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1 Introduction

Prime numbers have been studied since ancient times and are considered to be the
building blocks of the integers. The Fundamental Theorem of Arithmetic, which can
be found on page 2 of [4], states that every integer greater than 1 is either a prime
number or can be uniquely expressed as a product of prime numbers. It has been
known since the time of the Greeks that there are infinitely many primes. The Prime
Number Theorem even gives a formula for approximating the number of primes up
to any given integer. If π(x) denotes the number of primes less than or equal to x,
then π(x) is approximately x

ln(x)
for large x. More information on this theorem can

be found in [1]. Another interesting question is whether different kinds of sequences
have a finite or an infinite number of primes. For example, page 57 of [4] states
that for fixed integers a and b, there are infinitely primes in the sequence an+ b, as
n = 0, 1, 2, ..., if and only if the greatest common divisor of a and b is 1. However, an
unsolved problem that dates back to the Greeks is whether the sequence 2n − 1 has
an infinite number of primes. Numbers of this form are known as Mersenne num-
bers, and there are currently 51 Mersenne primes that have been discovered, with the
largest prime number to be discovered being one of them. More detailed background
on Mersenne primes can be found in [2]. The sequence 2n−1 is an example of a type
of sequence called a Lucas sequence, and information on these sequences is given in
pages 53 − 73 of [3]. The results of this project have found cases where there are
Lucas sequences with very few or no primes.

The Lucas sequences Un(P,Q) and Vn(P,Q) are sequences that satisfy recurrence
relations of the form xn = P · xn−1 − Q · xn−2, as shown on page 107 of [4]. The
difference between the two sequences lies in their initial conditions. Un(P,Q) has the
initial conditions U0(P,Q) = 0 and U1(P,Q) = 1, while Vn(P,Q) has initial condi-
tions V0(P,Q) = 2 and V1(P,Q) = P .

For example, Un(3, 2) is the sequence of Mersenne numbers, and it has terms
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0, 1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095, 8191...

Just like any Lucas sequence Un(P,Q), the initial two terms are 0 and 1. Each
term beyond that is 3 times the previous term minus 2 times the term that is two
places preceding it. For instance, 7 is the next term after 3 because 7 = 3(3)− 2(1),
and 15 is the next term because 15 = 3(7)− 2(6).

However, Vn(3, 2) is a different sequence due to its initial conditions. In this case,
P = 3, and so the initial two terms are 2 and 3.
This results in Vn(3, 2) being the sequence 2, 3, 5, 9, 17, 33, 65, 129, 257, 513, 1025, 2049, 4097, 8193....

Another famous Lucas sequence is the Fibonacci sequence Un(1,−1), which has
terms 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ...
In this sequence, Each term beyond the initial two values is the sum of the previous
two terms.

The corresponding Vn sequence is 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, ...

In general, recurrence relations have associated characteristic equations that can
be solved to produce explicit formulas. The relation xn = P · xn−1 − Q · xn−2
has an associated characteristic equation of x2 = Px − Q. Rearranging this gives
x2 − Px + Q = 0. Using the quadratic formula, the solutions to this equation

are x =
P+
√

P 2−4Q
2

and y =
P−
√

P 2−4Q
2

. Let a =
P+
√

P 2−4Q
2

and b =
P−
√

P 2−4Q
2

.
Then P = a + b and Q = ab. If a and b are distinct, then it can be shown that
Un(P,Q) = an−bn

a−b and Vn(P,Q) = an + bn as stated on page 107 of [4].

The Sequence of Mersenne numbers can be expressed either with the explicit
formula Un = 2n − 1 or recursively as Un(3, 2), and the sequence Vn(3, 2) can be ex-
pressed as Vn = 2n +1. Similarly, the Fibonacci numbers Un(1,−1) have the formula

Un =
( 1+
√

5
2

)n−( 1−
√
5

2
)n√

5
and Vn(1,−1) has the formula Vn = (1+

√
5

2
)n + (1−

√
5

2
)n

While the formulas for Un(1,−1) and Vn(1,−1) look more complicated and in-
volve square roots, the terms of the sequences are still integers since the sequences
are also recurrence relations.
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2 Properties of Lucas Sequences

Next, some facts about Un(P,Q) will be stated.

1. If n is divisible by m, then Un(P,Q) is divisible by Um(P,Q). Thus, Un(P,Q)
is considered a divisibility sequence. This is property IV.15 on page 60 of [3]. There-
fore, if n is composite, Un(P,Q) will typically be composite, the exception being the
case where Um(P,Q) equals 1.

To demonstrate a case of this, consider

U6(7, 10) = U6(5 + 2, 5 · 2) =
56 − 26

3
.

We have

56 − 26

3
=

(53 − 23)(53 + 23)

3
=

53 − 23

3
= U3(5 + 2, 5 · 2) · (53 + 23) = U3(7, 10) · (53 + 23).

2. If P is positive, then Un(P,Q) = (−1)n+1 · Un(−P,Q).

Proof. This will be done by induction. When n = 0, Un(P,Q) = 0 and
Un(−P,Q) = 0, so Un(P,Q) = (−1)0+1Un(−P,Q).
When n = 1, Un(P,Q) = 1 and Un(−P,Q) = 1, so Un(P,Q) = (−1)1+1Un(−P,Q).
Now, assume that n ≥ 2 and that the result is true for 1, ..., n− 1.

Then Un(P,Q) = P · Un−1(P,Q)−Q · Un−2(P,Q) =
(−1)nP · Un−1(−P,Q)− (−1)n−1Q · Un−2(−P,Q) by the inductive hypothesis.

Also, Un(−P,Q) = −P · Un−1(P,Q)−Q · Un−2(P,Q).

When n is even, Un(P,Q) equals
P · Un−1(−P,Q) +Q · Un−2(−P,Q) = (−1)n+1 · Un(−P,Q).

When n is odd, Un(P,Q) equals
−P · Un−1(−P,Q)−Q · Un−2(−P,Q) = (−1)n+1 · Un(−P,Q).
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As an example, consider Un(2, 3) and Un(−2, 3).

For the first, we have Un(2, 3) is 0, 1, 2, 1,−4,−11,−10, 13....

For the second, we have Un(−2, 3) is 0, 1,−2, 1, 4,−11, 10, 13, ...

In these sequences, the values are exactly the same if the negative signs are
dropped. The significance of this is that Un(P,Q) and Un(−P,Q) can be treated
as the same sequence for the purposes of primality testing since a negative sign will
not change the primality of a number. Therefore, for primality proofs in this paper,
P can be assumed to be positive.

3. If a and b are distinct integers that share a common factor, then Un(a+ b, ab)
is composite when n ≥ 2.

Proof. Suppose that a and b share the common factor d. Then a can be written as
a′d and b can be written as b′d.

Then,

Un(a+ b, ab) =
an − bn

a− b
=

(a′d)n − (b′d)n

a′d− b′d
=
dn[(a′)n − (b′)n]

d(a′ − b′)

= dn−1
(a′)n − (b′)n

a′ − b′
= dn−1Un(a′ + b′, a′b′).

Now d is greater than 1, and (a′)n−(b′)n
a′−b′ is greater than 1 when n ≥ 2 since (a′) is

greater than (b′). Therefore, Un(a, b) is composite for n ≥ 2.

The example this time will be Un(22, 112) = Un(14 + 8, 14 · 8).
We have

Un(14 + 8, 14 · 8) =
2n(7n − 4n)

6

= (
2n

2
)(

7n − 4n

3
)

= 2n−1Un(7 + 4, 7 · 4)

= 2n−1Un(11, 28).
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4. If a and b are distinct, then Un(a+ b, ab) =
∑n−1

i=0 a
n−i−1bi

Proof. Now, Un(a + b, ab) = an−bn
a−b and an − bn factors as (a − b)

∑n−1
i=0 a

n−i−1bi, so

an−bn
a−b =

(a−b)
∑n−1

i=0 an−i−1bi

a−b =
∑n−1

i=0 a
n−i−1bi.

5. If m,n, and z are positive integers, mn
z

is an integer, and z is less than both m
and n, then mn

z
is composite.

Proof. Since mn
z

is an integer, the prime factors of z must also exist in the numerator
of this fraction. m must have a prime factor p that z does not have since otherwise
m would be less than or equal to z. Likewise, n must have a prime factor q that z
does not have. Therefore, mn

z
must have factors p and q, making it composite.

We also have the following equality:

6. Un(a+ b, ab) = aUn−1(a+ b, ab) + bn−1.

Proof. Using the right hand side of the equation,

aUn−1(a+ b, ab) + bn−1 = a
an−1 − bn−1

a− b
+ bn−1

=
an − abn−1

a− b
+

(a− b)bn−1

a− b

=
an − abn−1

a− b
+
abn−1 − bn

a− b

=
an − bn

a− b
= Un(a+ b, ab).

7. Let d equal GCD(m,n). Then Ud(P,Q) = GCD(Um(P,Q), Un(P,Q)). This is
property IV.26 on page 64 of [3].
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Property IV.11 on page 59 of [3] gives us the following:

8. Un(P,Q) = Vn−1(P,Q) +QVn−3(P,Q) +Q2Vn−5(P,Q) + ...+ (last summand),

where the last summand equals Q
n−2
2 P if n is even,

and Q
n−1
2 if n is odd.

3 Numerical Investigations

Data was collected on various Lucas sequences to determine the primality of their
terms. First, data was collected for the case when a and b are integers. Sequences
U(a + b, ab) that were initially tested were the cases 2 ≤ a ≤ 100, 1 ≤ b < a
for 1 ≤ n ≤ 1000. The b terms that were tested were always less than a because
an−bn
a−b = bn−an

b−a , so if b were higher than a, the a and b terms could just be swapped.
The testing was done using both the Python and Mathematica programming lan-
guages. Both languages had probabilistic primality testing packages that were used.
Since there were many sequences to be tested and since Un(a + b, ab) grows expo-
nentially, the calculation time needed to check the primality of these numbers was
significant. To speed up the process, the programs that were written only tested
sequences Un(a+ b, ab) where a and b share no common factors since if they did have
a common factor, result 3 implies that Un(a, b) is composite for n ≥ 2. Similarly,
result 1 implies that Un(a + b, ab) need only be tested for prime values of n since
Un(a + b, ab) will be composite otherwise. There were 3043 values of (a, b) tested
and 168 primes for n < 1000, so 511, 224 numbers were tested for primality. The
data output listed ordered triplets (a, b, n) for which the sequence Un(a+ b, ab) was
found to be prime. Using this data, a program was written to determine how many
primes were in the sequences Un(a + b, ab) up to n = 1000. Then another program
was written to determine for any number x, how many sequences Un(a + b, ab) had
exactly x primes up to n = 1000. For example, there were 114 sequences that had
no primes up to n = 1000, 423 sequences that had 1 prime up to n = 1000, and 640
sequences that had 2 primes up to n = 1000. Many of the sequences that had no
primes up to n = 1000 had a and b values that were perfect squares or perfect cubes.
This discovery led to the following result.
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4 Results

Theorem 1: Consider two integers, call them a and b. If at least one of a and b is
greater than 1 in absolute value, a and b are relatively prime, each is a perfect kth

power, and k has a prime factor s, then Un(a+ b, ab) is never prime when n 6= s.

Proof. We will first assume that k is prime and extend the result to composite k
later. Since a and b are perfect kth powers they can be written as a = xk and b = yk,
where x, y, and k are integers.

Then,

Un(xk + yk, xkyk) =
xkn − ykn

xk − yk

=
(xn)k − (yn)k

xk − yk

=
(xn − yn)

∑k−1
i=0 (xn)k−i−1(yn)i

xk − yk

=

xn−yn
x−y

∑k−1
i=0 (xn)k−i−1(yn)i

xk−yk
x−y

.

This last expression is equal to
∑n−1

i=0 xn−i−1yi
∑k−1

i=0 (x
n)k−i−1(yn)i∑k−1

i=0 xk−i−1yi
by result 4 and is

also equal to Un(x+y,xy)Uk(x
n+yn,xnyn)

Uk(x+y,xy)
.

When a and b are both positive integers, then x and y are both positive integers.
Then

∑k−1
i=0 x

k−i−1yi is less than
∑k−1

i=0 (xn)k−i−1(yn)i, or equivalently, Uk(x+y, xy) <
Uk(xn + yn, xnyn). By result 7, GCD(Uk(x + y, xy), Un(x + y, xy)) = UGCD(k,n)(x +
y, xy). Since k is prime and n 6= k, UGCD(k,n)(x + y, xy) = U1(x + y, xy) = 1. Thus,
Uk(x+ y, xy) must divide Uk(xn + yn, xnyn), making Un(xk + yk, xkyk) composite by
result 5. When a and b are negative, then x and y must be negative. Then x and y
can be written as x = −x′ and y = −y′, where x′ and y′ are positive integers. With
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this substitution,

Un(xk + yk, xkyk) =
(−x′)kn − (−y′)kn

(−x′)k − (−y′)k

=
(−1)kn

(−1)k
· (x′)kn − (y′)kn

(x′)k − (y′)k

= |(x
′)kn − (y′)kn

(x′)k − (y′)k
|,

meaning Un(xk+yk, xkyk) is composite since we have already determined that | (x
′)kn−(y′)kn
(x′)k−(y′)k | =

|Un((x′)k + (y′)k, (x′)k(y′)k)| is composite.

Now, consider when one of a and b is positive and the other is negative. Then
Q = ab is negative.

In this case, consider when P is positive. Now, Un(a+b, ab) = P ·Un−1(a+b, ab)−
Q ·Un−2(a+ b, ab). Since U0(a+ b, ab) = 0, U1(a+ b, ab) = 1, P is positive, and Q is
negative, it follows inductively that Un(a+ b, ab) is a strictly increasing sequence for
n ≥ 2. For negative P , Un(a+b, ab) is strictly increasing in absolute value by result 2.

Now, again consider when P is positive, and also consider the number Uk(x
n+yn,xnyn)

Uk(x+y,xy)
.

This is equal to
xnk−ynk

xn−yn

xk−yk

x−y

=
xnk−ynk

xk−yk

xn−yn

x−y

= Un(xk+yk,xkyk)
Un(x+y,xy)

. We are dealing with the case

when P is positive and exactly one of a and b is negative. Without loss of generality,
assume a is the positive number. Then a > |b| since P is positive, and so x > |y|.
Since x > |y|, xk + yk > x+ y. Also, |xkyk| is greater than |xy|.

Now, U2(x
k + yk, xkyk) = xk + yk is greater than U2(x + y, xy) = x + y. This

handles the base case.

Assume that Um(xk + yk, xkyk) is greater than Um(x+ y, xy) for all m such that
2 ≤ m < n.

Then Un(xk +yk, xkyk) = (xk +yk) ·Un−1(x
k +yk, xkyk)−xkyk ·Un−2(x

k +yk, xkyk)
is greater than Un(x+ y, xy) = (x+ y) · Un−1(x+ y, xy)− xy · Un−2(x+ y, xy).
Thus by induction, Un(xk + yk, xkyk) > Un(x + y, xy) for n ≥ 2. When n ≥ k,
Uk(x+ y, xy) is less than both Un(x+ y, xy) and Uk(xn + yn, xnyn),
so Un(xk + yk, xkyk) is composite by result 5.
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When P is negative, |Uk(x + y, xy)| is smaller than |Un(x + y, xy)| and |Uk(xn +
yn, xnyn)| by result 2, so Un(xk + yk, xkyk) is still composite.

Now, consider the case when n ≤ k. Again, we know that Un(xk + yk, xkyk) =
Un(x+y,xy)Uk(x

n+yn,xnyn)
Uk(x+y,xy)

. Also, GCD(Uk(x + y, xy), Un(x + y, xy)) = 1 by result 7, so

Uk(x + y, xy) must divide Uk(xn + yn, xnyn). Since Uk(x + y, xy) is smaller than
Uk(xn + yn, xnyn), Un(xk + yk, xkyk) is composite by result 5.

Now, suppose that k is composite. Then k = st, where s and t are integers and s
is prime.

Then,

Un(xk + yk, xkyk) =
xkn − ykn

xk − yk

=
xstn − ystn

xst − yst

=
(xtn)s − (ytn)s

xst − yst

=
(xtn − ytn)

∑s−1
i=0 (xtn)s−i−1(ytn)i

xst − yst

=

xtn−ytn
xt−yt

∑s−1
i=0 (xtn)s−i−1(ytn)i

xst−yst
xt−yt

=
Un(xt + yt, xtyt)Us(x

tn + ytn, xtnytn)

Us(xt + yt, xtyt)
.

When n 6= s, GCD(Us(x
t+yt, xtyt), Un(xt+yt, xtyt)) = 1. Then Us(x

t+yt, xtyt) must
divide Us(x

tn+ytn, xtnytn). Since Us(x
t+yt, xtyt) is smaller than Us(x

tn+ytn, xtnytn),
Un(xk + yk, xkyk) is composite. This completes the proof of Theorem 1.

From Theorem 1, a few more facts can be observed.

1.1 If k is prime, then Un(a+ b, ab) is never prime for n 6= k.

1.2 If k has two distinct factors s and t, then Un(a+ b, ab) is never prime.
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1.3 For Un(a+b, ab) to ever be prime, k must equal sr, where r is a positive integer.

1.4 Un(a+ b, ab) can be prime at most once.

Data was also collected for the general case Un(P,Q), where a and b need not be
integers. The ranges on P and Q were 1 ≤ P ≤ 100, −100 ≤ Q ≤ 100. Note that P
is restricted to non-negative values because of result 2. Similar to the case where a
and b have a common factor, if P and Q have a common factor, then Un(P,Q) will be
composite for sufficiently large n. Therefore, Un(P,Q) was only tested for primality
for P and Q without a common factor, and it again only needed to be tested for
prime n as well. There were 12, 175 pairs (P,Q), leading to 2, 045, 400 primality
tests. In this case, there were 658 sequences with no primes up to n = 1000. The
pairs of (P,Q) that had no primes up to n = 1000 had many cases where Q is a
square. This suggests that Un(P,Q) can only be prime for a small number of n values.

To show that this is true, the identity Um+n = UmUn+1 − QUm−1Un was used.
This is property IV.4 on page 57 of [3].
Then,

U2n+1 = U(n+1)+n

= Un+1Un+1 −QU(n+1)−1Un

= Un+1Un+1 −QUnUn

= U2
n+1 −QU2

n

= (Un+1 − Un

√
Q)(Un+1 + Un

√
Q).

Then when both (Un+1 −
√
Q) and (Un+1 +

√
Q) are larger than 1, U2n+1(P,Q) is

composite. Therefore, the only case where U2n+1 can possibly be prime is when one
of these factors equals 1.

For any Lucas sequence Un(P,Q) = Un(a+ b, ab), if k is a positive integer, ak + bk

and akbk are also integers. Note that ak + bk is an integer because it the number
Vk(a+b, ab) and akbk is an integer because akbk = (ab)k = Qk. Then Un(ak+bk, akbk)
is a Lucas sequence. Using the same factorizations as the ones used for the proof of

Theorem 1, Un(ak + bk, akbk) = Un(a+b,ab)Uk(a
n+bn,anbn)

Uk(a+b,ab)
.

If Uk(a+ b, ab) is less than both Un(a+ b, ab) and Uk(an + bn, anbn), then Un(ak +
bk, akbk) is composite by result 5. In order to show this, it was necessary to show
that Un(a+b, ab) is an increasing sequence in n and Uk(an+bn, anbn) is an increasing
sequence in n. Then when k < n, Uk(a + b, ab) is less than both Un(a + b, ab) and
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Uk(an +bn, anbn). In the case where a and b are real numbers, these facts were shown
to be true. The result is not generally true when a and b are complex numbers. These
proofs will be given with the aid of the following lemmas. In all of these lemmas, it
is assumed that a and b are real.

Lemma 1: If P and Q are relatively prime, P > 0, Q 6= 0, and it is not the case
that P = 2 and Q = 1, then a ≥ 1 + |b|. In particular, a > 1.

Proof. Since Q 6= 0, b 6= 0. If b > 0, then a − b =
P+
√

P 2−4Q
2

− P−
√

P 2−4Q
2

=√
P 2 − 4Q. Since P and Q are relatively prime and since it is not simultaneously

true that P = 2 and Q = 1, P 2 − 4Q 6= 0. Therefore, a − b =
√
P 2 − 4Q ≥ 1,

and so a ≥ 1 + |b|. If b < 0, then |b| =
−P+
√

P 2−4Q
2

, so that a − |b| =
P+
√

P 2−4Q
2

−
−P+
√

P 2−4Q
2

= P ≥ 1. Thus, a ≥ 1 + |b|.

Lemma 2: If P and Q are relatively prime, P > 0, and Q 6= 0, then Un(P,Q) is a
strictly increasing sequence for n ≥ 2.

Proof. When b > 0, by result 6, for all n ≥ 1, we have Un(a + b, ab) > aUn−1(a +
b, ab) > Un−1(a+ b, ab).

If b < 0, then Q < 0. Then from the equation Un(P,Q) = P · Un−1(P,Q) − Q ·
Un−2(P,Q), it is evident that Un(P,Q) > P · Un−1(P,Q), so Un(P,Q) is increasing
for n ≥ 2.

Lemma 3: If P and Q are relatively prime, P > 0, and Q 6= 0, then Vn(P,Q) is a
strictly increasing sequence for n ≥ 2.

Proof. We have

Vn(a+ b, ab)− Vn−1(a+ b, ab) = (an + bn)− (an−1 + bn−1)

= (an − an−1) + (bn − bn−1)
= an−1(a− 1) + bn−1(b− 1),
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which is greater than or equal to (|b|+ 1)n−1|b|+ b− bn−1 by Lemma 1.
This in turn is greater than or equal to

((n− 1)|b|n−2 + 1)|b|+ b− bn−1 = (n− 1)|b|n−1 − bn−1 + |b|+ b

≥ (n− 2)|b|n−1 + |b|+ b > 0

for n ≥ 2.

Lemma 4: If b > 0, then Uk(an + bn, anbn) > Uk(an−1 + bn−1, an−1bn−1).

Proof. Since b > 0, we have Q > 0, meaning Q ≥ 1. Thus Qi ≥ Qj for all i > j.
Also, Vk(an +bn, anbn) = Vkn(a+b, ab) > Vkn−k(a+b, ab) = Vk(an−1 +bn−1, an−1bn−1)
by Lemma 3.
Using result 8, we have Uk(an + bn, anbn) = Vk−1(a

n + bn, anbn) + QnVk−3(a
n +

bn, anbn) +Q2nVk−5(a
n + bn, anbn) + ....

This is greater than Vk−1(a
n−1 + bn−1, an−1bn−1) +Qn−1Vk−3(a

n−1 + bn−1, an−1bn−1) +
Q2n−2Vk−5(a

n−1 + bn−1, an−1bn−1) + ..., which equals Uk(an−1 + bn−1, an−1bn−1).

Lemma 5: If n is even, then Uk(an + bn, anbn) > Uk(am + bm, ambm) for all
0 < m < n.

Proof. By result 8,
we have that Uk(am + bm, ambm) equals

Vk−1(a
m + bm, ambm) +QmVk−3(a

m + bm, ambm) +Q2mVk−5(a
m + bm, ambm) + ... ≤

Vk−1(a
m + bm, ambm) + |Q|mVk−3(am + bm, ambm) + |Q|2mVk−5(am + bm, ambm) + ... <

Vk−1(a
n + bn, anbn) + |Q|nVk−3(an + bn, anbn) + |Q|2nVk−5(an + bn, anbn) + ... =

Vk−1(a
n + bn, anbn) +QnVk−3(a

n + bn, anbn) +Q2nVk−5(a
n + bn, anbn) + ... =

Uk(an + bn, anbn).

Lemma 6: If n > 1 and k > 1, then Uk(an + bn, anbn) > Uk(am + bm, ambm) for all
0 < m < n.
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Proof. We have shown this for b > 0 and for even n, so suppose n is odd and b < 0.
Then Q < 0 as well. The proof will follow by induction on k.
When k = 0, Uk(an + bn, anbn) = 0 = Uk(a+ b, ab) and when k = 1,
Uk(an + bn, anbn) = 1 = Uk(a+ b, ab).

Moreover, when k = 2, Uk(an + bn, anbn) = an + bn > a+ b = Uk(a+ b, ab).

Assuming that Um(an + bn, anbn) > Um(an−1 + bn−1, an−1bn−1) for all m with
2 ≤ m ≤ k − 1, we have

Uk(an + bn, anbn) = (an + bn)Uk−1(a
n + bn, anbn)− anbnUk−2(a

n + bn, anbn)

= Vn(a+ b, ab)Uk−1(a
n + bn, anbn)−QnUk−2(a

n + bn, anbn)

= Vn(a+ b, ab)Uk−1(a
n + bn, anbn) + |Q|nUk−2(a

n + bn, anbn)

> Vn−1(a+ b, ab)Uk−1(a
n−1 + bn−1, an−1bn−1) + |Q|n−1Uk−2(a

n−1 + bn−1, an−1bn−1)

> Vn−1(a+ b, ab)Uk−1(a
n−1 + bn−1, an−1bn−1) +Qn−1Uk−2(a

n−1 + bn−1, an−1bn−1)

= Uk(an−1 + bn−1, an−1bn−1).

Theorem 2: If a and b are the solutions to the characteristic equation for Un(P,Q),
a and b are real, and k is a positive integer with s as a factor, then Un(ak + bk, akbk)
can only be prime for n = s.

Proof. Using the same factorizations as the ones at the beginning of the proof of

Theorem 1, Un(ak + bk, akbk) is equal to Un(a+b,ab)Uk(a
n+bn,anbn)

Uk(a+b,ab)
.

Suppose that k < n. Then by Lemma 2, Uk(a+ b, ab) < Un(a+ b, ab).
By Lemma 6, Uk(a+ b, ab) < Uk(an + bn, anbn).
Thus, Un(ak + bk, akbk) is composite by result 5.

Suppose that k ≥ n. The proof that Un(ak + bk, akbk) is composite when n 6= s is
the same as the proof of the case where k ≥ n and n 6= s in Theorem 1.

Notice that Theorem 2 is a generalization of Theorem 1, with the difference being
that a and b were required to be integers in Theorem 1.

13



Theorem 3: When Q is a square and a and b are real numbers, then Un(P,Q) can
only be prime when n = 2.

Proof. We have the formula

U2n+1(P,Q) = U2
n+1(P,Q)−QU2

n(P,Q)

= (Un+1(P,Q)−
√
QUn(P,Q))(Un+1(P,Q) +

√
QUn(P,Q)).

If both of these factors are integers greater than 1, then U2n+1 is composite.
Since Q is a square,

√
Q is an integer.

Then since Un, Un+1, and
√
Q are all integers,

both of the factors are integers as well.
Since Q is a square,

√
Q ≥ 1.

For n ≥ 1, Un(P,Q) ≥ 1 and Un+1(P,Q) ≥ 1.
Thus, both terms Un+1(P,Q) and

√
QUn(P,Q) are at least 1,

so (Un+1(P,Q) +
√
QUn(P,Q)) ≥ 2.

We are assuming a and b are real. Thus, P 2 − 4Q > 0. Factoring this, we have
(P − 2

√
Q)(P + 2

√
Q) > 0. The second term is positive, so the first term must be

as well. That is, P > 2
√
Q. As a result, P ≥ 3. Since P = a + b and Q = ab,

P − 2
√
Q = a− 2

√
a
√
b+ b = (

√
a−
√
b)2. Thus, (

√
a−
√
b)2 ≥ 1 and

√
a >
√
b, so√

a−
√
b ≥ 1.

The sequence Un(P,Q) has the first terms 0, 1, P, P 2 −Q, ....
From this, we can see that U2(P,Q) is prime if and only if P is prime.

Also, U3(P,Q) = P 2 −Q = (P −
√
Q)(P +

√
Q).

Since P ≥ 3 and
√
Q ≥ 1, P +

√
Q ≥ 4.

Also, P −
√
Q > 2

√
Q−
√
Q =

√
Q ≥ 1.

Therefore, P −
√
Q > 1. As such, U3(P,Q) cannot be prime.

For prime n > 3, n = 2k + 1, where k is an integer, so Up(P,Q) = (Uk+1(P,Q)−√
QUk(P,Q))(Uk+1(P,Q)+

√
QUk(P,Q)) with k ≥ 2. The second term is larger than

1, so what is left to be shown is that the first term is also larger than 1. Using the
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formula Uk+1(P,Q) = aUk(P,Q) + bk, we have

Uk+1(P,Q)−
√
QUk(P,Q) = aUk(P,Q) + bk −

√
a
√
bUk(P,Q)

=
√
aUk(P,Q)(

√
a−
√
b) + bk.

Since
√
a > 1,

√
a−
√
b ≥ 1, and Uk(P,Q) ≥ U2(P,Q) = P ≥ 3,

we have that Uk+1(P,Q)−
√
QUk(P,Q) > 3+ bk. In particular, it is an integer larger

than 2.

If n is not prime, say n = pk for some prime p and k > 1, then Un(P,Q) is
divisible by Up(P,Q) by result 1. Therefore, Un(P,Q) is composite.

While Theorems 2 and 3 required a and b to be real numbers, it is likely that they
hold true for complex numbers as well. However, this could not be shown over the
course of the project. The difficulty with a and b being complex is that Un(a+ b, ab)
and Uk(an + b, anbn) are not necessarily increasing in n. However, it seems to be the
case that the general trend in these sequences is that they increase in absolute value
as n increases, even though it may not be true on a term to term basis. Further
exploration may result in a modification of Theorems 2 and 3 that do not require a
and b to be real.

5 Possibilities for Future Work

There were many Lucas sequences Un(P,Q) that produced no primes up to n = 1000
that could not be explained by the theorems in this paper. Since there were many
sequences tested, it could just be the case that one would expect some of these se-
quences to produce no primes up to n = 1000, but to later produce a prime for a
large enough value of n. However, it also may be that there are some underlying
reasons for the compositeness of these sequences. If this is the case, perhaps future
analysis could discover why this occurs.
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