k.

Then,

p2k`1q2k “ va2k`1p2kpa2kq2k´1 ` uq2k´2q ` up2k´1pa2kq2k´1 ` uq2k´2q

“ va2k`1p2kq2k ` up2k´1q2k “ va2k`1p2kq2k ` upp2kq2k´1 ´ p´1q2k´1u2kq

“ va2k`1p2kq2k ` up2kq2k´1 ` p´1q2ku2k`1 “ p2kq2k`1 ` p´1q2ku2k`1.

With the calculations for 2k`2, it is nearly identical to show that p2k`2q2k`1 “ p2k`1q2k`2`
p´1q2k`1u2k`2. Thus, by the principle of mathematical induction, (2.2) holds for n P N.

Proof of (2.3) will also follow from induction. For the base case,

x “ ra0, x1s “ a0 `
u{v

x1
“
va0x1 ` u

vx1
“
vp0x1 ` up´1
vq0x1 ` uq´1

and

x “ ra0, a1, x2s “ a0 `
u{v

a1 `

u{v

x2
“
va0a1x2 ` ux2 ` a0u

va1x2 ` u
“
p1x2 ` up0
q1x2 ` uq0

.

Now assume that (2.3) holds for some 2k, k P N. With this we can show that the relation
holds for both 2k` 1 and 2k` 2. In a similar manner to the proof of (2.1), and for the same
reasoning that allows it, we can replace an x2k`1 term with a term using both a2k and x2k`1.
That is,

x “ ra0, a1, . . . , x2k`1s “

„

a0, a1, . . . , a2k `
u{v

x2k`1



“ a0 `
u{v

a1 ` ¨ ¨ ¨ `

u{v

a2k `
u{v

x2k`1

“
p2kpa2k `

u{v
x2k`1

q ` up2k´2

q2kpa2k `
u{v

x2k`1
q ` uq2k´2

“
vp2kx2k`1pa2k ` uq ` uvp2k´2x2k`1
vq2kx2k`1pa2k ` uq ` uvq2k´2x2k`1

“
vx2k`1pa2kp2k´1 ` up2k´2q ` up2k´1
vx2k`1pa2kq2k´1 ` uq2k´2q ` uq2k´1

“
vp2kx2k`1 ` up2k´1
vq2kx2k`1 ` uq2k´1

.

Therefore, the relation holds for 2k` 1, and a similar result follows for 2k` 2. Thus, by the
principle of mathematical induction, (2.3) holds for n P N.

It is convenient to have a table of some convergent values on hand to avoid the compu-
tations each time they are needed.
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n pn qn

-1 1 0
0 a0 1
1 va0a1 ` u va1
2 va0a1a2 ` ua0 ` ua2 va1a2 ` u
3 va0a1a2a3 ` uva0a1 ` uva0a3 ` uva2a3 ` u

2 v2a1a2a3 ` uva1 ` uva3

Table 1: Values of pn and qn for ra0, a1, . . .su{v with small n.

Corollary 2.4. For n P N and the convergents, pn
qn

, of a continued fraction using numerator
u
v
,

(i) v � q2n´1.

(ii) gcdppn, qnq � u
n.

Proof. For piq, note q1 “ va1q0`uq´1 “ va1, and v � va1. Assume that for some k, v � q2k´1.
Then q2k`1 “ va2k`1q2k ` uq2k´1. Since v � va2k`1q2k and v � q2k´1, then v � q2k`1.
For piiq, let d “ gcdppn, qnq. Then d � pn and d � qn, so d � pnqn´1 ´ pn´1qn. By (2.2),
d � p´1qnun, so d � un.

The relations shown above can be demonstrated by extending a previous example.

Example. We calculated 40
11
“ r3, 2, 4, 7, 3s3{2. By (2.1),

ppnq “ p3, 15, 69, 1011, 3240q

and

pqnq “ p1, 4, 19, 278, 891q.

Subsequently,

ˆ

pn
qn

˙

“

ˆ

3

1
,
15

4
,
69

19
,
1011

278
,
3240

891

˙

“

ˆ

3

1
,
15

4
,
69

19
,
1011

278
,
40

11

˙

.

2.2 Continued Fraction Expansions

This section focuses on methods for using expansions that have already been calculated. We
first turn our sights to finding continued fraction expansions that are very similar to one
another. As observed, a given expansion may have terminating or periodic behavior, or even
appear to go on forever without becoming periodic.

Definition 2.5. Two continued fraction expansions are equivalent if they have the same
form (i.e., periodic, terminating, etc.) with the same lengths (e.g., periodic with period
length 2), and eventually become the same expansion from some point on.
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Example. Let r “ 7
4
. We calculate the following.

5

21
“ r0, 7, 5sr

5

41
“ r0, 14, 5sr

87

41
“ r2, 14, 5sr

5

22
“
“

0, 7, 2, 3
‰

r

5

42
“
“

0, 14, 2, 3
‰

r

89

42
“
“

2, 14, 2, 3
‰

r

Note how these share certain characteristics. The observations to make are that 41 “ 21`5˚4,
87 “ 5` 41 ˚ 2, 42 “ 22` 5 ˚ 4, and 89 “ 5` 42 ˚ 2.

Following from the previous example, we shall now show two results that will assist us
in finding equivalent continued fractions.

Lemma 2.6. For integers u, v, x, and y, if

x

y
“ ra0, a1, a2, . . .su{v ,

then

x` yi

y
“ ra0 ` i, a1, a2, . . .su{v

for any positive integer i.

Proof. Notice that px`yiq
y

“ x
y
` i. The result follows immediately by construction.

Lemma 2.7. For integers u, v, x, and xj ` k with j ě 1 and 0 ď k ă x, if

x

xj ` k
“ r0, a1, a2, . . .su{v ,

then

x

xpj ` viq ` k
“ r0, a1 ` ui, a2, . . .su{v

for any positive integer i.

Proof. Let x0 “
x

xj`k
with j ě 1 and 0 ă k ă x, then gcdpx, xj ` kq “ 1. Suppose that

x0 “ r0, a1, a2, . . .su{v “ r0, a1, x2su{v .

By the algorithm that we introduced earlier,

a0 “ 0, x1 “
upmj ` kq

vm
, a1 “ tx1u, x2 “

u{v

x1 ´ tx1u
,

are the beginning pieces for constructing the expansion. Then we shall do a similar con-
struction for x

xpj`viq`k
where i is a positive integer. With the same algorithm,

a10 “ 0,

x11 “
upmpj ` viqq ` kq

vm
“ x1 `

uvim

vm
“ x1 ` ui,

a11 “ tx1 ` uiu “ a1 ` ui,

9



and thus,

x12 “
u{v

x11 ´ a
1
1

“
u{v

x1 ` ui´ a1 ´ ui
“

u{v

x1 ´ tx1u
.

Therefore, x
xpj`viq`k

“ r0, a1 ` ui, a2, . . .su{v.

With the results of the previous lemmas, the following can be shown.

Theorem 2.8. With numerator u
v

and integers x and y, when considering continued fraction
expansions under the same algorithm,

x

y
„
x pmod yq

y
„

x pmod yq

y pmod v ˚ px pmod yqqq
.

Proof. By definition, x pmod yq ” x ` yi for some i. The first equivalence follows from
Lemma 2.6. Now let l “ x pmod yq. Then l ă y, and we can rewrite y as y “ lj ` k for
some j ě 1 and 0 ă k ă l. Next, y pmod vlq ” y` vli ” lpj` viq`k for some i. The second
equivalence follows from Lemma 2.7.

One application of Theorem 2.8 is the ability to classify continued fractions more effi-
ciently, especially if we are only looking for general properties.

Example. We wish to know whether there are any periodic continued fraction expansions
for numbers of the form 1

y
, where y is an integer, with numerator 3

2
. We calculate

1

2
“ r0, 3s3{2

and

1

3
“ r0, 4, 3s3{2 .

By Theorem 2.8, every number 1
y

will have one of the above forms, so no periodic continued

fraction expansions arise from the form x “ 1
y
.

Example. We would like to determine all unique period lengths that continued fraction
expansions have for numerator 17

9
when we expand all x

y
where x, y ă 1000. Calculations

show that 9
11

becomes periodic with period length 44 under the max algorithm. We now can
save significant time by no longer needing to compute the expansions for 9

92
, 9

173
, 355

173
, 9

254
,

263
254

, etc., since they are all equivalent (each will be periodic with period length 44).

As demonstrated, time can be saved by calculating some continued fraction expansions
and then no longer needing to do the same for a large class of others, possibly infinite.

The next results are extensions of classic work on simple continued fractions.

Theorem 2.9. For integers u, v, x, and y, if 0 ă x ă y and

x

y
“ r0, a1, a2, a3, . . .su{v ,

then
uy

vx
“ ra1, a2, a3, . . .su{v .

10



Proof. With 0 ă x ă y and x0 “
x
y
, tx0u “ 0, so x1 “

u{v
x{y´0

“
uy
vx

.

Theorem 2.9 gives the ability to “extract” a piece of a continued fraction, as demonstrated
in the next example.

Example. After calculating 5
3
“ r1, 2, 2, 2, 9, 5, 7s7{4, we wish to “pull off” the front of the

expansion. Using Theorem 2.8 and Theorem 2.9, we know 2
3
“ r0, 2, 2, 2, 9, 5, 7s7{4 and

7˚3
4˚2

“ 21
8
“ r2, 2, 2, 9, 5, 7s7{4. We can continue in this fashion, repeatedly applying the two

theorems, finding expansions such as 35
16
“ r2, 9, 5, 7s7{4.

Theorem 2.10. If pn
qn
“ ra0, a1, a2, . . . , ansu{v and k P N, then

(i) for 2 ď 2k ď n, q2k
q2k´1

“ ra2k, ..., a2, a1su{v.

(ii) if a0 ‰ 0, for 0 ď 2k ď n, p2k
p2k´1

“ ra2k, ..., a2, a1, a0su{v.

(iii) if a0 “ 0, for 2 ď 2k ď n, p2k
p2k´1

“ ra2k, ..., a4, a3, a2su{v.

Additionally, if v � a2i for all 0 ď i ď n, then

(iv) for 1 ď 2k ` 1 ď n, q2k`1

q2k
“
“

va2k`1, ...,
a2
v
, va1

‰

u{v
.

(v) if a0 ‰ 0, for 1 ď 2k ` 1 ď n, p2k`1

p2k
“
“

va2k`1, ...,
a2
v
, va1,

a0
v

‰

u{v
.

(vi) if a0 “ 0, for 3 ď 2k ` 1 ď n, p2k`1

p2k
“
“

va2k`1, ...,
a4
v
, va3,

a2
v

‰

u{v
.

Proof. The proof of piq follows by induction. We are interested in an index on 2k and for
2k “ 2,

q2
q1
“
a2q1 ` uq0

q1
“ a2 `

uq0
q1
“ a2 `

u

va1
“ a2 `

u{v

a1
“ ra2, a1su{v ,

which completes the base case. Now assume that the result holds for some positive integer
2l. That is,

q2l
q2l´1

“ ra2l, ..., a2, a1su{v “ a2l `
u{v

a2l´1 ` ¨ ¨ ¨ `

u{v

a2 `

u{v

a1
.

Then,

q2l`2
q2l`1

“
a2l`2q2l`1 ` uq2l

q2l`1
“ a2l`2 `

uq2l
q2l`1

“ a2l`2 `
u{v

pq2l`1{q2lq{v

“ a2l`2 `
u{v

ppva2l`1q2l ` uq2l´1q{q2lq{v
“ a2l`2 `

u{v

a2l`1 ` puq2l´1q{pvq2lq

“ a2l`2 `
u{v

a2l`1 `
u{v

q2l{q2l´1

“ a2l`2 `
u{v

a2l`1 ` ¨ ¨ ¨ `

u{v

a1
“ ra2l`2, ..., a2, a1su{v ,

as desired for 2l` 2, which proves the result. The proofs for piiq, piiiq, pivq, pvq, and pviq are
very similar.
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Example. We calculate 41
17
“ r2, 3, 2, 4, 3s3{2. Furthermore,

pqnq “ p1, 6, 15, 138, 459q.

Then, by Theorem 2.10.i, 15
6
“ r2, 3s3{2 and 459

138
“ r3, 4, 2, 3s3{2.

Example. We calculate 32
5
“ r6, 3, 2s3{2. Furthermore,

ppnq “ p6, 39, 96q.

Then, by Theorem 2.10.v, 39
6
“
“

2 ˚ 3, 6
2

‰

3{2
“ r6, 3s3{2.

3 Periodic Results

3.1 General Periodicity

As mentioned earlier, some continued fraction expansions appear to eventually become peri-
odic. Here, we go into further detail about what this entails and find special results. Periodic
continued fraction expansions consist of a leading tail and an orbit, both of which can vary
in length. These have the form

ra0, a1, . . . , ak, ak`1, . . . , ak`n´1, ak`n´1su{v

with the part under the line repeating indefinitely. Periodicity can be proven, as demon-
strated next.

Example. We wish to compute the continued fraction expansion of 15
34

with numerator 7
4

and the max algorithm. When calculated, there are sequences panq “ p0, 3, 1, 2, 10, . . .q and
pxnq “ p

119
30
, 105

58
, 203

94
, 329

30
, 105

58
, . . .q. At that point, we are able to prove periodicity. The term

105
58

reappears in the pxnq sequence, so the steps will repeat at that point forward, causing
period length 3. Indeed, 15

34
“
“

0, 3, 1, 2, 10
‰

7{4
.

Remark. A remark must be made about the previous example – the algorithm for choosing
terms should be consistent. For instance, if the max choice is made at one point and the
min choice at another, the expansion will not necessarily have periodic behavior as the steps
for choosing the terms may not follow the same pattern.

There is slight difficulty in classifying periodic expansions when we have to work with
the tails. It would be helpful to “extract” the periodic part in the sense of taking the value
of the orbit into a new continued fraction. By doing this, we will have one that is purely
periodic with period length n of the form ra0, a1, . . . , an´1su{v. Previously, we showed how
Theorem 2.9 could be used to “extract” the end of an expansion.

Example. Calculations show that 49
30
“
“

1, 2, 2, 5, 1, 2, 9
‰

7{4
, but we would like to work with

an expansion that is purely periodic with period length 5. Applying ideas from Theorem 2.8
and Theorem 2.9 twice, we arrive at p19˚4q˚7

pp30˚7q´2˚p19˚4qq˚4
“ 532

232
“ 133

58
“
“

2, 5, 1, 2, 9
‰

7{4
.

12



Going further, a purely periodic continued fraction can be used in a recursive manner.
Recall that periodic behavior occurs when a value in the sequence pxnq reappears. Thus, for
a purely periodic expansion of x with a period defined by a0, a1, . . . , an´1, we can write

x “ ra0, a1, . . . , an´1, xsu{v .

With this form of a periodic continued fraction at hand, previous results can be used to
derive several properties. First, a known fact of simple continued fractions is that if x is
a real number and the expansion of x is eventually periodic, then x is a quadratic surd [2,
p.89]. This is not, in general, true for continued fractions with rational numerators, as we
have demonstrated. However, if

x “ ra0, a1, . . . , ak, ak`1, . . . , ak`n´1, ak`n´1su{v ,

and we let b “ rak, ak`1, . . . , ak`n´1, ak`n´1su{v, then (2.3) tells us

b “
pn´1b` upn´2
qn´1b` uqn´2

or

b “
vpn´1b` upn´2
vqn´1b` uqn´2

.

That is, b satisfies a quadratic equation, so b is either a rational number or a quadratic
surd. Since x “ ra0, a1, . . . , bsu{v, x can be simplified and will be either a rational number or
quadratic surd as well.

For the next property, we can go on to say more about expansions of rational numbers
using a rational numerator.

Theorem 3.1. If a continued fraction expansion of x, a rational number, with numerator u
v

is purely periodic with period length n, then there exists an integer solution to

puqn´2 ` pn´1q
2
´ 4un “ s2, if n is even (3.1)

puqn´2 ` vpn´1q
2
` 4vun “ s2, if n is odd (3.2)

where pn´2

qn´2
and pn´1

qn´1
are the n´2 and n´1 convergents, respectively, of x and s is an integer.

Proof. Assume that we have a purely periodic continued fraction expansion

x “ ra0, a1, . . . , an´1, xsu{v

where n is even. Recall the x2n version of (2.3) for x, so

x “
pn´1xn ` upn´2
qn´1xn ` uqn´2

“
pn´1x` upn´2
qn´1x` uqn´2

,

which can be rearranged; then apply the quadratic formula to

qn´1x
2
` puqn´2 ´ pn´1qx´ upn´2 “ 0.

13



Since x is rational, the discriminant of the quadratic must be a perfect square. Here, the
discriminant is

u2q2n´2 ` 4uqn´1pn´2 ´ 2uqn´2pn´1 ` p
2
n´1,

and we can simplify by utilizing (2.2), then

u2q2n´2 ` 2uqn´2pn´1 ` 4p´1qnun ` p2n´1 “ puqn´2 ` pn´1q
2
´ 4un.

With even n, this results gives (3.1). By a very similar process for the case when n is odd,
we arrive at (3.2).

With these equations for periodicity, we take note of an observation about odd period
lengths, which can now be proved.

Theorem 3.2. If there exists integers x and y such that the expansion of x
y

with numerator
r has odd period length, then for some u,w P N, r “ u

w2 .

Proof. Suppose that we have a continued fraction with odd period length n and numerator
u
v
. Then there must also exist a purely periodic continued fraction with the same period

length and numerator. Since v is an integer, and we know that integers can be decomposed
into a “square” part and a “square-free” part, we can write v “ w2v1 where w is an integer
and v1 is a square-free integer. Substitute this into (3.2) and we know there exists an integer
solution to

puqn´2 ` w
2v1pn´1q

2
` 4w2v1un “ s2. (3.3)

Now suppose that there is a prime number p such that p ą 2 and p � v1. Since v1 is
square-free, we know p ‖ v1. If p � w2, since w2 is a perfect square, then p2m ‖ w2 for some
m. Next, following from Corollary 2.4.i, since w2v1 � qn´2, then p ˚ p2m “ p2m`1 � qn´2.
With these facts, we know p2m`1 � puqn´2`w

2v1pn´1q
2, and since gcdpw2v1, uq “ 1, we know

p2m`1 ‖ 4w2v1un, which ultimately gives the result that p2m`1 ‖ puqn´2`w2v1pn´1q
2`4w2v1un.

However, s2 is a perfect square so the prime decomposition under the fundamental theorem of
arithmetic must have all primes to an even power. We have shown p2m`1 ‖ s2, a contradiction.

Now instead suppose that v1 “ 2, and consider two cases. First, if 22m ‖ w2 for some
m ą 0, then 22p2m`1q “ 24m`2 � puqn´2 ` w2v1pn´1q

2 and 2222m2 “ 22m`3 ‖ 4w2v1un. This
implies that 22m`3 ‖ s2. Since s2 is a perfect square, we find a contradiction.

On the other hand, if gcdpw2, 2q “ 1, then 4 � puqn´2 ` w2v1pn´1q
2 and 8 ‖ 4w2v1un. In

that case, (3.3) can be divided by 4 as

ˆ

uqn´2 ` w
2v1pn´1

2

˙2

` 2w2un “
´s

2

¯2

.

Well-known properties of squares tell us that both sides of the above must be 0 pmod 4q or
1 pmod 4q. This is not the case, however, as 2w2un ” 2 pmod 4q.

Thus, v1 is neither 2 nor divisible by an odd prime, so v1 “ 1 and v “ w2 ˚ 1 “ w2.
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As previously shown, Theorem 2.9 can be used to slightly alter periodic behavior. To
further the possibilities of altering expansions, we set out to determine reversals of purely
periodic continued fractions. First, we need to prove a useful fact about convergents that
we will make use of.

Lemma 3.3. If x “ ra0, a1, . . . , an´1, an, an`1, . . .su{v and x1 “ ran, an´1, . . . , a1, a0, b1, b2, . . .su{v,

then for pk
qk

, the k convergent of x, and
p1k
q1k

, the k convergent of x1,

pn “ p1n, (3.4)

qn´1 “ q1n´1, (3.5)

qn “

#

p1n´1, if n is even,

vp1n´1 if n is odd,
(3.6)

q1n “

#

pn´1, if n is even,

vpn´1 if n is odd.
(3.7)

Proof. For convenience and conciseness, it is possible to think of pn and qn as polyno-
mials in the variables u, v, a0, a1, . . .. For example, let q2pa0, a1, a2q “ va1a2 ` u, then
q12 “ q2pa2, a1, a0q. This way, we avoid the prime notation and write

pnpa0, a1, . . . , anq “ pnpan, an´1, . . . , a0q,

qn´1pa0, a1, . . . , anq “ qn´1pan, an´1, . . . , a0q,

qnpa0, a1, . . . , anq “

#

pn´1pan, an´1, . . . , a0q, if n is even,

vpn´1pan, an´1, . . . , a0q if n is odd,

qnpan, an´1, . . . , a0q “

#

pn´1pa0, a1, . . . , anq, if n is even,

vpn´1pa0, a1, . . . , anq if n is odd.

There are several important details to notice about pn and qn. First, one can see from the
formulas that pn depends only on the first n`1 arguments, that is, pnpa0, a1, . . . , an, an`1, . . .q “
pnpa0, a1, . . . , anq. Similarly, qn does not depend on the first argument nor arguments past
n ` 1, that is, qn´1pa0, a1, . . . , an, an`1, . . .q “ qn´1pa1, . . . , an´1q (one must take care with
the fact that this cannot be applied repeatedly, that is, if qn´1pa0, a1, . . . , an, an`1, . . .q “
qn´1pa1, . . . , an´1q, it is not necessarily true that qn´1pa1, . . . , an´1q “ qn´1pa2, . . . , an´1q).
By using these facts, we can reconsider the above formulas and aim to prove

pnpa0, a1, . . . , anq “ pnpan, an´1, . . . , a0q, (3.8)

qn´1pa0, a1, . . . , an´1q “ qn´1pan, an´1, . . . , a1q, (3.9)

qnpa0, a1, . . . , anq “

#

pn´1pan, an´1, . . . , a1q, if n is even,

vpn´1pan, an´1, . . . , a1q if n is odd,
(3.10)

qnpan, an´1, . . . , a1q “

#

pn´1pa0, a1, . . . , an´1q, if n is even,

vpn´1pa0, a1, . . . , an´1q if n is odd.
(3.11)
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Again using the same facts introduced above, we find several additional formulas that
will be of use,

qnpa0, a1, . . . , anq “

#

pn´1pa1, . . . , anq, if n is even,

vpn´1pa1, . . . , anq if n is odd,
(3.12)

pnpa0, a1, . . . , anq “ a0qnpa0, a1, . . . , anq `

$

&

%

u

v
qn´1pa1, . . . , anq, if n is even,

uqn´1pa1, . . . , anq if n is odd.
(3.13)

When viewed as four formulas, (3.12) and (3.13) can be proved by induction. To start, see
that q0pa0q “ 1 “ p´1pa0q and q1pa0, a1q “ va1 “ vp0pa1q as base cases. For even n, assume
that qn´1pa0, a1, . . . , an´1q “ vpn´2pa1, . . . , an´1q and qnpa0, a1, . . . , anq “ pn´1pa1, . . . , anq,
then

qn`1 “ qn`1pa0, a1, . . . , an, an`1q

“ van`1qnpa0, a1, . . . , an, an`1q ` uqn´1pa0, a1, . . . , an, an`1q

“ van`1qnpa0, a1, . . . , anq ` uqn´1pa0, a1, . . . , an´1q

“ van`1pn´1pa1, . . . , anq ` uvpn´2pa1, . . . , an´1q

“ vpnpa1, . . . , an, an`1q,

as desired for (3.12). The case for odd n follows almost the same steps. After showing base
cases and assuming induction hypotheses, (3.13) can be proved in a similar manner.

Now we can prove (3.8) through (3.11), also using induction. The bases are trivial, as we
have shown in similar situations. Assume that each equation holds up to n. Starting with
the even n case of (3.8), we have

pn`1pa0, a1, . . . , an, an`1q “ van`1pnpa0, . . . , anq ` upn´1pa0, . . . , an´1q

“ van`1a0qnpa0, . . . , anq ` uan`1qn´1pa1, . . . , an´1q

` ua0qn´1pa0, . . . , an´1q ` u
2qn´2pa1, . . . , an´1q

“ van`1a0qnpan`1, . . . , a1q ` uan`1qn´1pan, . . . , a2q

` ua0qn´1pan, . . . , a1q ` u
2qn´2pan´1, . . . , a2q

“ an`1qn`1pan`1, . . . , a1, a0q ` uqnpan, . . . , a0q

“ pn`1pan`1, an, . . . , a2, a1, a0q,

as desired. The case for odd n of (3.8) follows in a similar manner. The proofs for (3.9),
(3.10), and (3.11) are omitted for brevity, but use similar strategies. By proving those
equations, the relations that we originally introduced hold as well.

Theorem 3.4. If x
y
“ ra0, a1, . . . , ak´1su{v and x1

y1
“ rak´1, . . . , a1, a0su{v, then

x1

y1
“

xqk´1
yvpk´2

, if k is even (3.14)

x1

y1
“
xqk´1
ypk´2

, if k is odd. (3.15)

where pk´2

qk´2
and pk´1

qk´1
are the k ´ 2 and k ´ 1 convergents of x

y
, respectively.
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Proof. Assume that we have

x

y
“ ra0, a1, . . . , ak´1su{v “

„

a0, a1, . . . , ak´1,
x

y



u{v

where k is even. We can apply the x2n version of (2.3) to get

x

y
“
pk´1

x
y
` upk´2

qk´1
x
y
` uqk´2

“
pk´1

x
y
` upk´2

qk´1
x
y
` uqk´2

˚

qk´1

vpk´2

qk´1

vpk´2

“
pk´1

xqk´1

yvpk´2
`

uqk´1

v

qk´1
xqk´1

yvpk´2
`

uqk´1qk´2

vpk´2

.

Through multiplication,

xqk´1
yvpk´2

“
x

y
˚

1
1

qk´1

˚
1

vpk´2
“

pk´1
xqk´1

yvpk´2
`

uqk´1

v

qk´1
xqk´1

yvpk´2
`

uqk´1qk´2

vpk´2

˚
1
1

qk´1

˚
1

vpk´2
“

pk´1
xqk´1

yvpk´2
`

uqk´1

v

vpk´2
xqk´1

yvpk´2
` uqk´2

.

Suppose that x1

y1
“ rak´1, . . . , a1, a0su{v. By the results of Lemma 3.3,

xqk´1
yvpk´2

“
p1k´1

xqk´1

yvpk´2
` up1k´1

q1k´2
xqk´1

yvpk´2
` uq1k´2

.

Thus, x1

y1
“

xqk´1

yvpk´2
“ rak´1, . . . , a1, a0su{v.

The proof for odd k is nearly identical.

The utility of the previous theorem can be demonstrated through example.

Example. We previously discovered

133

58
“
“

2, 5, 1, 2, 9
‰

7{4
.

By Theorem 3.4,

133q4
58p3

“
819

86
“
“

9, 2, 1, 5, 2
‰

7{4
.

Note that this does not, in some cases, give results through the same algorithm. Here, for
example, 133

58
“

“

2, 5, 1, 2, 9
‰

7{4
with the max algorithm while 819

86
“

“

9, 3, 5, 21, 2, 3
‰

7{4
with

the same algorithm.

With these results, we have tools to find and confirm periodic continued fraction expan-
sions. However, a question still remains about how many different purely periodic expansions
can be made for a particular numerator.

Theorem 3.5. If there exists

x0
y0
“ ra0, a1, . . . , ak´1su{v
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for some numerator u
v

and integer k ě 3, then for n, the number of purely periodic expansions
with period length k, k � n. Furthermore, if ai ‰ ak´1´i for some 0 ď i ď k´1

2
(that is, the

period of x0

y0
is not symmetric), then 2k � n. In particular, for 0 ď l ă k pmod kq, there are

k expansions of the form

xl
yl
“ ral, . . . , ak´1, a0, . . . , al´1su{v

and there are k expansions of the form

xl
yl
“ ral, . . . , a0, ak´1, . . . , al`1su{v .

Proof. Start with an expansion of x0

y0
with numerator u

v
, and we will construct more. Suppose

x0
y0
“ ra0, a1, . . . , ak´1su{v .

By utilizing Theorem 2.8 and Theorem 2.9,

uy

vpx´ a0yq
“
x1
y1
“ ra1, a2, . . . , ak´1, a0su{v .

Continuing with the same method, we are able to construct expansions that are purely
periodic that use each ai as a leading term. This makes k expansions of this form with
period length k.
Next, the application of Theorem 3.4 to x0

y0
gives

x10
y10
“ rak´1, . . . , a1, a0su{v .

Then, similarly to above, we can repeatedly apply Theorem 2.8 and Theorem 2.9 to find k
expansions that are purely periodic with period length k, which use each ai as leading term,
but in reverse order.

3.2 Period Length 1

With tools at hand to examine periodic continued fractions, we next give special attention
to period length 1, where we can extend ideas that applied to any period length. By using
(3.2), the numerators that can produce expansions with periodic length 1 are classified by
solving

s2 “ puq´1 ` vp0q
2
` 4vu “ v2a20 ` 4vu. (3.16)

Example. For numerator 7
4
, see that 4232 ` 4 ˚ 7 ˚ 4 “ 256 “ 162. This shows the existence

of a continued fraction which has period length 1, specifically with a0 “ 3.

Repeatedly applying examples to (3.16) shows a pattern, which brings us to the following
theorem.
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Theorem 3.6. There exists rational x “ ra0su{v, a purely periodic continued fraction with
period length 1, if and only if the following conditions hold.

1. v “ w2 for some w P N, w2 ă u.

2. There exists m1 ą m2 ą 0 such that u “ 2npm1m2q and w � 2km1 ´ 2n´km2 for some
0 ď k ď n.

Then, a0 “
p2km1´2n´km2q

w
and x “ a0

2
` 2km1`2n´km2

2w
“ 2km1

w
.

Proof. Suppose that we have a continued fraction of the form x “ ra0su{v. Following directly

from Theorem 3.2, v “ w2 for some w P N, so we rewrite (3.16) as

w4a20 ` 4w2u “ w2
pw2a20 ` 4uq “ ps1q2

where s1 is an integer. Let s “ s1

w
in order to eliminate the w2 factor, and thus there must

be an integer solution to

w2a20 ` 4u “ s2.

This can be rearranged as

s2 ´ w2a20 “ 4u,

and factored as

ps´ wa0qps` wa0q “ 4u. (3.17)

Suppose u “ 2nm1m2 for some n,m1,m2 P N where m1 ą m2, 2 - m1, and 2 - m2. Now we
have

ps´ wa0qps` wa0q “ 2n`2m1m2.

Let x “ s´wa0 and y “ s`wa0, then xy “ 2n`2m1m2 and y´x “ 2wa0. Since 2 � y´x, it
must be that 2 � x and 2 � y. Therefore, we may suppose that y “ 2k`1m1 and x “ 2n´k`1m2

for some 0 ď k ď n. So,

2wa0 “ y ´ x “ 2k`1m1 ´ 2n´k`1m2,

and after dividing by 2 we find

wa0 “ 2km1 ´ 2n´km2.

Since a0 is an integer, w � 2km1 ´ 2n´km2 and a0 “
2km1´2n´km2

w
.

Finally, we will solve for x as

x “ ra0su{w2 ùñ x “ a0 `
u{w2

x
ùñ x2 ´ a0x´ u{w

2
“ 0.
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The the quadratic formula gives

x “
a0 ˘

b

a20 `
4u
w2

2
.

Substitute a0 and u to find

x “

2km1´2n´km2

w
˘

b

p2
km1´2n´km2

w
q2 ` 2n`2m1m2

w2

2

“

2km1´2n´km2

w
˘

b

p2
km1`2n´km2

w
q2

2

“

2km1´2n´km2

w
˘ 2km1`2n´km2

w

2
.

The subtractive case gives a negative number, so we shall only consider the additive case.
Therefore,

x “
2km1 ` 2km1

2w
“

2km1

w
.

The converse can be proved by construction. For numerator u
v
, suppose that v “ w2 for

some w P N, w2 ă u. Also suppose that there exists m1 ą m2 ą 0 such that u “ 2npm1m2q

and w � 2km1 ´ 2n´km2 for some 0 ď k ď n. Let a0 “
2km1´2n´km2

w
and x “ x0 “

2km1

w
. For

the next step,

x1 “
u
w2

x0 ´ a0
“

2nm1m2

w2

2km1

w
´ 2km1´2n´km2

w

“

2nm1m2

w2

2n´km2

w

“
2km1

w
“ x0.

Thus, we can construct x “ ra0su{v, a purely periodic continued fraction with period length
1.

Recall the discussion of numerator 7
4
, and apply our new result.

Example. Let r “ 7
4
. By Theorem 3.6, a0 “

p7´1q
2

“ 3 and x “ 3
2
`

p7`1q
4

“ 7
2
. Indeed,

we confirm with direct computation that 7
2
“

“

3
‰

r
. To go further, use Theorem 2.8 to find

examples such as

1

2
“
“

0, 3
‰

r
,

11

2
“
“

5, 3
‰

r
,

13

10
“
“

1, 5, 2, 17, 3
‰

r
,

and so on.

4 Other Results and Conjectures

For continued fractions with integer numerators, certain facts can be shown such as the
existence of arbitrarily long terminating expansions and infinitely many distinct periodic
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expansions [1, Theorem 1.11 on p.2446]. This relies on several expansion techniques [1,
Lemma 1.10 on p.2446], such as for N ě 2 and k ě 0,

N “

”

pN ´ 1qk, N
ı

N

and

N “

”

pN ´ 1q
8

ı

N
.

The hope is to make an analogue for expansions with rational numerators. However,
these prove to be slightly more complicated, especially considering the variety of algorithms
that could be used. Several specific cases have been discovered, and left as propositions.

Proposition 4.1. For m,n, u, v P N and the max algorithm,

(i) u
v
“ mnv`n

v
“ rmn,mv ` 1su{v, where v ą n.

(ii) u
v
“ 2m´1

m
“ r1, 2, 2m´ 3, 2m´ 1su{v, where m ą 2.

(iii) u
v
“ 2m´2

m
“ r1, 2,m´ 3,m´ 1su{v, where m ą 4.

(iv) u
v
“ 6m´1

2m
“ r2, 3, 3m´ 2, 12m´ 2su{v, where m ą 1.

Proof. The construction of piq follows

a0 “ t
mnv ` n

v
u “ tmn`

n

v
u “ mn x1 “

pmnv ` nq{v

n{v
“ mv ` 1.

The construction of piiq follows

a0 “ t
2m´ 1

m
u “ t2´

1

m
u “ 1 x1 “

p2m´ 1q{m

pm´ 1q{m
“

2m´ 1

m´ 1

a1 “ t
2m´ 1

m´ 1
u “ 2 x2 “

p2m´ 1q{m

1{pm´ 1q
“

2m2 ´ 3m` 1

m

a2 “ t
2m2 ´ 3m` 1

m
u “ t2m´ 3`

1

m
u “ 2m´ 3 x3 “

p2m´ 1q{m

1{m
“ 2m´ 1.

The construction of piiiq follows

a0 “ t
2m´ 2

m
u “ t2´

2

m
u “ 1 x1 “

p2m´ 2q{m

pm´ 2q{m
“

2m´ 2

m´ 2

a1 “ t
2m´ 2

m´ 2
u “ 2 x2 “

p2m´ 2q{m

2{pm´ 2q
“

2m2 ´ 6m` 4

2m

a2 “ t
2m2 ´ 6m` 4

2m
u “ tm´ 3`

2

m
u “ m´ 3 x3 “

p2m´ 2q{m

4{p2mq
“ m´ 1.
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The construction of pivq follows

a0 “ t
6m´ 1

2m
u “ t3´

1

2m
u “ 2 x1 “

p6m´ 1q{p2mq

p2m´ 1q{p2mq
“

6m´ 1

2m´ 1

a1 “ t
6m´ 1

2m´ 1
u “ 3 x2 “

p6m´ 1q{p2mq

2{p2m´ 1q
“

12m2 ´ 8m` 1

4m

a2 “ t
12m2 ´ 8m` 1

4m
u “ t3m´ 2`

1

4m
u “ 3m´ 2 x3 “

p6m´ 1q{p2mq

1{p4mq
“ 12m´ 2.

Proposition 4.2. For any u, v P N and the min algorithm,

u

v
“ r0, 1su{v .

Proof. Select a0 “ tu
v
u´ tu

v
u “ 0. Then, x1 “

u{v
u{v
“ 1.

For conjectures about the behavior of continued fraction expansions with rational numer-
ators, there are a number of interesting properties that show up that could not be proved
at the time of this writing. In particular, these conjectures were made while collecting data
over a large sample of expansions, and are mentioned in Appendix A.1. Following that, more
conjectures could be made about the data in Appendix A.3.

5 Future Work

From the onset, there were several inquiries regarding continued fractions, and more have
spawned along the way. One of the desires for this work was to find a method for proving
that any expansion of a rational number terminates for a certain numerator (such as 3

2
).

This is one of the most basic properties of simple continued fractions and appears to carry
over to some cases here. See A.1 for lists of numerators that appear to have this property
with the max and min algorithms. We have discovered some that work for both algorithms,
which includes

3

2
,

4

3
,

7

2
,

9

2
,

10

3
, and

14

3
.

The most that can be said up to this point is that none of these will produce continued
fraction expansions that are periodic with odd period length. Future work could perhaps
show that every rational number will indeed terminate with these numerators. This could
involve a method of showing a bound on the algorithm remainders or showing a strictly
decreasing sequence.

Furthermore, it is within the realm of possibility that the list of numerators that appear
to terminate all rational numbers could be added to by computing further. That is, over
the set of rational numbers, calculate the expansions to a greater length than is done here.
Perhaps this could show that some expansions with unknown behavior actually do terminate.
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Another possibility for future work is to look into other algorithms for computing con-
tinued fraction expansions. The main focus in this work was to apply either the max or min
algorithm, yet there are numerous other possibilities. For example, one could compute con-
tinued fractions by alternating each step between the min and max algorithms. This could
produce patterns that were not seen here. There is also the possibility that every rational
expansion could terminate if the correct algorithm is chosen. One could intelligently choose
the max, min, or some other choice at each step. However, this is all speculation and requires
investigation.

To conclude, there is certainly further work to be done on the subject of continued
fractions. A number of interesting patterns and properties have been discovered for rational
numerators, but questions remain. These discoveries could have impact on other fields of
mathematics, and that is an intriguing prospect for the future.
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A Data Collection

This section is included to look at some of the data and trends that have been found, with
the hope of inspiring future work.

A.1 Terminating Rationals

As discussed, every simple continued fraction expansion of a rational number terminates.
We have shown that this is not the case for expansions with rational numerators. However,
there appears to be some numerators for which all rational expansions terminate, based on
having large samples that do just that. Here we list all numerators u

v
(u, v ă 100) for which

all expansions of x
y

(x, y ă 500) terminate in less than 100 steps with the

(i) max algorithm:

3
2
, 4

3
, 5

2
, 7

2
, 8

3
, 8

5
, 9

2
, 10

3
, 10

7
, 11

2
, 11

3
, 12

5
, 12

7
, 12

11
, 14

3
, 14

5
, 15

2
, 16

3
, 17

2
, 18

5
, 18

7
, 18

11
, 19

2
, 20

3
, 20

7
, 20

11
,

21
2

, 22
3

, 23
2

, 23
3

, 24
5

, 24
7

, 24
11

, 24
13

, 26
3

, 26
5

, 27
2

, 27
5

, 28
3

, 29
2

, 29
3

, 30
11

, 30
13

, 33
2

, 33
5

, 33
7

, 34
3

, 34
5

, 34
7

, 35
2

, 35
3

,
36
5

, 36
11

, 36
13

, 38
3

, 38
5

, 39
2

, 39
5

, 39
7

, 40
3

, 40
7

, 40
17

, 42
11

, 43
2

, 44
3

, 44
5

, 45
2

, 45
13

, 47
2

, 47
3

, 48
5

, 48
7

, 48
11

, 48
13

, 48
17

, 48
19

,
50
7

, 51
2

, 52
3

, 52
5

, 52
7

, 52
11

, 53
2

, 53
3

, 54
5

, 54
7

, 54
11

, 54
17

, 55
2

, 55
7

, 56
3

, 56
5

, 57
5

, 58
3

, 60
7

, 60
11

, 60
13

, 60
17

, 60
19

, 60
31

, 62
7

,
63
2

, 63
13

, 64
5

, 64
13

, 65
2

, 65
3

, 65
7

, 66
5

, 66
7

, 66
17

, 67
2

, 68
3

, 68
5

, 68
7

, 69
2

, 69
5

, 70
3

, 70
13

, 72
5

, 72
11

, 72
13

, 72
17

, 74
5

, 75
2

, 75
7

,
76
7

, 76
11

, 77
2

, 77
3

, 78
5

, 78
7

, 80
3

, 80
7

, 80
23

, 82
3

, 84
5

, 84
11

, 84
13

, 84
17

, 84
19

, 84
23

, 86
3

, 86
5

, 87
2

, 87
5

, 88
3

, 88
5

, 90
7

, 90
13

, 90
17

,
90
29

, 90
31

, 92
3

, 93
2

, 94
3

, 95
2

, 95
3

, 95
7

, 96
5

, 96
7

, 96
13

, 96
17

, 98
5

, 99
5

, 99
13

.

(ii) min algorithm:

3
2
, 4

3
, 7

2
, 9

2
, 10

3
, 14

3
.

Next, we examine several particular numerators listed above to see patterns in the lengths
of the continued fraction expansions. For numerators that appear to make all rational
numbers terminate, there seems to be several patterns.

1. The max and min algorithms produce different behavior in regard to frequency of
expansion length.

2. Expansions of odd length are relatively more common than even lengths. The curves
of odd and even lengths appear to differ by a factor of approximately v (where u

v
is the

numerator that was used).

3. The min algorithm appears to produce expansion lengths of larger mean and larger
standard deviation.

Examples of these patterns are shown in the following figures.

25



0 10 20 30 40 50
Length

20000

40000

60000

80000

100000
Frequency

Figure 1: Terminating lengths of x
y

(x, y ă 1000) with numerator 3
2

and the max algorithm.
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Figure 2: Terminating lengths of x
y

(x, y ă 1000) with numerator 3
2

and the min algorithm.
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Figure 3: Terminating lengths of x
y

(x, y ă 1000) with numerator 4
3

and the max algorithm.
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Figure 4: Terminating lengths of x
y

(x, y ă 1000) with numerator 4
3

and the min algorithm.
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Figure 5: Terminating lengths of x
y

(x, y ă 1000) with numerator 99
13

and the max algorithm.

A.2 Periodic Rationals

Unlike simple continued fractions, those with rational numerators may be periodic. For
numerators that can be used to create periodic expansions, there are two data sets of interest.
First is the frequency of lengths for those expansions that do terminate. Second is the
frequency of tail lengths for the expansions that become periodic. Several examples of these
are shown below.
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Figure 6: Terminating lengths of x
y

(x, y ă 1000) with numerator 7
4

and the max algorithm.
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Figure 7: Tail lengths of x
y

(x, y ă 1000) with numerator 7
4

and the max algorithm.
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Figure 8: Terminating lengths of x
y

(x, y ă 1000) with numerator 19
6

and the max algorithm.
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Figure 9: Tail lengths of x
y

(x, y ă 1000) with numerator 19
6

and the max algorithm.
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A.3 Continued Fraction Rational Numerators

Below is the complete dataset that was collected for a sample of continued fraction nu-
merators. The collected data includes, for each numerator, the portion of expansions that
terminate, the portion of expansions that are eventually periodic, the period lengths that
were discovered, and the portion of expansions that neither terminated nor became periodic.

Table 2: Numerators u
v

(u, v ă 25) and the corresponding
percentage of expansions that are terminating, periodic,
or unknown over a sample of all x

y
(x, y ă 500, 151831

total) in less than 200 steps with the max algorithm.

u
v

Terminating % Periodic % Period Lengths Unknown %
3
2

100.0 0 0
4
3

100.0 0 0
5
2

100.0 0 0
5
3

92.71 7.290 12 0
5
4

39.01 60.95 1, 14, 16 0.04018
6
5

99.31 0.6935 10, 16 0
7
2

100.0 0 0
7
3

50.23 49.77 2, 6 0
7
4

83.33 16.67 1, 3, 5, 28 0
7
5

65.29 34.23 8, 16, 24 0.4782
7
6

29.32 64.73 2, 4, 6 5.950
8
3

100.0 0 0
8
5

100.0 0 0
8
7

50.31 49.68 8 0.006586
9
2

100.0 0 0
9
4

83.33 16.67 1 0
9
5

99.94 0.06455 38 0
9
7

85.78 14.12 8 0.09748
9
8

37.86 61.03 2, 18 1.112
10
3

100.0 0 0
10
7

100.0 0 0
10
9

83.21 16.61 1, 6, 26 0.1798
11
2

100.0 0 0
11
3

100.0 0 0
11
4

83.14 16.86 1, 4, 12 0.003293

Continued on next page

31



Table 2 – Continued from previous page
u
v

Terminating % Periodic % Period Lengths Unknown %
11
5

24.70 74.56 2, 4, 6, 8, 24, 26 0.7396
11
6

58.51 41.30 4, 8 0.1884
11
7

43.65 37.49 6, 18 18.86
11
8

20.40 33.75 4, 6, 8, 32, 70 45.85
11
9

39.55 0.1917 22 60.26
11
10

8.125 41.16 2, 4, 6, 8, 12, 14, 18, 20, 24, 42, 44, 48, 52, 58 50.72
12
5

100.0 0 0
12
7

100.0 0 0
12
11

100.0 0 0
13
2

85.06 14.94 2 0
13
3

50.23 49.77 2 0
13
4

41.71 58.26 1, 2, 14 0.03293
13
5

90.84 9.119 8, 10 0.04347
13
6

27.80 68.57 2, 6, 12, 16, 24 3.637
13
7

33.30 63.53 4 3.171
13
8

30.61 18.12 2, 8, 24, 34, 40, 72 51.27
13
9

20.10 13.90 1, 2, 3, 12 66.00
13
10

12.67 17.87 8 69.45
13
11

24.23 0 75.77
13
12

5.695 17.64 2, 4, 6, 10, 12, 14 76.66
14
3

100.0 0 0
14
5

100.0 0 0
14
9

68.91 30.51 2, 8, 10, 14, 24 0.5835
14
11

64.20 0 35.80
14
13

34.96 24.14 12, 36 40.90
15
2

100.0 0 0
15
4

83.33 16.67 1 0
15
7

64.12 35.88 2 0
15
8

75.07 24.93 2 0
15
11

47.50 42.50 8, 10 10.00
15
13

78.54 14.06 8 7.400
15
14

58.72 35.26 2, 10, 60 6.021
16
3

100.0 0 0
16
5

83.01 16.99 2 0

Continued on next page
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Table 2 – Continued from previous page
u
v

Terminating % Periodic % Period Lengths Unknown %
16
7

50.31 49.69 4 0
16
9

78.34 21.65 1, 4 0.0006586
16
11

98.60 0 1.405
16
13

91.25 0.8463 14 7.900
16
15

29.74 42.70 2, 8, 10, 16, 20 27.55
17
2

100.0 0 0
17
3

99.96 0.04413 8 0
17
4

41.71 58.29 1, 4, 5, 6, 24 0
17
5

99.98 0 0.01515
17
6

58.49 41.21 4 0.3003
17
7

52.70 28.01 100 19.29
17
8

15.26 44.71 2, 4, 6, 10, 12, 16, 18, 22 40.03
17
9

24.98 61.76 4, 8, 16, 18, 30, 44 13.26
17
10

28.56 19.71 8, 16, 26, 34 51.73
17
11

17.32 0 82.68
17
12

7.827 7.363 4, 74 84.81
17
13

4.410 0.3030 12 95.29
17
14

6.478 0 93.52
17
15

6.075 1.037 8 92.89
17
16

2.608 4.564 1, 2, 6, 10, 12, 14, 48 92.83
18
5

100.0 0 0
18
7

100.0 0 0
18
11

100.0 0 0
18
13

99.43 0.007245 8 0.5579
18
17

87.47 9.210 70 3.323
19
2

100.0 0 0
19
3

50.23 49.77 2, 4, 6 0
19
4

83.27 16.73 1, 5, 8, 16 0
19
5

50.05 49.72 4 0.2318
19
6

23.82 69.68 2, 4, 6, 8, 12, 16, 66 6.497
19
7

90.52 0.0006586 12 9.476
19
8

25.53 26.62 4, 12, 24 47.85
19
9

9.770 20.34 1, 2, 4, 6, 8, 10, 12, 16, 22, 27, 32, 54, 76 69.89
19
10

18.57 55.70 4, 8, 10, 20 25.73

Continued on next page
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Table 2 – Continued from previous page
u
v

Terminating % Periodic % Period Lengths Unknown %
19
11

23.32 0 76.68
19
12

6.739 11.64 2, 4, 48 81.62
19
13

11.06 0 88.94
19
14

8.810 5.623 12 85.57
19
15

3.157 4.303 4, 8 92.54
19
16

2.323 4.417 4, 8 93.26
19
17

3.131 0 96.87
19
18

2.276 4.074 2, 4, 6, 8, 10, 18 93.65
20
3

100.0 0 0
20
7

100.0 0 0
20
9

83.38 16.62 2, 6 0
20
11

100.0 0 0
20
13

93.08 6.350 10, 16, 38 0.5723
20
17

85.65 0.02305 8 14.32
20
19

69.39 26.26 12 4.355
21
2

100.0 0 0
21
4

83.33 16.67 1 0
21
5

67.69 32.31 2 0
21
8

75.03 24.97 2, 16 0
21
10

59.67 40.29 2, 26 0.04215
21
11

99.99 0.01054 8 0.0006586
21
13

66.74 14.41 16, 24 18.85
21
16

16.78 16.80 1, 3, 4, 9, 16, 36, 40 66.42
21
17

29.51 0.1910 10 70.30
21
19

22.21 25.86 16, 48 51.93
21
20

18.95 34.88 2, 6, 10, 12, 14, 26, 44, 48 46.17
22
3

100.0 0 0
22
5

76.31 23.69 2, 6 0
22
7

50.31 49.69 2, 4, 10 0.003293
22
9

83.34 16.23 1, 9 0.4307
22
13

92.78 0.4847 10, 22 6.735
22
15

16.62 16.42 4, 8, 12, 50 66.95
22
17

12.18 0.3478 4, 20 87.47
22
19

21.16 0 78.84

Continued on next page
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Table 2 – Continued from previous page
u
v

Terminating % Periodic % Period Lengths Unknown %
22
21

8.895 14.76 2, 10, 14 76.35
23
2

100.0 0 0
23
3

100.0 0 0
23
4

57.76 42.24 1, 4 0.001317
23
5

99.34 0.6408 8, 34 0.01844
23
6

37.07 59.72 4, 8, 32 3.213
23
7

20.71 44.68 6, 12 34.62
23
8

32.69 53.53 4, 8, 12, 32 13.78
23
9

40.22 8.751 4, 24 51.02
23
10

15.36 10.45 8, 10, 16, 40 74.18
23
11

4.785 12.89 2, 4, 6, 12, 24 82.33
23
12

12.22 25.21 4, 12, 20 62.57
23
13

11.07 0 88.93
23
14

5.895 7.275 6, 12, 18, 24, 26 86.83
23
15

6.782 0.9912 8, 16 92.23
23
16

3.731 2.521 4, 20 93.75
23
17

4.071 0 95.93
23
18

3.486 0.001317 6 96.51
23
19

2.940 0 97.06
23
20

2.551 0.02635 8 97.42
23
21

2.432 0 97.57
23
22

1.619 1.855 2, 6, 8, 20 96.53
24
5

100.0 0 0
24
7

100.0 0 0
24
11

100.0 0 0
24
13

100.0 0 0
24
17

98.90 0.04479 16 1.056
24
19

83.93 11.05 4, 26 5.024
24
23

49.12 44.22 14, 86 6.656
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Table 3: Numerators u
v

(u, v ă 25) and the corresponding
percentage of expansions that are terminating, periodic,
or unknown over a sample of all x

y
(x, y ă 500, 151831

total) in less than 200 steps with the min algorithm.

u
v

Terminating % Periodic % Period Lengths Unknown %
3
2

100.0 0 0
4
3

100.0 0 0
5
2

100.0 0.001976 8 0
5
3

96.81 0 3.190
5
4

41.69 56.72 1, 14, 16, 28, 34 1.589
6
5

99.81 0.1917 10, 16 0
7
2

100.0 0 0
7
3

41.57 45.05 4, 6, 12, 18, 48, 50, 66, 74 13.37
7
4

22.56 5.899 2, 20 71.54
7
5

38.30 15.04 10 46.66
7
6

22.31 48.33 2, 4, 6, 10, 16, 18, 22 29.36
8
3

94.87 5.116 4, 24 0.01054
8
5

77.66 0 22.34
8
7

49.67 50.28 8, 12, 22, 36 0.04545
9
2

100.0 0 0
9
4

68.73 12.56 2, 10, 80, 96 18.71
9
5

13.73 8.787 10 77.49
9
7

57.51 16.43 8, 14, 16, 52 26.06
9
8

37.17 54.06 2, 12, 18, 20, 86 8.770
10
3

100.0 0 0
10
7

66.02 0 33.98
10
9

83.24 16.49 1, 6, 10, 26 0.2687
11
2

99.92 0.07772 6 0
11
3

89.23 0.5539 12, 72, 90 10.22
11
4

13.42 12.59 2, 6, 8, 16 73.99
11
5

4.860 3.946 10, 20, 60 91.19
11
6

2.760 0.06520 12 97.17
11
7

2.999 0.6501 12 96.35
11
8

3.152 0.4057 6 96.44
11
9

4.900 0 95.10
11
10

3.514 6.750 2, 4, 6, 10, 32 89.74

Continued on next page
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Table 3 – Continued from previous page
u
v

Terminating % Periodic % Period Lengths Unknown %
12
5

99.98 0 0.02042
12
7

57.23 0.0006586 6 42.77
12
11

88.03 11.95 6, 30 0.02042
13
2

100.0 0 0.004610
13
3

42.97 35.70 4, 6, 12, 18, 22, 32, 90 21.33
13
4

13.58 10.57 4, 6, 8, 10, 12, 16, 24 75.85
13
5

6.137 1.929 10, 30 91.93
13
6

2.671 0.5038 4, 16 96.83
13
7

1.975 0.7798 4 97.25
13
8

1.705 1.060 2, 4 97.23
13
9

2.094 0.5025 2 97.40
13
10

2.071 0 97.93
13
11

4.952 0 95.05
13
12

2.320 6.129 2, 4, 6, 10, 14, 48 91.55
14
3

100.0 0 0
14
5

70.75 0.3484 6 28.91
14
9

11.35 3.019 2 85.63
14
11

11.27 14.98 6, 8 73.75
14
13

22.69 46.49 38, 40 30.82
15
2

99.80 0.1989 8 0
15
4

83.10 16.24 1, 2, 6, 8, 18 0.6639
15
7

15.75 0 84.25
15
8

10.35 4.606 2, 4, 8 85.04
15
11

10.12 0.001317 6 89.87
15
13

49.01 0 50.99
15
14

54.36 26.06 2, 10, 16 19.58
16
3

89.49 10.46 6, 8 0.05006
16
5

40.92 28.87 8, 12, 14, 20, 24 30.21
16
7

13.23 3.860 8, 42, 76 82.91
16
9

5.315 2.431 2, 4 92.25
16
11

6.212 0 93.79
16
13

15.53 0 84.47
16
15

20.57 37.44 2, 8, 10, 12, 16, 24, 30 41.99
17
2

95.40 4.490 10, 22 0.1074

Continued on next page
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Table 3 – Continued from previous page
u
v

Terminating % Periodic % Period Lengths Unknown %
17
3

75.12 0.7699 4, 30 24.11
17
4

13.04 8.002 8, 12, 16, 24, 40 78.95
17
5

6.819 1.775 10 91.41
17
6

3.084 0.1594 16 96.76
17
7

1.988 0 98.01
17
8

1.467 0.8220 4, 16 97.71
17
9

1.172 0 98.83
17
10

1.359 0 98.64
17
11

1.757 0 98.24
17
12

1.290 0 98.71
17
13

1.053 0 98.95
17
14

1.185 0 98.82
17
15

2.540 0.05071 8, 10, 18 97.41
17
16

1.449 3.462 1, 2, 4, 6, 8, 10, 16, 26 95.09
19
2

98.02 1.876 8, 10 0.1034
19
3

39.60 30.02 8, 12, 24, 48, 90 30.37
19
4

15.00 7.502 2, 6, 8, 16, 20, 22 77.50
19
5

4.585 3.570 6, 8, 10, 20 91.84
19
6

2.671 1.552 10, 48 95.78
19
7

2.469 0 97.53
19
8

1.769 0 98.23
19
9

1.208 0.3807 6 98.41
19
10

0.9623 0 99.04
19
11

1.242 0 98.76
19
12

1.081 0.4031 2 98.52
19
13

0.9458 0 99.05
19
14

1.249 0 98.75
19
15

1.133 0.0006586 10 98.87
19
16

1.465 0.9076 4, 8 97.63
19
17

1.668 0 98.33
19
18

1.189 1.664 2, 6, 8, 10 97.15
20
3

99.26 0.7344 6, 10 0.0006586
20
7

42.98 44.04 8, 14, 16 12.98
20
9

20.17 5.589 2, 10 74.24

Continued on next page
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Table 3 – Continued from previous page
u
v

Terminating % Periodic % Period Lengths Unknown %
20
11

8.207 0 91.79
20
13

9.316 0 90.68
20
17

41.65 0.3813 16 57.97
20
19

88.65 0.1515 18 11.20
21
2

99.54 0.4624 4 0
21
4

73.39 24.80 2, 4, 8 1.813
21
5

89.65 0 10.35
21
8

19.25 11.37 2, 4, 8, 24, 32 69.37
21
10

5.024 2.503 8 92.47
21
11

4.620 0 95.38
21
13

3.491 0 96.51
21
16

3.024 1.180 1, 2 95.80
21
17

4.926 0 95.07
21
19

26.23 0 73.77
21
20

12.75 19.39 2, 6, 12, 20, 26 67.85
22
3

99.84 0.1508 6, 8 0.005269
22
5

57.54 20.02 10 22.44
22
7

13.64 8.243 10, 42 78.12
22
9

9.221 1.394 2, 12, 70 89.38
22
13

1.995 0 98.01
22
15

2.024 1.687 8 96.29
22
17

2.970 0.7607 4 96.27
22
19

6.261 0 93.74
22
21

4.918 6.513 2, 14 88.57
23
2

99.73 0.1199 20 0.1495
23
3

80.09 0.2490 34 19.66
23
4

25.55 5.168 2, 18, 20 69.28
23
5

4.987 4.332 8, 10, 24 90.68
23
6

2.381 1.704 6, 14 95.92
23
7

2.142 0.03425 6 97.82
23
8

1.219 0.9359 8, 18 97.84
23
9

1.828 0.1126 4, 20 98.06
23
10

1.027 0 98.97
23
11

1.041 0.008562 6 98.95

Continued on next page
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Table 3 – Continued from previous page
u
v

Terminating % Periodic % Period Lengths Unknown %
23
12

0.8167 0.7423 4, 6 98.44
23
13

1.124 0 98.88
23
14

0.7660 0 99.23
23
15

1.048 0 98.95
23
16

0.7673 0.3346 8 98.90
23
17

0.9464 0 99.05
23
18

0.7416 0.3860 6 98.87
23
19

0.9096 0 99.09
23
20

0.7824 0.2233 8 98.99
23
21

1.171 0 98.83
23
22

1.113 0.5835 2 98.30
24
5

99.99 0 0.01449
24
7

46.15 44.63 8, 10, 28 9.223
24
11

15.35 0.01910 22 84.63
24
13

10.82 0.4637 4, 10 88.72
24
17

11.80 0 88.20
24
19

14.84 2.231 4 82.93
24
23

47.41 39.99 14 12.60

B Mathematica Code

The following code can be pasted as seen and executed in a Mathematica notebook. There
are three functions which encompass the computations needed for this work, each of which
are described in more detail using code comments.

• CFRational - Create a single continued fraction expansion.

• MultiXSingleR - Collect data about a single numerator over a sample of continued
fraction expansions.

• MultiR - Collect data over a sample of numerators, each over a sample of continued
fraction expansions.

(*

CFRational Computes a continued fraction for a rational number x/y \

with a numerator u/v.

Arguments:
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x: The numerator to compute for.

y: The denominator to compute for.

u: The numerator of the r-value to compute with.

v: The denominator of the r-value to compute with.

max: The max number of iterations to compute up to.

dec: The max decrease allowed for a_n values.

printXList: If we should print the x list at the end.

*)

CFRational[x_, y_, u_, v_, max_, dec_, printXList_] := Block[ {},

{$MaxExtraPrecision = 1000};

(* Start with xN=x, yN=y *)

xN = x;

yN = y;

(* Start with blank lists of a_n and x_n *)

aList = {};

xList = {};

For[iteration = 0, iteration < max, iteration++, Block[ {},

(* Check if xN/yN is an integer,

we can stop now if so *)

If[IntegerQ[(xN/yN)], Block[{},

AppendTo[aList, (xN/yN)];

Break[]

]];

(* Set a_n to be the floor of xN/yN *)

aN = Floor[(xN/yN)];

(* Check if we should decrease aN,

make sure it is a safe value if so *)

If[iteration == 0, Block[{},

aNTemp = aN;

aN = Max[aN - dec, 0];

While[(xN/yN) - aN > (u/v) && aN < aNTemp, Block[{}, aN++]];

]];

If[iteration != 0, Block[{},

aNTemp = aN;

aN = Max[aN - dec, 1];

While[(xN/yN) - aN > (u/v) && aN < aNTemp, Block[{}, aN++]];
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]];

(* Add to our running lists *)

AppendTo[xList, (xN/yN)];

AppendTo[aList, aN];

(* Check if we already have this xN/yN,

it means a cycle was hit if so *)

If[xList[[Floor[Length[xList] / 2]]] == (xN/yN), Block[{},

(* Get the periodic part of the aN list *)

For[i = 0, i < Length[xList], i++, Block[ {},

positions = Position[xList, xList[[i]]];

If[positions[[1]][[1]] == 1 && aList[[1]] == 0,

Block[{}, positions = Delete[positions, 1]]];

If[Length[positions] >= 2, Block[{}, Break[];]];

]];

If[Length[positions] >= 2, Block[{},

periodicPart =

Part[aList, positions[[1]][[1]] ;; positions[[2]][[1]] - 1];

(* Drop the end of the a_n list,

and append the periodic part *)

aList = Drop[

aList, -(Length[aList] - positions[[1]][[1]] + 1)];

AppendTo[aList, periodicPart];

Break[];

]];

]];

(* Setup our new xN/yN value *)

xNTemp = xN;

xN = u*yN;

yN = v*xNTemp - v*aN*yN;

(* Reduce to lowest terms *)

gcd = GCD[xN, yN];

xN = xN/gcd;

yN = yN/gcd;
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]];

If[printXList, Block[{}, Print[xList]]];

Return[aList];

]

(*

MultiXSingleR does analysis on a range of x/y continued fractions for \

a single numerator u/v value.

Arguments:

minX: The min numerator to compute for.

maxX: TThe max numerator to compute for.

minY: The min denomiator to compute for.

maxY: The max denomiator to compute for.

u: The numerator of the r-value to compute with.

v: The denominator of the r-value to compute with.

max: The max number of iterations to compute up to.

dec: The max decrease allowed for a_n values.

multiR: If we are handling multiple r values.

*)

MultiXSingleR[minX_, maxX_, minY_, maxY_, u_, v_, max_, dec_,

multiR_] := Block[ {},

startTime = AbsoluteTime[];

(* Keep track of whether the CF expansions terminate, are periodic,

or unknown *)

endings = Array[0 &, 3];

(* Keep track of the CF expansion with the longest period *)

periodLengths = Array[0 &, max];

If[! multiR, Block[{},

(* Keep track of the longest CF expansions *)

lengthsTerminate = Array[0 &, max];

lengthsPeriodic = Array[0 &, max];

longest = 0;

longestLength = 0;

longestPeriod = 0;

longestLengthPeriod = 0;

]];

For[x = minX, x < maxX, x++, Block[ {},
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If[! multiR, Block[{},

(* Do some quick calculations to estimate time remaining *)

partDone = ((x - minX)/(maxX -

minX) + ((y - minY)/(maxY - minY))/(maxX - minX));

secondsSoFar = AbsoluteTime[] - startTime;

secondsRemaining = ((1/(partDone + 0.001)) - 1)*secondsSoFar;

If[secondsRemaining < 120, Block[{},

percentPrint =

PrintTemporary[N[partDone*100, 2],

"% EstimatedTimeRemaining:", N[secondsRemaining, 3],

" seconds"];

], Block[{},

percentPrint =

PrintTemporary[N[partDone*100, 2],

"% EstimatedTimeRemaining:", N[secondsRemaining/60, 4],

" minutes"];

]];

]];

For[y = minY, y < maxY, y++, Block[ {},

(* If the x and y are coprime,

do the CF expansion *)

If[CoprimeQ[x, y], Block[ {},

result = CFRational[x, y, u, v, max, dec, False];

(*

Check what type of ending the CF expansion had and get

data accordingly *)

length = Length[result];

If[ListQ[result[[Length[result]]]], Block[{},

(* Periodic *)

endings[[2]]++;

periodLength = Length[result[[Length[result]]]];

periodLengths[[periodLength]]++;

If[! multiR, Block[{},

If[periodLength > longestLengthPeriod, Block[ {},

longestLengthPeriod = periodLength;

longestPeriod = x/y;

]];

lengthsPeriodic[[length]]++;
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]];

], If[length >= max, Block[{},

(* Overmax(Unknown) *)

endings[[3]]++;

], Block[{},

(* Terminating *)

endings[[1]]++;

If[! multiR, Block[{},

lengthsTerminate[[length]]++;

If[length > longestLength, Block[ {},

longestLength = length;

longest = x/y;

];

]];

]]];

];

]];

]];

NotebookDelete[percentPrint];

];

]

(* If we want data printed, do so now *)

If[! multiR, Block[{},

Print["r=", u, "/", v];

Print["Terminated: ", endings[[1]]];

Print["Periodic: ", endings[[2]]];

Print["Unknown(overflow): ", endings[[3]], "\n"];

Print["Terminating CF lengths: ", lengthsTerminate];

Print["Longest:", longest, ", with length ", longestLength, "\n"];

Print["Perioidic CF lengths: ", lengthsPeriodic, "\n"];

Print["Lengths of periods: ", periodLengths];

Print["Longest Period:", longestPeriod, " with length ",

longestLengthPeriod];

]];

AppendTo[terminated, {u/v, endings[[1]]}];

AppendTo[periodic, {u/v, endings[[2]]}];

periodLengths = DeleteDuplicates[periodLengths];

uniqueLengths = Length[periodLengths] - 1;

AppendTo[uniquePeriods, {u/v, uniqueLengths}];

AppendTo[unknown, {u/v, endings[[3]]}];

]
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(*

MultiR does analysis on a range of numerator u/v values.

Arguments:

minU: The min numerator of the r-value to compute with.

maxU: The max numerator of the r-value to compute with.

minV: The min denomiator of the r-value to compute with.

maxV: The max denomiator of the r-value to compute with.

maxXY: The max value for x and y to compute continued fractions for \

x/y.

max: The max number of iterations to compute up to.

decString: The string to determine the max decrease for aN values \

(e.g., "max" or "min").

*)

MultiR[minU_, maxU_, minV_, maxV_, maxXY_, max_, decString_] :=

Block[ {},

(* Make lists to track behavior *)

terminated = {};

periodic = {};

uniquePeriods = {};

unknown = {};

(* Loop over the desired range of u/v values *)

For[u = minU, u < maxU, u++, Block[ {},

(* Print the current u value for status updates *)

For[v = minV, v < maxV, v++, Block[ {},

statusPrint = PrintTemporary["Current:", u, "/", v];

(* Set up the dec value *)

dec = 0;

If[decString == "max", Block[{}, dec = 0]];

If[decString == "min", Block[{}, dec = Floor[u/v]]];

(* Loop over x values if gcd(u,v)=1 and u/v > 1 *)

If[CoprimeQ[u, v] && ! IntegerQ[u/v] && (u/v) > 1, Block[ {},

MultiXSingleR[1, maxXY, 1, maxXY, u, v, max, dec, True];

]];

NotebookDelete[statusPrint];

]];

];

Print["Terminated:", Sort[terminated, #1[[2]] > #2[[2]] &]];
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Print["Periodic:", Sort[periodic, #1[[2]] > #2[[2]] &]];

Print["Unique Periods:",

Sort[uniquePeriods, #1[[2]] > #2[[2]] &]];

Print["Unknown:", Sort[unknown, #1[[2]] > #2[[2]] &]];

]

]
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