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Chapter 1: Introduction 

 

In the area of nonlinear difference equations, one fundamental question deals with the 

existence of periodic solutions over the integers. For example, the difference equation 

𝑎𝑛 = {

(𝑎𝑛−1 + 𝑎𝑛−2)

5
, when 5 divides 𝑎𝑛−1 + 𝑎𝑛−2,

𝑎𝑛−1 + 𝑎𝑛−2, otherwise,
 

has a periodic solution starting with 𝑎0 = 9 and 𝑎1 = 11, namely 9, 11, 4, 3, 7, 2, 9, 11 … In this 

project, I looked at a generalization of this and studied the system 

(1.1)                       𝑎𝑛 = {
𝑥(𝑎𝑛−1 + 𝑎𝑛−2), if 𝑥(𝑎𝑛−1 + 𝑎𝑛−2) is an integer,

𝑎𝑛−1 + 𝑎𝑛−2, otherwise,
 

where 𝑥 is a rational number. The problem was to find values of 𝑥 which would allow these 

periodic solutions to appear. 

 

 This type of problem has been looked at by others within the mathematics community. In 

[5], a different version of this system, 

𝑎𝑛 = ⌈𝑐𝑎𝑛−1⌉ − 𝑎𝑛−2, 

is studied for values of |𝑐| < 2 with 𝑐 ≠ 0, ±1. In [4], the system  

𝑎𝑛 = {

𝛼𝑎𝑛−1 + 𝛽𝑎𝑛−2

2
, if 𝑎𝑛−1 + 𝑎𝑛−2 is even,

𝛾𝑎𝑛−1 + 𝛿𝑎𝑛−2, otherwise,
 

with 𝛼, 𝛽, 𝛾, 𝛿 = ±1, is studied. The authors were able to use a duality lemma to reduce the 

number of equations being studied from 16 to 8. One of these particular systems,  

𝑎𝑛 = {

𝑎𝑛−1 − 𝑎𝑛−2

2
, if 𝑎𝑛−1 + 𝑎𝑛−2 is even,

𝑎𝑛−1 + 𝑎𝑛−2, otherwise,
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is talked about more in [6] with some conjectures given. Other examples can be found within the 

mathematical literature. 

 

Dr. John Greene had done some research into values of 𝑥 which allow a periodic solution 

to (1.1). The approach he was using was to search for products of the matrices 𝐴 and 𝐵 that have 

one as an eigenvalue, where   

(1.2)                                        𝐴 = (
1 1
1 0

) and 𝐵 = (
𝑥 𝑥
1 0

). 

To shift from (1.1) to the use of 𝐴 and 𝐵 involved moving from our second order system to a 

first order system, namely: 

For vectors 𝒗𝑛 = (
𝑦𝑛

𝑧𝑛
), with integer entries 

(1.3)                         𝒗𝑛 = {
𝐵𝒗𝑛−1, if 𝑥(𝑦𝑛−1 + 𝑧𝑛−1) is an integer,
𝐴𝒗𝑛−1, otherwise,

 

where 𝐴 and 𝐵 are as in (1.2). 

So, in our example with 𝑥 =
1

5
 let 𝒗0 = (

11
9

). The periodic solution 9, 11, 4, 3, 7, 2, 9, 11 … for 

system (1.1) corresponds to the periodic solution to (1.3) of 𝒗0 = (
11
9

) , 𝒗1 = (
4

11
) , 𝒗2 = (

3
4

), 

𝒗3 = (
7
3

) , 𝒗4 = (
2
7

) , 𝒗5 = (
9
2

) , 𝒗6 = (
11
9

) , ⋯. Since 𝒗6 = 𝐴𝒗5, 𝒗5 = 𝐴𝒗4, 𝒗4 = 𝐵𝒗3, and so 

on, we see that 𝒗0 = 𝐴2𝐵𝐴𝐵2𝒗0. That is, 𝒗0 is an eigenvector of 𝐴2𝐵𝐴𝐵2 with eigenvalue 1. 

This leads us to the following theorem: 

 

Theorem 2.1:  For every periodic solution to (1.1) with period 𝑘, there is a corresponding matrix 

𝑊, which is a product of  𝐴’s and 𝐵’s, that has an eigenvector 𝒗0, with eigenvalue 1. The 

entries of 𝒗0 give the initial conditions for the periodic solution.    
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Initially, we were only interested in positive values of 𝑥 which lead to a periodic solution. 

Dr. Greene had exhaustively checked all products of 𝐴’s and 𝐵’s through strings of length 12 

and had found 
1

2
,

1

3
, and 

1

5
 to be the only positive values of 𝑥 which allowed periodic solutions. 

We were interested in whether or not there were other possible positive values of 𝑥 which would 

lead to periodic solutions. Along the way we also became interested in the negative 𝑥-values and 

the patterns that seemed to occur.  

  

This paper deals mainly with how the products of 𝐴’s and 𝐵’s were found and the 

rational 𝑥-values that correspond to these products. We exhaustively checked all products of 𝐴 

and 𝐵 through strings of length 24 (reproducing those through strings of length 12 to check for 

accuracy) and found that patterns of 𝑥-values were appearing early on.  These patterns occurred 

mainly among negative 𝑥-values, which is what prompted the search for all values of 𝑥 through 

strings of length 24.  

 

The organization of this paper is as follows: In Chapter 2, we will present theorems that 

were used to reduce the number of products that had to be examined. Studying strings of length 

24 would have involved 224 possibilities or about 17 million possibilities. Using some of these 

theorems allowed us to decrease this number to about 700,000. We also include some theoretical 

results that are needed in Chapter 3.  

 

Using the theoretical considerations from Chapter 2, we searched for possible values of 𝑥. 

The results of this search are given in Chapter 3. We also looked at the patterns that seemed to be 
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appearing as we collected our data and include proofs for those patterns that we were able to 

prove to be true. Chapter 4 will include questions that I still have about this topic as well as what 

more could be done in this area of research. This will be followed by appendices that include the 

Mathematica code we used as well as a list of the results.  
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Chapter 2: Theoretical Considerations 

 

As in the introduction, let 𝐴 = (
1 1
1 0

) and 𝐵 = (
𝑥 𝑥
1 0

). Then relying on Theorem 1.1, 

the goal of this project was to find all values of 𝑥 for which some product of at most 24 𝐴’s and 

𝐵’s had one as an eigenvalue. The information presented in this chapter was essential in helping 

with our search. The use of the function 𝑓𝑊(𝑥), defined below, was critical in our search and led 

quickly to looking at reversals and necklaces to cut the amount of work required. This chapter 

contains theoretical material about 𝑓𝑊(𝑥) used in our search. We also include some needed 

background on the Fibonacci and Lucas numbers that is useful in Chapter. 3.  

 

We were only interested in products of these matrices that had one as an eigenvalue, so 

we started with the basics: the characteristic polynomial of a 2x2 matrix. Now, one is an 

eigenvalue for 𝑋 if and only if det(𝑋 − 𝐼) = 0. For general = (
𝑎 𝑏
𝑐 𝑑

) ,  

det(𝑋 − 𝐼) = 1 − (𝑎 + 𝑑) + (𝑎𝑑 − 𝑏𝑐) 

= 1 − tr(𝑋) + det(𝑋). 

Now, let’s say 𝑊 is some product of 𝐴’s and 𝐵’s. We define a function 𝑓𝑊(𝑥) by 

(2.1)                               𝑓𝑊(𝑥) = −det(𝑊 − 𝐼) = tr(𝑊) − 1 − det(𝑊). 

Since −𝑓𝑊(𝑥) is the result of setting 𝑧 = 1 in the characteristic polynomial det(𝑊 − 𝑧𝐼), 𝑊 will 

have one as an eigenvalue for exactly those 𝑥 for which 𝑓𝑊(𝑥) = 0. Looking at this equation we 

see that −1 is not dependent on the order of the 𝐴’s and 𝐵’s. Also, det(𝑊) is not dependent on 

the order of the 𝐴’s and 𝐵’s since det(𝐴𝐵) = det(𝐴)det(𝐵) = det(𝐵)det(𝐴) = det(𝐵𝐴) [3, p. 
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467]. Therefore, in our equation, the order of the 𝐴’s and 𝐵’s only matters when dealing with the 

tr(𝑊).  

 

A linear algebra fact that proved to be useful is that cyclic permutations (also known as 

necklaces) of matrix products have the same trace [3, p. 110]. This meant we would not have to 

look at cyclic permutations of 𝐴’s and 𝐵’s, reducing the number of cases by approximately a 

factor of 𝑛 when dealing with strings of length 𝑛. The 2x2 case is included below as a theorem, 

and a proof follows. (The 2x2 case is all that is used in this paper, but the theorem holds true for 

𝑚x𝑚 matrices as well.)   

 

Theorem 2.1:  Let 𝐴1, 𝐴2, ⋯ , 𝐴𝑛 be 2x2 matrices. Then  

tr(𝐴1 𝐴2 ∙ ⋯ ∙ 𝐴𝑛) = tr(𝐴𝑛 𝐴1 ∙ ⋯ ∙ 𝐴𝑛−1). 

 

Proof:  Let 𝐴1 = (
𝑎 𝑏
𝑐 𝑑

) and 𝐴2 = (
𝑒 𝑓
𝑔 ℎ

). Then  

𝐴1𝐴2 = (
𝑎𝑒 + 𝑏𝑔 𝑎𝑓 + 𝑏ℎ
𝑐𝑒 + 𝑑𝑔 𝑐𝑓 + 𝑑ℎ

),  

so  

tr(𝐴1𝐴2) = 𝑎𝑒 + 𝑏𝑔 + 𝑐𝑓 + 𝑑ℎ.  

Also, 

𝐴2𝐴1 = (
𝑒𝑎 + 𝑓𝑐 𝑒𝑏 + 𝑓𝑑
𝑔𝑎 + ℎ𝑐 𝑔𝑏 + ℎ𝑑

)  

has  

tr(𝐴2𝐴1) = 𝑒𝑎 + 𝑓𝑐 + 𝑔𝑏 + ℎ𝑑. 

Therefore tr(𝐴1𝐴2) = tr(𝐴2𝐴1). In general, for matrices 𝐴1, 𝐴2, ⋯ , 𝐴𝑛, let   
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𝐵 = 𝐴1 𝐴2 ∙ ⋯ ∙ 𝐴𝑛−1 

Then by the above calculations, 

tr(𝐵𝐴𝑛) = tr(𝐴𝑛𝐵) 

or 

tr(𝐴1 𝐴2 ∙ ⋯ ∙ 𝐴𝑛) = tr(𝐴𝑛 𝐴1 ∙ ⋯ ∙ 𝐴𝑛−1). 

Thus the trace is invariant under cyclic permutations.   ∎ 

 

Corollary 2.2:  Let 𝐴1, 𝐴2, ⋯ , 𝐴𝑛 be 2x2 matrices of the form (
1 1
1 0

) or (
𝑥 𝑥
1 0

). If   

𝑊1 = 𝐴1 𝐴2 ∙ ⋯ ∙ 𝐴𝑛 and 𝑊2 = 𝐴𝑛 𝐴1 ∙ ⋯ ∙ 𝐴𝑛−1, then 𝑓𝑊1
(𝑥) = 𝑓𝑊2

(𝑥). 

 

Proof:  By (2.1) and Theorem 2.1,  

𝑓𝑊1
(𝑥) = tr(𝐴1 𝐴2 ∙ ⋯ ∙ 𝐴𝑛) − 1 − det(𝐴1 𝐴2 ∙ ⋯ ∙ 𝐴𝑛) 

                       = tr(𝐴𝑛 𝐴1 ∙ ⋯ ∙ 𝐴𝑛−1) − 1 − det(𝐴𝑛 𝐴1 ∙ ⋯ ∙ 𝐴𝑛−1) 

= 𝑓𝑊2
(𝑥).   ∎                                                 

While looking at small cases of strings of 𝐴’s and 𝐵’s, it seemed apparent that two strings 

of 𝐴’s and 𝐵’s which were reversals of each other also had the same eigenvalues. We defined a 

reversal to mean reversing the order of the string. For example, 𝐴3𝐵2𝐴𝐵 and 𝐵𝐴𝐵2𝐴3 are 

reversals of each other. Moreover, if 𝑊′ is a reversal of 𝑊, it seemed that 𝑓𝑊′(𝑥) = 𝑓𝑊(𝑥). We 

used 𝐴3𝐵2𝐴𝐵 as an example to check whether this was even sometimes true.  

 

We let 𝑊 = 𝐴3𝐵2𝐴𝐵 and 𝑊′ = 𝐵𝐴𝐵2𝐴3. Then  

𝑊 = (6𝑥3 + 10𝑥2 + 5𝑥 6𝑥3 + 7𝑥2

4𝑥3 + 6𝑥2 + 3𝑥 4𝑥3 + 4𝑥2)  
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and  

𝑓𝑊(𝑥) = 11𝑥3 + 14𝑥2 + 5𝑥 − 1.  

Similarly, 

𝑊′ = (10𝑥3 + 11𝑥2 6𝑥3 + 7𝑥2

5𝑥2 + 8𝑥 3𝑥2 + 5𝑥
)  

and  

𝑓𝑊′(𝑥) = 11𝑥3 + 14𝑥2 + 5𝑥 − 1. 

So we see that 𝑓𝑊(𝑥) = 𝑓𝑊′(𝑥) for at least this case. It appeared that 𝑓𝑊(𝑥) always equaled 

𝑓𝑊′(𝑥), but to show this, we would first need the following theorem. 

 

Theorem 2.3:  For any 2x2 matrix 𝑊, 𝑊2 = tr(𝑊) ∙ 𝑊 − det(𝑊) ∙ 𝐼. In other words, every 

2x2 matrix satisfies its own characteristic equations [3, p. 509]. 

 

Proof:  The matrix 𝑊 = (
𝑎 𝑏
𝑐 𝑑

) has characteristic equation 𝜆2 − tr(𝑊)𝜆 + det(𝑊) = 0 so we  

have 𝑊2 − tr(𝑊)𝑊 + det(𝑊)𝐼 

          = (𝑎2 + 𝑏𝑐 𝑎𝑏 + 𝑏𝑑
𝑎𝑐 + 𝑐𝑑 𝑏𝑐 + 𝑑2 ) − (𝑎 + 𝑑) (

𝑎 𝑏
𝑐 𝑑

) + (𝑎𝑑 − 𝑏𝑐) (
1 0
0 1

) 

          = (𝑎2 + 𝑏𝑐 𝑎𝑏 + 𝑏𝑑
𝑎𝑐 + 𝑐𝑑 𝑏𝑐 + 𝑑2 ) − (𝑎2 + 𝑎𝑑 𝑎𝑏 + 𝑑𝑏

𝑎𝑐 + 𝑐𝑑 𝑎𝑑 + 𝑑2) + (
𝑎𝑑 − 𝑏𝑐 0

0 𝑎𝑑 − 𝑏𝑐
) 

          = (
0 0
0 0

).  

Thus 𝑊2 − tr(𝑊)𝑊 + det(𝑊)𝐼 = 0 so 𝑊2= tr(𝑊)𝑊 − det(𝑊)𝐼.   ∎ 

 

Consequently, for any 2x2 matrix 𝑊, 𝑊2 = 𝑐𝑊 + 𝑑𝐼 for some 𝑐, 𝑑. Now assume that for 

all strings of length six and less, reversals have the same trace. Then 𝐴3𝐵2𝐴𝐵  can be rewritten 
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as 𝐴𝐴2𝐵2𝐴𝐵 and 𝐵𝐴𝐵2𝐴3 can be rewritten as 𝐵𝐴𝐵2𝐴2𝐴. We then let 𝐴2 = 𝑐𝐴 + 𝑑𝐼 and 

substitute this into both products giving us 𝑐𝐴𝐴𝐵2𝐴𝐵 + 𝑑𝐴𝐵2𝐴𝐵 and 𝑐𝐵𝐴𝐵2𝐴𝐴 + 𝑑𝐵𝐴𝐵2𝐴. 

Matrices 𝐴𝐴𝐵2𝐴𝐵 and 𝐵𝐴𝐵2𝐴𝐴 are reversals of each other and are strings of length six. Also, 

𝐴𝐵2𝐴𝐵 and 𝐵𝐴𝐵2𝐴 are also reversals of each other and are strings of length five. So,  

tr(𝐴3𝐵2𝐴𝐵) = 𝑐 ∙ tr(𝐴𝐴𝐵2𝐴𝐵) + 𝑑 ∙ tr(𝐴𝐵2𝐴𝐵)  

and 

tr(𝐵𝐴𝐵2𝐴3) = 𝑐 ∙ tr(𝐵𝐴𝐵2𝐴𝐴) + 𝑑 ∙ tr(𝐵𝐴𝐵2𝐴). 

By our hypothesis, 𝐴𝐴𝐵2𝐴𝐵 and 𝐵𝐴𝐵2𝐴𝐴 have the same trace and 𝐴𝐵2𝐴𝐵 and 𝐵𝐴𝐵2𝐴 have the 

same trace, so tr(𝐴3𝐵2𝐴𝐵) =  tr(𝐵𝐴𝐵2𝐴3). This method can then be generalized to products of 

𝑛 matrices.  

 

Theorem 2.4:  Let 𝑊 be a product of 2x2 matrices 𝐴 and 𝐵, say 𝑊 = 𝑉1 ∙ 𝑉2 ∙ ⋯ ∙ 𝑉𝑛, where 𝑉𝑖  

is either 𝐴 or 𝐵. Let 𝑊′ = 𝑉𝑛 ∙ 𝑉𝑛−1 ∙ ⋯ ∙ 𝑉1. Then 𝑓𝑊(𝑥) = 𝑓𝑊′(𝑥).  

 

Proof:  With 𝑓𝑊(𝑥) = tr(𝑊) − 1 − det(𝑊) and 𝑓𝑊′(𝑥) = tr(𝑊′) − 1 − det(𝑊′). Note that, 

det(𝑊) = det(𝑊′), since the determinant is not dependent on the order of the 𝐴’s and 𝐵’s. 

Thus we only have to show that tr(𝑊) = tr(𝑊′). We do this using induction on 𝑛 where 

𝑛 = 1 is a trivial case and 𝑛 = 2 follows from Theorem 2.1. 

 

Therefore we assume that this is true for all products of 𝐴’s and 𝐵’s with fewer than 𝑛 

matrices. Then given 𝑊 = 𝑉1 ∙ 𝑉2 ∙ ⋯ ∙ 𝑉𝑛, we will first look at the case in which 𝑊 does not 

contain two consecutive 𝐴’s or 𝐵’s. This means that the 𝐴’s and 𝐵’s alternate which gives us 

two cases to look at. The first of these is either 𝐴𝐵𝐴𝐵 … 𝐴𝐵 or 𝐵𝐴𝐵𝐴 … 𝐵𝐴. These are just 
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cyclic permutations of each other and thus have the same trace as already proved above. The 

second case is either 𝐴𝐵𝐴𝐵 … 𝐵𝐴 or 𝐵𝐴𝐵𝐴 … 𝐴𝐵, which are their own reversals and 

therefore have the same trace as well.  

 

Now let’s consider the case in which 𝑊 does contain two or more consecutive 𝐴’s or two or 

more consecutive 𝐵’s. Here we will apply the fact that 𝑀2 = 𝑐𝑀 + 𝑑𝐼 in order to rewrite 𝑊 

as a linear combination of fewer products. If 𝑉𝑖 = 𝑉𝑖+1, then 𝑊 = 𝑊1𝑉𝑖
2𝑊2 where 𝑊1 = 𝑉1 ∙

𝑉2 ∙ ⋯ ∙ 𝑉𝑖−1 and 𝑊2 = 𝑉𝑖+2 ∙ 𝑉𝑖+3 ∙ ⋯ ∙ 𝑉𝑛. Also, 𝑊′ = 𝑊2
′𝑉𝑖

2𝑊1
′. Now using 𝑉𝑖

2 = 𝑐𝑉𝑖 + 𝑑𝐼, 

we get  

𝑊 = 𝑐𝑊1𝑉𝑖𝑊2 + 𝑑𝑊1𝑊2  

and 

𝑊′ = 𝑐𝑊2
′𝑉𝑖𝑊1

′ + 𝑑𝑊2
′𝑊1

′.  

Also, 

𝑊2
′𝑉𝑖𝑊1

′ = (𝑊1𝑉𝑖𝑊2)′  

and 

𝑊2
′𝑊1

′ = (𝑊1𝑊2)′. 

Now, 𝑊1𝑉𝑖𝑊2 and 𝑊2
′𝑉𝑖𝑊1

′ are strings of length 𝑛 − 1 and 𝑊1𝑊2 and 𝑊2
′𝑊1

′ are strings of 

length 𝑛 − 2. Therefore, by induction, 𝑊1𝑉𝑖𝑊2 and 𝑊2
′𝑉𝑖𝑊1

′ have the same trace since they 

are reversals of each other and 𝑊1𝑊2 and 𝑊2
′𝑊1

′ have the same trace since they are also 

reversals of each other. Thus,  

tr(𝑊) = tr(𝑊1𝑉𝑖
2𝑊2) 

= 𝑐 ∙ tr(𝑊1𝑉𝑖𝑊2) + 𝑑 ∙ tr(𝑊1𝑊2) 

= 𝑐 ∙ tr(𝑊2
′𝑉𝑖𝑊1

′) + 𝑑 ∙ tr(𝑊2
′𝑊1

′) 
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= tr(𝑊2
′𝑉𝑖

2𝑊1
′) 

= tr(𝑊′).   ∎  

 

 Fibonacci numbers were used at different times throughout this project and are defined as 

follows: 

𝐹0 = 0, 𝐹1 = 1, and 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2, 𝑛 ≥ 2. 

This gives the Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, 13, …. We also found Lucas numbers to be 

useful. Lucas numbers are defined as: 

𝐿0 = 2, 𝐿1 = 1, and 𝐿𝑛 = 𝐿𝑛−1 + 𝐿𝑛−2, 𝑛 ≥ 2,  

leading to the sequence 2, 1, 3, 4, 7, 11, 18, 29, …. 

 

 Some identities associated with these two sets of numbers which were useful to us 

include the following from [1, p. 59]: 

(2.1)                                               𝐹𝑚𝐿𝑛 = 𝐹𝑚+𝑛 + (−1)𝑛𝐹𝑚−𝑛 

(2.2)                                             𝐿𝑚𝐹𝑛 = 𝐹𝑚+𝑛 + (−1)𝑛+1𝐹𝑚−𝑛. 

 

 Other items that were useful to us include the following lemmas and theorem. 

 

Lemma 2.5:  If 𝐴 = (
1 1
1 0

), then 𝐴𝑛 = (
𝐹𝑛+1 𝐹𝑛

𝐹𝑛 𝐹𝑛−1
) [1, p. 65]. 

 

Proof:  If 𝐴 = (
1 1
1 0

), then 𝐴2 = (
2 1
1 1

) and 𝐴3 = (
3 2
2 1

). Assume that 

𝐴𝑛 = (
𝐹𝑛+1 𝐹𝑛

𝐹𝑛 𝐹𝑛−1
) 
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for some  𝑛. Then  

𝐴𝑛+1 = (
1 1
1 0

) ∗ (
𝐹𝑛+1 𝐹𝑛

𝐹𝑛 𝐹𝑛−1
) 

           = (
𝐹𝑛+1 + 𝐹𝑛 𝐹𝑛 + 𝐹𝑛−1

𝐹𝑛+1 𝐹𝑛
). 

But  

𝐹𝑛+1 + 𝐹𝑛 = 𝐹𝑛+2 and 𝐹𝑛 + 𝐹𝑛−1 = 𝐹𝑛+1 

so 𝐴𝑛+1 = (
𝐹𝑛+2 𝐹𝑛+1

𝐹𝑛+1 𝐹𝑛
). Thus 𝐴𝑛 = (

𝐹𝑛+1 𝐹𝑛

𝐹𝑛 𝐹𝑛−1
).    ∎ 

 

Lemma 2.6 (Cassini’s Identity):  𝐹𝑛+1𝐹𝑛−1 − 𝐹𝑛
2 = (−1)𝑛 [1, p. 57]. 

 

Proof:  Given 𝐴𝑛 = (
𝐹𝑛+1 𝐹𝑛

𝐹𝑛 𝐹𝑛−1
), 𝐹𝑛+1𝐹𝑛−1 − 𝐹𝑛

2 = det(𝐴𝑛) = (𝑑𝑒𝑡 𝐴)𝑛 = (−1)𝑛.   ∎ 

 

Theorem 2.7:  Let 𝑀 and 𝑁 be 2x2 matrices.  

a. If 𝑀 and 𝑁 both have 𝒗 as an eigenvector with eigenvalue 1, then 𝑀𝑁 also has 𝒗 as an 

eigenvector with eigenvalue 1.  

b. If 𝑀 and 𝑁 both have 𝒗 as an eigenvector with eigenvalue -1, then 𝑀𝑁 also has 𝒗 as an 

eigenvector, but with eigenvalue 1. 

 

Proof:   

a. By definition, 𝑀𝒗 = 𝒗 and 𝑁𝒗 = 𝒗. Thus,  

(𝑀𝑁)𝒗 = 𝑀(𝑁𝒗) 

        = 𝑀𝒗 



14 
 

      = 𝒗.    

b. By definition, 𝑀𝒗 = −𝒗 and 𝑁𝒗 = −𝒗. So,  

(𝑀𝑁)𝒗 = 𝑀(𝑁𝒗) 

                   = 𝑀 ∙ (−𝒗) 

            = −𝑀𝒗 

             = 𝒗.   ∎ 

 

Using these theorems and lemmas we are able to now look only at the necklaces of the 

products of matrices 𝐴 and 𝐵. Also, we are able to ignore the reversals of all cases that we do 

investigate. This will also help reduce the number of cases that we are actually interested in. 
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Chapter 3: Results 

 

Using Mathematica, we exhaustively searched all necklaces of 𝐴’s and 𝐵’s up to strings 

of length 24, finding all the rational zeroes of 𝑓𝑊(𝑥) for these cases. An example of the code we 

used can be found in Appendix 1, but an explanation of how the code works follows. 

 

Combinatorica is a package within Mathematica which performs functions from 

combinatorics and graph theory. Loading this package allowed us to then use the ListNecklaces 

function to find only the cyclic necklaces of 𝐴’s and 𝐵’s rather than all possible permutations. 

0’s were used to represent 𝐴’s and 1’s were used to represent 𝐵’s for simplicities sake during this 

process. The sequences of 0’s and 1’s were each individually labeled for ease of reference 

purposes. The next step in the code multiplies the appropriate 𝐴’s and 𝐵’s together. For example, 

if f[i]={0,0,0,1,1,1,0,0,0,1,1,1,0,1,1,1}, the code would multiply 

𝐴. 𝐴. 𝐴. 𝐵. 𝐵. 𝐵. 𝐴. 𝐴. 𝐴. 𝐵. 𝐵. 𝐵. 𝐴. 𝐵. 𝐵. 𝐵 and store the resulting matrix. In the same loop, 𝑓𝑊(𝑥) 

is found, the rational solutions to this polynomial are found, and the solutions are stored. The 

final loop looks at these values and prints out only those that are rational solutions along with 

their corresponding necklace value.  

 

While first starting to collect our data, we noticed a rather large number of cases in which 

𝑥 = 0 and 𝑥 = −1. We knew for any string 𝑊 of length 𝑛 with 𝑎 𝐴’s and 𝑏 𝐵’s that det(𝑊) =

(−1)𝑛𝑥𝑏. Therefore,  

𝑓𝑊(𝑥) = tr(𝑊) − 1 − det(𝑊) = tr(𝑊) − 1 − (−1)𝑛𝑥𝑏. 
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Thus, whenever the trace had a constant term of 1, this 1 would cancel with the -1. This would 

leave all the remaining terms with at least one 𝑥 in them, giving 𝑥 = 0 as a solution to 𝑓𝑊(𝑥). To 

prevent having to look through so many cases, we disregard cases in which 𝑥 = 0. 

 

 We also noticed early on that many of the cases in which 𝑥 = −1 had combinations of 

𝐴𝐵2 and 𝐵3 in them. When 𝑥 = −1, 𝐴𝐵2 and 𝐵3 have (
0
1

) as an eigenvector with an eigenvalue 

of one. Thus by Theorem 2.7, any product using only 𝐴𝐵2 and 𝐵3 has an eigenvalue of one when 

𝑥 = −1. Because of the large number of these combinations, we choose to disregard cases in 

which 𝑥 = −1 as well.  

 

Next, we organized the solutions by the number of 𝐵’s in the string. Table 3.1 shows 𝑥-

values for strings with only one 𝐵. 
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Table 3.1 

Product 𝒙-value 

B ½ 

AB 0 

A2B 0 

A3B -1/4 

A4B -2/9 

A5B -1/3 

A6B -7/22 

A7B -4/11 

A8B -5/14 

A9B -3/8 

A10B -54/145 

A11B -11/29 

A12B -143/378 

A13B -8/21 

A14B -94/247 

A15B -29/76 

A16B -986/2585 

A17B -21/55 

A18B -2583/6766 

A19B -76/199 

A20B -1691/4428 

A21B -55/144 

A22B -17710/46369 

A23B -199/521 

 

 Early on in the research, while examining these values, we noticed that the numbers in 

both the numerator and denominator seemed to be close to Fibonacci numbers. From Lemma 2.5 

we know that 𝐴𝑛 = (
𝐹𝑛+1 𝐹𝑛

𝐹𝑛 𝐹𝑛−1
), and thus 𝐴𝑛𝐵 = (

𝑥𝐹𝑛+1 + 𝐹𝑛 𝑥𝐹𝑛+1

𝑥𝐹𝑛 + 𝐹𝑛−1 𝑥𝐹𝑛
). From there we 

found that  

𝑓𝑊(𝑥) = 𝑥𝐹𝑛+2 + 𝐹𝑛 − 1 − (−1)𝑛+1𝑥 = (𝐹𝑛+2 − (−1)𝑛+1)𝑥 + 𝐹𝑛 − 1. 
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Setting this equal to zero, we found that  

𝑥 = −
𝐹𝑛−1

𝐹𝑛+2+(−1)𝑛. 

Therefore, for 𝑊 = 𝐴𝑛𝐵, there is always a value of 𝑥 allowing 𝑊 to have one as an eigenvalue. 

 

 Looking more closely at these values we also noticed that when 𝑛 was odd, there seemed 

to be some sort of cancellation happening. Table 3.2 contains only these values.  

 

Table 3.2 

Product 𝒙-value 

AB 0 

A3B -1/4 

A5B -1/3 

A7B -4/11 

A9B -3/8 

A11B -11/29 

A13B -8/21 

A15B -29/76 

A17B -21/55 

A19B -76/199 

A21B -55/144 

A23B -199/521 

 

 We soon noticed that those of the form 𝐴4𝑛+1𝐵 had Fibonacci numbers as their 

numerators and denominators, while those of the form 𝐴4𝑛−1𝐵 had Lucas numbers as their 

numerators and denominators.  
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We can prove that these are real patterns. Starting with those cases of the form 𝐴4𝑛+1𝐵, 

we obtained the numbers 0, −
1

3
, −

3

8
, −

8

21
, ⋯ which gives in general, −

𝐹2𝑛

𝐹2𝑛+2
, rather than our 

expected −
𝐹4𝑛+1−1

𝐹4𝑛+3−1
. We then identified that by (2.1)  

𝐹2𝑛𝐿2𝑛+1 = 𝐹4𝑛+1 − 𝐹−1 

                = 𝐹4𝑛+1 − 1. 

Similarly,  

𝐹2𝑛+2𝐿2𝑛+1 = 𝐹4𝑛+3 − 𝐹1 

                      = 𝐹4𝑛+3 − 1. 

Thus, we have  

−
𝐹4𝑛+1 − 1

𝐹4𝑛+3 − 1
= −

𝐹2𝑛𝐿2𝑛+1

𝐹2𝑛+2𝐿2𝑛+1
 

              = −
𝐹2𝑛

𝐹2𝑛+2
. 

 

 Now, using a similar argument for those cases of the form 𝐴4𝑛−1𝐵, we were getting 

−
𝐿2𝑛−1

𝐿2𝑛+1
 rather than −

𝐹4𝑛−1−1

𝐹4𝑛+1−1
. Using (2.2), we identified  

𝐿2𝑛−1𝐹2𝑛 = 𝐹4𝑛−1 − 𝐹−1 

               = 𝐹4𝑛−1 − 1, 

and 

𝐿2𝑛+1𝐹2𝑛 = 𝐹4𝑛+1 − 𝐹1 

                  = 𝐹4𝑛+1 − 1. 

Therefore,  

−
𝐹4𝑛−1 − 1

𝐹4𝑛+1 − 1
= −

𝐿2𝑛−1𝐹2𝑛

𝐿2𝑛+1𝐹2𝑛
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                  = −
𝐿2𝑛−1

𝐿2𝑛+1
. 

  

Next we looked at string with two 𝐵’s. Table 3.3 shows all cases where 𝑓𝑊(𝑥) has 

rational zeroes 𝑥. 

 

Table 3.3 

String Length Product 𝒙-value 

2 B2 ½ 

3 AB2 -1, 1/3 

 
4 (AB)2 0, -2/3 

5 A2BAB 0, -4/7 

6 A3BAB -1/3 

6 (A2B)2 0, -1 

8 (A3B)2 -1/2, -1/4 

10 A5BA3B -3/8 

10 (A4B)2 -4/7, -2/9 

12 (A5B)2 -1/3, -3/7 

14 A7BA5B -8/21 

14 (A6B)2 -9/20, -7/22 

16 (A7B)2 -2/5, -4/11 

18 A9BA7B -21/55 

18 (A8B)2 -5/14, -11/27 

20 (A9B)2 -7/18, -3/8 

22 A11BA9B -55/144 

22 (A10B)2 -56/143, -54/145 

24 (A11B)2 -5/13, -11/29 

 

Looking at these 𝑥-values, there seem to be two patterns. The first is for 𝑊 of the form 

(𝐴𝑛𝐵)2 and the second for 𝑊 of the form 𝐴2𝑛+1𝐵𝐴2𝑛−1𝐵. We first looked at the (𝐴𝑛𝐵)2 case. 

Table 3.4 shows just these cases. 
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Table 3.4 

Product 𝒙-value from 𝑨𝒏𝑩 New 𝒙-value 

B2 ½ - 

(AB)2 0 -2/3 

(A2B)2 0 -1 

(A3B)2 -1/4 -1/2 

(A4B)2 -2/9 -4/7 

(A5B)2 -1/3 -3/7 

(A6B)2 -7/22 -9/20 

(A7B)2 -4/11 -2/5 

(A8B)2 -5/14 -11/27 

(A9B)2 -3/8 -7/18 

(A10B)2 -54/145 -56/143 

(A11B)2 -11/29 -5/13 

 

Here, we confirmed our suspicion that one of the 𝑥-values was the same as the 𝑥-value in 

the 𝐴𝑛𝐵 case. We just needed to find where the other 𝑥-value was coming from. For this case, 

𝑓𝑊2(𝑥) = −det(𝑊2 − 𝐼) = −det(𝑊 − 𝐼)det(𝑊 + 𝐼) 

where 𝑊 is some product of 𝐴’s and 𝐵’s. Now, −det(𝑊 − 𝐼) = 𝑓𝑊(𝑥), which gives us the old 

𝑥-value, so the new one is coming from det(𝑊 + 𝐼) and  

det(𝑊 + 𝐼) = tr(𝑊) + 1 + det(𝑊). 

If we let  

𝑔𝑊(𝑥) = tr(𝑊) + 1 + det(𝑊), 

then  

𝑓𝑊2(𝑥) = 𝑓𝑊(𝑥)𝑔𝑊(𝑥). 

Setting 𝑔𝑊(𝑥) equal to zero and solving, we have  

𝑥 = −
𝐹𝑛+1

𝐹𝑛+2−(−1)𝑛. 

Therefore in the case of (𝐴𝑛𝐵)2, the corresponding 𝑥-values are  
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𝑥 = −
𝐹𝑛−1

𝐹𝑛+2+(−1)𝑛
 and 𝑥 = −

𝐹𝑛+1

𝐹𝑛+2−(−1)𝑛
. 

 

The second case of two 𝐵’s is of the form 𝐴2𝑛+1𝐵𝐴2𝑛−1𝐵. Table 3.5 gives only these 

cases. 

 

Table 3.5 

Product 𝒙-value 

A3BAB -1/3 

A5BA3B -3/8 

A7BA5B -8/21 

A9BA7B -21/55 

A11BA9B -55/144 

 

Using Maple we checked further cases of these values to determine if there really was a 

pattern or if it just seemed to be early on. We found that the pattern really did exist and thus we 

tried to determine what the 𝑥-value was. Since  

𝐴𝑛𝐵 = (
𝑥𝐹𝑛+1 + 𝐹𝑛 𝑥𝐹𝑛+1

𝑥𝐹𝑛 + 𝐹𝑛−1 𝑥𝐹𝑛
)  

and 

𝐴𝑚𝐵 = (
𝑥𝐹𝑚+1 + 𝐹𝑚 𝑥𝐹𝑚+1

𝑥𝐹𝑚 + 𝐹𝑚−1 𝑥𝐹𝑚
). 

The product of these is 

  𝐴𝑚𝐵𝐴𝑛𝐵 = (
𝑥2𝐹𝑚+1𝐹𝑛+2 + 𝑥𝐹𝑚+2𝐹𝑛+1 + 𝐹𝑚𝐹𝑛 𝑥2𝐹𝑚+1𝐹𝑛+2 + 𝑥𝐹𝑚𝐹𝑛+1

𝑥2𝐹𝑚𝐹𝑛+2 + 𝑥𝐹𝑚+1𝐹𝑛+1 + 𝐹𝑚−1𝐹𝑛 𝑥2𝐹𝑚𝐹𝑛+2 + 𝑥𝐹𝑚−1𝐹𝑛+1

). 

Then,  

tr(𝐴𝑚𝐵𝐴𝑛𝐵) = 𝑥2𝐹𝑚+1𝐹𝑛+2 + 𝑥𝐹𝑚+2𝐹𝑛+1 + 𝐹𝑚𝐹𝑛 + 𝑥2𝐹𝑚𝐹𝑛+2 + 𝑥𝐹𝑚−1𝐹𝑛+1 

                          = 𝑥2(𝐹𝑚+1𝐹𝑛+2 + 𝐹𝑚𝐹𝑛+2) + 𝑥(𝐹𝑚+2𝐹𝑛+1 + 𝐹𝑚−1𝐹𝑛+1) + 𝐹𝑚𝐹𝑛 
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        = 𝑥2𝐹𝑛+2(𝐹𝑚+1 + 𝐹𝑚) + 𝑥𝐹𝑛+1(𝐹𝑚+2 + 𝐹𝑚−1) + 𝐹𝑚𝐹𝑛 

      = 𝑥2𝐹𝑚+2𝐹𝑛+2 +  𝑥𝐹𝑛+1(𝐹𝑚+1 + 𝐹𝑚 + 𝐹𝑚−1) + 𝐹𝑚𝐹𝑛 

= 𝑥2𝐹𝑚+2𝐹𝑛+2 +  𝑥𝐹𝑛+1(𝐹𝑚+1 + 𝐹𝑚+1) + 𝐹𝑚𝐹𝑛     

= 𝑥2𝐹𝑚+2𝐹𝑛+2 + 2𝑥𝐹𝑚+1𝐹𝑛+1 + 𝐹𝑚𝐹𝑛.                      

Using this formula, we have  

tr(𝐴2𝑛+1𝐵𝐴2𝑛−1𝐵) = 𝑥2𝐹2𝑛+3𝐹2𝑛+1 + 2𝑥𝐹2𝑛+2𝐹2𝑛 + 𝐹2𝑛+1𝐹2𝑛−1  

and  

det(𝐴2𝑛+1𝐵𝐴2𝑛−1𝐵) = 𝑥2.  

Therefore 

 𝑓𝑊(𝑥) = 𝑥2𝐹2𝑛+3𝐹2𝑛+1 + 2𝑥𝐹2𝑛+2𝐹2𝑛 + 𝐹2𝑛+1𝐹2𝑛−1 − 1 − 𝑥2 

               = 𝑥2(𝐹2𝑛+3𝐹2𝑛+1 − 1) + 2𝑥𝐹2𝑛+2𝐹2𝑛 + 𝐹2𝑛+1𝐹2𝑛−1 − 1. 

Applying Lemma 2.6,  

𝐹2𝑛+3𝐹2𝑛+1 = 𝐹2𝑛+2
2 + (−1)2𝑛+2 = 𝐹2𝑛+2

2 + 1. 

Similarly,  

𝐹2𝑛+1𝐹2𝑛−1 = 𝐹2𝑛
2 + (−1)2𝑛 = 𝐹2𝑛

2 + 1. 

Therefore,  

𝑓𝑊(𝑥) = 𝑥2𝐹2𝑛+2
2 + 2𝑥𝐹2𝑛+2𝐹2𝑛 + 𝐹2𝑛

2 = (𝑥𝐹2𝑛+2 + 𝐹2𝑛)2. 

Setting this equal to zero and solving, we find that  

𝑥 = −
𝐹2𝑛

𝐹2𝑛+2
. 

 

Next we looked at strings with three 𝐵’s, which are shown in Table 3.6. 
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Table 3.6 

String Length Product 𝒙-value 

3 B3 ½ 

6 A2BAB2 1/5 

8 A3BA2B2 -1/2 

12 A5BA3BAB -1/3 

12 A4BA3BA2B -1/7 

12 (A3B)3 -1/4 

15 (A4B)3 -2/9 

16 A9B(A2B)2 -3/4 

16 A8BA3BA2B -1/2 

16 A7BA4BA2B -2/5 

18 A8BA4BA3B -1/3 

18 A7B(A4B)2 -4/15 

18 A6BA5BA4B -17/59 

18 (A5B)3 -1/3 

20 A9BA5BA3B -3/8 

21 (A6B)3 -7/22 

24 A11BA6BA4B -5/13 

24 A8BA7BA6B -37/107 

24 (A7B)3 

 

-4/11 

 

Again, when looking at this table, we noticed that certain patterns were appearing. The 

first of these involved products 𝐴2𝑛+1𝐵𝐴𝑛+1𝐵𝐴𝑛−1𝐵 which are shown in Table 3.7. 

 

Table 3.7 

𝒏-value Product 𝒙-value 

1 A3BA2B2 -1/2 

2 A5BA3BAB -1/3 

3 A7BA4BA2B -2/5 

 
4 A9BA5BA3B -3/8 

 
5 A11BA6BA4B -5/13 
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 To explain this table, we refer back to Theorem 2.7 and give two examples of how this 

works. If we look at row two of Table 3.7, with 𝑥 = −
1

3
, 𝑀 = 𝐴5𝐵, 𝑁 = 𝐴3𝐵𝐴𝐵 then 𝒗 = (

2
1

) 

is an eigenvector with eigenvalue 1 for both 𝑀 and 𝑁. Then 𝑀𝑁 = 𝐴5𝐵𝐴3𝐵𝐴𝐵 and when 𝑥 =

−
1

3
,  𝒗 = (

2
1

) is an eigenvector for 𝑀𝑁 with eigenvalue 1.  

 Looking at row three of Table 3.7, if 𝑥 = −
2

5
, 𝑀 = 𝐴7𝐵 and  𝑁 = 𝐴4𝐵𝐴2𝐵, then 𝒗 =

(
3
2

) is an eigenvector with eigenvalue -1 for both 𝑀 and 𝑁. Therefore 𝑀𝑁 = 𝐴7𝐵𝐴4𝐵𝐴2𝐵 and 

when 𝑥 = −
2

5
, 𝒗 = (

3
2

) is an eigenvector for 𝑀𝑁 with eigenvalue 1. 

 

The next pattern that was noticed is shown in Table 3.8. 

 

Table 3.8 

Product 𝒙-value 

A2BAB2 1/5 

A4BA3BA2B -1/7 

A6BA5BA4B -17/59 

A8BA7BA6B -37/107 

  

 Here the exponents on the 𝐴’s have the pattern (2, 1, 0), (4, 3, 2), (6, 5, 4), and (8, 7, 6). 

This seemed very suspicious to us and using Maple again, we checked to see if this pattern 

continued. The pattern is real and much work was done on finding the 𝑥-value for this pattern. It 

is too in depth for this paper, but for more on this subject see [2]. 

 Seeing these infinite patterns in the cases of one 𝐵, two 𝐵’s, and three 𝐵’s sparked our 

curiosity as to whether or not there would be infinite patterns for the case of four 𝐵’s or five 𝐵’s, 
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or even six 𝐵’s. Again, using Maple we checked to see if patterns could be found for these. It 

was determined that there were infinite families for the cases of four 𝐵’s and six 𝐵’s and the 

formulas for the 𝑥-values of these can also be found in [2]. 
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Chapter 4: Conclusion 

 

  One question that was particularly interesting to me, but never answered, is 

whether or not there are more positive values of 𝑥 which produce a periodic solution. We found 

that through strings of length 24, the only positive values which produce periodic solutions are 
1

2
, 

1

3
, and 

1

5
. Would other positive values be found in strings of length greater than 24? We suspect 

that 
1

2
, 

1

3
, and 

1

5
 are the only positive solutions, but were not able to prove this.  

 

 As far as negative values of 𝑥, we found what we referred to as infinite families while 

doing our research [2] and have speculated that it’s possible that these are the only infinite 

families that give solutions to (1.1). Again, we were unable to verify this, and it would be 

something that could be examined more closely on a future project.  

 

 It would also be interesting to try to write a code for Mathematica, or a similar program, 

that allows this information to run faster. When looking at strings of length 24 with 12 𝐵’s, the 

code being used took about two days to run. It may be possible to write a code that would be 

faster and thus allow a person to look at longer strings. This may reveal more patterns or lead to 

a greater understanding of what is going on. 

 

 One final point of interest is that while examining the infinite families, we came across 

some rather interesting Fibonacci and Lucas identities.  

𝐹4𝑛+2𝐹4𝑛+1𝐹4𝑛 − 1 = (𝐹4𝑛𝐹2𝑛−1 + 𝐹4𝑛−1𝐹2𝑛+1)(𝐹4𝑛+1𝐿2𝑛−1 + 𝐹4𝑛𝐿2𝑛+1), 

𝐹4𝑛+2𝐹4𝑛+1𝐹4𝑛 + 1 = (𝐹4𝑛𝐿2𝑛−1 + 𝐹4𝑛−1𝐿2𝑛+1)(𝐹4𝑛+1𝐹2𝑛−1 + 𝐹4𝑛𝐹2𝑛+1), 
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𝐹4𝑛+4𝐹4𝑛+3𝐹4𝑛+2 − 1 = (𝐹4𝑛+2𝐿2𝑛 + 𝐹4𝑛+1𝐿2𝑛+2)(𝐹4𝑛+4𝐹2𝑛 + 𝐹4𝑛+2𝐹2𝑛+1), 

𝐹4𝑛+4𝐹4𝑛+3𝐹4𝑛+2 + 1 = (𝐹4𝑛+2𝐹2𝑛 + 𝐹4𝑛+1𝐹2𝑛+2)(𝐹4𝑛+4𝐿2𝑛 + 𝐹4𝑛+2𝐿2𝑛+1). 

These are discussed more in [2], but it’s possible that further investigation of the infinite families 

may lead to more of these types of identities. 
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Appendix 1: Mathematica Code 

 

This is an example of the Mathematica code that we used to find all rational solutions to 

𝑓𝑊(𝑥). The code was used to find necklaces for strings of length 𝑛, 4 ≤ 𝑛 ≤ 24, with the 

number of 𝐵’s ranging from one to 𝑛. The code then finds 𝑓𝑊(𝑥) for each combination and 

solves for all rational solutions. This particular code is a string of length 16 with 9 𝐵’s.  

 

<<"Combinatorica`" 

n:=16 

neck=ListNecklaces[n, {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1}, Cyclic] 

a={{1,1},{1,0}} 

b={{x,x},{1,0}} 

For [i=1, i<Length[neck] +1, f[i_]:=neck[[i]]; i++] 

For[l=1,l<Length[neck],l++, 

For[k=1, k≤n,k++, If[f[l][[k]]==0,mult=mult.a, mult=mult.b];]; 

values[l]=Reduce[1-Tr[mult]+Det[mult]==0,x,Rationals]; 

mult:=IdentityMatrix[2]] 

For[i=1,i≤Length[neck],i++,If[Head[values[i]]==Or||Head[values[i]]==Equal,Print[i,": 

",values[i],"  ",neck[[i]]]]] 

 

 

 

 

 

 

 

 

 

 



30 
 

Appendix 2: Results by Number of 𝐵’s 

 

B’s String Length Product X-Value Why? 

1 1 B ½ AnB 

 2 AB 0 AnB 

 3 A2B 0 AnB 

 4 A3B -1/4 AnB 

 5 A4B -2/9 AnB 

 6 A5B -1/3 AnB 

 7 A6B -7/22 AnB 

 8 A7B -4/11 AnB 

 9 A8B -5/14 AnB 

 10 A9B -3/8 AnB 

 11 A10B -54/145 AnB 

 12 A11B -11/29 AnB 

 13 A12B -143/378 AnB 

 14 A13B -8/21 AnB 

 15 A14B -94/247 AnB 

 16 A15B -29/76 AnB 

 17 A16B -986/2585 AnB 

 18 A17B -21/55 AnB 

 19 A18B -2583/6766 AnB 

 20 A19B -76/199 AnB 

 21 A20B -1691/4428 AnB 

 22 A21B -55/144 AnB 

 23 A22B -17710/46369 AnB 

 24 A23B -199/521 AnB 

     

2 2 B2 ½ (AnB)2 

 3 AB2 -1, 1/3 

 

 

 4 (AB)2 0, -2/3 (AnB)2 

 5 A2BAB 0, -4/7  

 6 A3BAB -1/3 A2n+1BA2n-1B 

 8 (A3B)2 -1/2, -1/4 (AnB)2 

 10 A5BA3B -3/8 A2n+1BA2n-1B 

 10 (A4B)2 -4/7, -2/9 (AnB)2 

 12 (A5B)2 -1/3, -3/7 (AnB)2 

 14 A7BA5B -8/21 A2n+1BA2n-1B 

 14 (A6B)2 -9/20, -7/22 (AnB)2 
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B’s String Length Product X-Value Why? 

 16 (A7B)2 -2/5, -4/11 (AnB)2 

 18 A9BA7B -21/55 A2n+1BA2n-1B 

 18 (A8B)2 -5/14, -11/27 (AnB)2 

 20 (A9B)2 -7/18, -3/8 (AnB)2 

 22 A11BA9B -55/144 A2n+1BA2n-1B 

 22 (A10B)2 -56/143, -54/145 (AnB)2 

 24 (A11B)2 -5/13, -11/29 (AnB)2 

     

3 3 B3 -1, ½ powers 

 6 A2BAB2 -1, 1/5 A4n+2BA4n+1BA4nB* 

 8 A3BA2B2 -1/2 A2n+1BAn+1BAn-1B 

 12 A5BA3BAB -1/3 A2n+1BAn+1BAn-1B 

 12 A4BA3BA2B -1/7 A4n+4BA4n+3BA4n+2B* 

 12 (A3B)3 -1/4 powers 

 15 (A4B)3 -2/9 powers 

 16 A9B(A2B)2 -3/4  

 16 A8BA3BA2B -1/2  

 16 A7BA4BA2B -2/5 A2n+1BAn+1BAn-1B 

 18 A8BA4BA3B -1/3  

 18 A7B(A4B)2 -4/15  

 18 A6BA5BA4B -17/59 A4n+2BA4n+1BA4nB* 

 18 (A5B)3 -1/3 powers 

 20 A9BA5BA3B -3/8 A2n+1BAn+1BAn-1B 

 21 (A6B)3 -7/22 powers 

 24 A11BA6BA4B -5/13 A2n+1BAn+1BAn-1B 

 24 A8BA7BA6B -37/107 A4n+4BA4n+3BA4n+2B* 

 24 (A7B)3 

 

-4/11 powers 

     

4 4 B4 ½ powers 

 6 (AB2)2 -1, 1/3 powers 

 8 (A2B2)2 -1/2 (A2n+2BA2nB)2* 

 8 (AB)4 0, -2/3 powers 

 10 (A2BAB)2 0, -4/7 powers 

 12 (A4B2)2 -1, -1/9 (A2n+4BA2nB)2* 

 12 (A3BAB)2 -1/3 powers 

 16 A5BA3B(A2B)2 -3/4  

 16 A5BA2BA3BA2B -1/2  

 16 (A4BA2B)2 -2/5 (A2n+2BA2nB)2* 

 16 (A3B)4 -1/2, -1/4 powers 
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B’s String Length Product X-Value Why? 

 18 A11BA3B3 -1/3  

 18 A7BA4BA3B2 -1/3  

 18 (A5B)2A3BAB -1/3  

 20 (A6BA2B)2 -9/16, -1/4 (A2n+4BA2nB)2* 

 20 (A5BA3B)2 -3/8 powers 

 20 (A4B)4 -4/7, -2/9 powers 

 24 A11BA2BA5 BA2B -1/5  

 24 A9BA4BA3BA4B -1/3  

 24 A7B(A4B)3 -2/7  

 24 (A6BA4B)2 -5/13 (A2n+2BA2nB)2* 

 24 (A5B)4 -3/7, -1/3 powers 

     

5 5 B5 ½ powers 

 16 A6BA3B3A2B -1/2  

 16 (A3B)3A2B2 -1/2  

 18 A7BA3BA3B3 -1/3  

 18 A5B(A3BAB)2 -1/3  

 20 A6BA2BA5B2A2B -1/4  

 20 (A5B)3B2 -1/4  

 20 (A3B)5 -1/4 powers 

 24 A11BA2BA3BA2BAB -3/13  

 24 A9BA7BA3B3 -1/3  

 24 A9BA5B3A5B -1/5  

 24 A9BA4BA3B2A3B -1/3  

 24 A9BA2BA5BA2BAB -1/5  

 24 A8BA5B(A2B)3 -1/2  

 24 A7BA4BA5B2A3B -1/3  

 24 A7BA4BA3BA4BAB -1/3  

 24 A7B(A3B)4 -1/3  

 24 A6BA3BA5BA3BA2B -1/2  

 24 (A5B)3A3BAB -1/3  

     

6 6 B6 -1, ½ powers 

 9 (AB2)3 -1, 1/3 powers 

 12 (A2BAB2)2 -1, 1/5 powers 

 12 (AB)6 0, -2/3 powers 

 15 (A2BAB)3 0, -4/7 powers 

 16 A6BA2B4A2B -1/2  

 16 A5BA2B3A3B2 -1/2  
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B’s String Length Product X-Value Why? 

 16 (A3B)2(A2B2)2 -1/2  

 16 (A3BA2B2)2 -1/2 powers 

 18 A4BA3BA4B2AB2 -1/3  

 18 (A3BAB)3 -1/3 powers 

 20 A5BA2BA2B2A5B2 -1/10  

 20 (A5BA2B2)2 -1/4  

 24 A9BA6B4A3B -1/2  

 24 A9BA3BA3BA3B3 -1/3  

 24 A8BA3BA2BA3B2A2B -1/2  

 24 A7BA4BA3B2A3BAB -1/3  

 24 A7BA3B3A7BAB -1/3  

 24 A6BA3BA2BA2BA3BA2B -1/2  

 24 A6BA2BA3BA5B2A2B -1/2  

 24 (A5B)2(A3BAB)2 -1/3  

 24 (A5B)2(A2B)4 -1/2  

 24 A5BA3BA2BA5B2A3B -1/2  

 24 (A4BA3BA2B)2 -7/11, -1/7  

 24 (A3B)6 -1/2, -1/4 powers 

     

7 7 B7 ½ powers 

 16 A5BA2B4A2B2 -1/2  

 16 A3B(A2B2)3 -1/2  

 24 A9BA3B4A3BA2B -1/2  

 24 A9B(A2B)3A2B3 -1/2  

 24 A8BA3BAB2ABA4B2 -1/3  

 24 A8BA3B4A6B2 -1/2  

 24 A7BA4B(AB)3A2BAB -2/7  

 24 A7BA4B3A4B(AB)2 -1/3  

 24 A7B(A3B)2(AB)4 -1/3  

 24 A7BAB(A3B)2A3B3 -1/3  

 24 A7BAB3A4BA5B2 -1/3  

 24 A6BA5B2(A2B)2A2B2 -1/2  

 24 A6B(A3B)2A3B3A2B -1/2  

 24 A6BA3BA2BA3BA3B3 -1/2  

 24 A6BA2BA3BA2BA2B2A2B -1/2  

 24 A6B2(A3B)2A2BA3B2 -1/2  

 24 A5B(A4B2)2ABA3B -1/3  

 24 A5B(A3BA3B2)2 -1/3  

 24 A5BA3BA2BA5B2A2B2 -1/2  
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B’s String Length Product X-Value Why? 

 24 A5B(A3BAB)3 -1/3  

 24 A5BA2BA3BA2BA3B2A2B -1/2  

 24 A5BA2BA3B(A2B)2A3B2 -1/2  

 24 (A3B)5A2B2 -1/2  

     

8 8 B8 ½ powers 

 12 (AB2)4 -1, 1/3 powers 

 16 (A2B2)4 -1/2 powers 

 16 (AB)8 0, -2/3 powers 

 20 (A2BAB)4 -4/7, 0 powers 

 24 A11BA3B6A2B -1/2  

 24 A11BAB2(AB)2AB2AB -1/3  

 24 A8BA3B4A3BA2B2 -1/2  

 24 A7B2A4BAB2ABA3B2 -1/3  

 24 A6B(A3B)2A2B4A2B -1/2  

 24 A6BA3BA2B2A3B3A2B -1/2  

 24 A6BA3B3A2BA3B2A2B -1/2  

 24 A6BA2B2A3BA3B3A2B -1/2  

 24 (A6BA2B3)2 -1/2  

 24 (A6BABAB2)2 -1/17  

 24 (A5B)2A2B2A2BA2B3 -1/2  

 24 (A5B)2A2B2A2B3A2B -1/2  

 24 A5BA5B2A3B(AB)2AB2 -1/3  

 24 A5BA3B(A2B2A2B)2 -1/2  

 24 A5BA2BA3BA2B(A2B2)2 -1/2  

 24 A5BA2B2A2BA5BA2B3 -1/2  

 24 A5BA2B2A2BA3BA2B2A2B -1/2  

 24 A5BA2B3(A3B)2A3B2 -1/2  

 24 (A4B2)4 -1/9  

 24 (A3B)4(A2B2)2 -1/2  

 24 (A3B)3A2B2A3BA2B2 -1/2  

 24 (A3B)2A2B2(A3B)2A2B2 -1/2  

 24 (A3BAB)4 -1/3 powers 

     

9 9 B9 -1, ½ powers 

 18 (A2BAB2)3 -1, 1/5 powers 

 24 A11B2A2BA2B6 -1/2  

 24 A8BA3B6(A2B)2 -1/2  

 24 A6BA3BA2B2A2B4A2B -1/2  
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B’s String Length Product X-Value Why? 

 24 A6BA2B2A3BA2B4A2B -1/2  

 24 A6B(A2B2)2A3B3A2B -1/2  

 24 A6BA2B4A5BA2B3 -1/2  

 24 A5BA3BA2B3A5B4 -1/2  

 24 A5BA3B3A3BA2BA2B3 -1/2  

 24 A5BA2B2A3BA2B3A3B2 -1/2  

 24 A5BA2B3A3BA3B2A2B2 -1/2  

 24 A5BA2B3A3B2A2BA3B2 -1/2  

 24 A5BA2B4A2BA3BA3B2 -1/2  

 24 (A3B)3(A2B2)3 -1/2  

 24 (A3B)2A2B2A3B(A2B2)2 -1/2  

 24 (A3B)2(A2B2)2A3BA2B2 -1/2  

 24 (A3BA2B2)3 

 

-1/2  

     

10 10 B10 ½ powers 

 15 (AB2)5 -1, 1/3 powers 

 20 (AB)10 -2/3, 0 powers 

 24 A8BA2B6A2BA2B2 -1/2  

 24 A6B(A2B2)2A2B4A2B -1/2  

 24 A5BA2B2A3BA2B4A2B2 -1/2  

 24 A5BA2B3A3B2(A2B2)2 -1/2  

 24 (A5BA2B4)2 -1/2  

 24 A5BA2B4A2BA3B2A2B2 -1/2  

 24 A5BA2B4A2B2A2BA3B2 -1/2  

 24 A5B2A3BA3B3A3B4 -1/2  

 24 A5B2A2BA3B4A2BA2B2 -1/2  

 24 (A3B)2(A2B2)4 -1/2  

 24 A3B(A2B)2A2B2A3B3A2B2 -1/2  

 24 A3BA2B2A3B(A2B2)3 -1/2  

 24 [A3B(A2B2)2]2 -1/2  

     

11 11 B10 ½ powers 

 24 A11B4A2B7 -1/2  

 24 A6B4A5B3A2B4 -1/2  

 24 A5BA2B4(A2B2)3 -1/2  

 24 A3B(A2B2)5 -1/2  

     

12 12 B12 -1, ½ powers 

 18 (AB2)6 -1, 1/3 powers 
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* See [2] 

 

 

 

 

B’s String Length Product X-Value Why? 

 24 (A2BAB2)4 1/5 powers 

 24 (A2B2)6 -1/2 powers 

 24 (AB)12 -2/3, 0 powers 

     

13 13 B13 ½ powers 

 24 A6B5A3B2A2B6 -1/5  

     

14 14 B14 ½ powers 

 21 (AB2)7 -1, 1/3 powers 

     

15 15 B15 -1, ½ powers 

     

16 16 B16 ½ powers 

 24 (AB2)8 1/3 powers 

     

17 17 B17 ½ powers 

     

18 18 B18 -1, ½ powers 

     

19 19 B19 ½ powers 

     

20 20 B20 ½ powers 

     

21 21 B21 -1, ½ powers 

     

22 22 B22 ½ powers 

     

23 23 B23 ½ powers 

     

24 24 B24 ½ powers 
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