Symmetric chain decompositions of partially ordered sets

A THESIS
SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL
OF THE UNIVERSITY OF MINNESOTA
BY

Ondrej Zjevik

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
MASTER OF SCIENCE

John Greene, Dalibor Froncek

July, 2014



Acknowledgements

There are many people that have earned my gratitude for their contribution to my time
in graduate school. First, I have to express my deep appreciation to prof. John Greene
who has been providing me with outstanding guidelines and recommendations ever since
he introduced me to this topic. I am especially grateful for his persistence in reading
various copies of this paper.

I am indebted to prof. Dalibor Froncek for encouraging me to apply to UMD, his
support and for serving on my committee.

I would also like to thank prof. Dougles Dunham for serving on my committee.



Abstract

A partially ordered set, or poset, is a set of elements and a binary relation which
determines an order within elements. Various combinatorial properties of finite and
ordered posets have been extensively studied during the last 4 decades. The Sperner
property states that the size of the largest subset of pairwise incomparable elements
does not exceed the size of the largest level set in an ordered poset. Since a symmetric
chain decomposition is a sufficient condition for the Sperner property, we may prove the
Sperner property by finding a symmetric chain decomposition for a poset.

In this paper we focus on three types of posets: the Boolean algebra, inversion poset
and the Young’s lattice. An explicit construction for a symmetric chain decomposition is
known only for Boolean algebras. No explicit construction has been found for inversion
posets and Young’s lattices, a symmetric chain decomposition was found only for a small
subset of these posets. Using a maximal flow, we introduce an algorithm for finding
this decomposition. We present our results and discuss two implementations of this

algorithm.
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Chapter 1

Introduction

A partially ordered set (poset) is an ordered pair of a set with an order relation, e.g.,

(P,R). This relation R is
e reflexive: each element is related to itself, i.e., Va € P, (a,a) € R,
e transitive: if (a,b) € R and (b,¢) € R, then (a,c) € R,
e antisymmetric: if (a,b) € R and a # b, then (b,a) ¢ R.

If two elements are related, (a,b) € R, we use a < b to denote this relation. If we would
like to emphasis a specific poset P we use a <p b instead. The set P with the relation
‘R can be considered as a directed graph where P is the vertex set and R is the edge set.
The vertex set P can be finite or infinite. A simple example is when P = Z™ and the
relation is defined as a < b if b — a € N. This poset is infinite and since we can compare
each pair of positive integers, one integer is always less or equal then another, we say
that this order is total. A partial order on the same set P = Z™ is given by divisibility.
That is, a < b when b is divisible by a. For this order relation, not every pair of positive
numbers is comparable. For example if we consider 3 and 5, neither 3 divides 5 nor 3 is
divisible by 5. We say 3 and 5 are incomparable. If we restrict P to all divisors of 36 we

get a finite poset. These types of posets are called division posets, since the relation is



(a) Directed graph of a division (b) Hasse diagram of a division
poset Dsg. poset D3g with a SSCD.

(c) Hasse diagram of a poset without

o rank function (d) Hasse diagram of a ranked poset.

Figure 1.1: Examples of posets.

defined by division. Finite posets will be our main focus throughout this paper. More
types of posets and precise definitions will be introduced in Chapter 2.

The directed graph of the finite division poset of divisors of 36 is shown in Figure
1.1{(a). This is the only time we show the entire directed graph of a poset. We will use
Hasse diagrams for graphical representations of posets because they contain the same
amount of information but have fewer edges than directed graphs. An edge (a,b) is in
a Hasse diagram if and only if there is no ¢ such that oriented paths from a to ¢ and
from ¢ to b would exist. Additionally, Hasse diagrams do not have oriented edges but
we assume that every edge is oriented in upward direction. We can see the difference

between a directed graph and a Hasse diagram of a division poset in Figures (a) and



T[b).

Posets have a variety of possible properties. A poset is ranked if elements of the Hasse
diagram can be partitioned into horizontal level sets such that edges are only between
the closest sets. Since there are no edges within each layer nor between layers which are
separated by at least one other layer, every oriented path between two elements must
have the same length. Each Hasse diagram in Figure is ranked except (c). This
poset is not ranked because there are two paths from 2 to 8 with different lengths. The
path 2 — 5 — 8 has length 2 but the path 2 -+ 4 — 7 — 8 has length 3.

An upper bound of a subset A of P is an element p such that a < p for all a € A.
Let U be a set of all upper bounds of A. If there exists an upper bound ¢ such that
q < pfor all p € U, we call q the least upper bound of A. Lower bounds and the greatest
lower bound are defined similarly. Notice that the definition of the least upper bound
and the greatest lower bound imply uniqueness, since the relation is antisymmetric.

A poset is called a lattice if the least upper bound and the greatest lower bound
exist for every pair of elements. As we could suppose the division poset and the poset
in Figure [L.1[d) are lattices, but the poset in Figure [L.I](c) is not a lattice. If we look
at the subset {3,4,6, 7} in Figure[1.1|c), we can find that {3,4} does not have the least
upper bound and {6,7} does not have the greatest lower bound.

A decomposition of a poset is a partition of P into disjoint subsets Py, P1, ..., Pk
such that UfZOPL' = P. There are many types of decomposition but we will focus on
symmetric saturated chain decompositions (SSCD). An ordered n-tuple (ci,co, ..., cp)
is called a chain, with length n—1, of the poset P if ¢; # ¢; 11 and ¢; < ¢;41 for 1 < i < n.
A chain (c1,co,...,¢p) is saturated if it cannot be internally extended, i.e.; (¢;, ¢it1) is
an edge in the Hasse diagram of the poset for 1 < ¢ < n. A saturated chain is symmetric
if it starts and ends at levels whose distance from the middle level(s) of the poset is
the same. Figure (b) contains a diagram with two highlighted symmetric saturated

chains. A poset has a SSCD if P can be decomposed into symmetric saturated chains.



Figure 1.2: Different saturated chain decompositions of a poset depicted in figure (d)

The division poset (lattice) in Figure (b) is decomposable into three symmetric
saturated chains. The chains, as highlighted in the Figure, are (1,3,9,18,36), (2,4, 12)
and (6). The lattice in Figure [I.1[d) cannot be decomposed into symmetric saturated
chains. If this lattice were decomposable, there would have to be a longest chain from
1 to 12. We have exactly 4 choices for this chain, the choice depends on which element
from the middle layer is included. Each choice will leave two non symmetric chains as
we can see in Figure [[.2]

Before we introduce an algorithm for finding a symmetric saturated chain decompo-
sition for a poset; fundamental terminology, a few properties of posets and essential the-
orems will be introduced in chapter 2l We also explain a connection between Sperner’s
property and the existence of a SSCD in this chapter.

The rest of the proofs are placed in chapter [3| In this chapter we describe isomor-

phisms between division and boolean posets and within inversion posets.



Chapter [4] introduces an algorithm for finding a SSCD for posets. This algorithm
uses a maximum flow in a graph to construct a SSCD. Two different algorithms for
finding a maximum flow in a graph are discussed.

Chapter [f] contains a brief description of two implementations of the algorithm from
chapter We provide a table with all posets for which our implementation finds a
SSCD and discuss suggestions for a future work.

Both of our implementations have similar interface and a description of these inter-
faces is given in appendix [A] A performance comparison between the two implementa-
tions, examples of a SSCD for selected posets and source codes of our implementations

are placed in appendixes, also.



Chapter 2

Formal definitions and

fundamental properties of posets

The theory of partially ordered sets investigates a poset as a graph or as a set of elements.
This set can be infinite but we will focus on finite sets only. At the beginning of this
chapter the most common notation and definitions from Graph Theory are introduced.
Concrete examples of posets with known attributes will be introduced after definitions.
Most of these definitions can be found in [I] or in [10].

Let P be a poset, R its relation and p,p’, q, ¢’ elements of P.

We say that p and ¢ are comparable if (p,q) € R or (q,p) € R, and we typically
write this as p < q or ¢ < p. In the case when p and ¢ are comparable and p # ¢
either p < q or ¢ < p is valid. An element p covers ¢, denoted as ¢ < p, if ¢ < p and
if ¢ < p’ < pimplies p = p’. An element p is a minimal element of P if ¢ < p implies
q = p; a maximal element is defined similarly.

A ranked poset is equipped with a rank function p. This is a function from P to N
satisfying p(p) = p(q) + 1 if p covers q. The rank of a poset is defined as the largest
rank over all elements from the poset. Since every finite lattice has only one minimal

element, the rank of this minimal element is zero.
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Figure 2.1: Example of a direct product of two ranked posets.

A chain C = (¢, ¢, ..., cx) is saturated if ¢; < ¢y < - -+ < ¢. This chain is mazimal
if there is no ¢y such that (cg, c1,co,...,¢x) or (c1,c,...,ck,co) would be a valid chain
in P. Each of the highlighted chains in Figure is saturated.

A saturated chain (c1,ca,...,¢,) is symmetric if p(e1) 4+ p(en) = p(P). Note that
p(e1) + p(en) = p(P) implies that p(c144) + p(cn—i) = p(P) for 0 <i < n/2.

A set Q C P is an antichain if every pair of elements in Q is incomparable, i.e., there
are no p,q € Q such that p # ¢ and p < q or ¢ < p. Sets {2,7,8},{2,3,4},{6,9,11},
{5,6,7,8} are examples of antichains in Figure The direct product of two posets
(P,R)and (Q,S), (P,R)x(Q,S), is a poset with the set defined as a Cartesian product
of P and Q, the order relation of P x Q is given by (p,q) < (p/,¢') if and only if p <p p/
and ¢ <g ¢’ in R and S, respectively. Consider a direct product of divisors of 36 ordered
by divisibility and N ordered by a total order p < ¢ if ¢ — p € N shown in Figure
An example of a saturated chain is ((1, 0),(2,0),(2,1),(6,1), (6, 2)) Since 2 and 3 are
incomparable in the division poset, the set {(2,0), (3,1)} is an antichain in P x Q. If P
and Q are ranked, then so is P x Q by p((p,q)) = pp(p) + po(q)

If P is a ranked poset, its elements can be partitioned into layers, the ith layer of a
ranked poset P is denoted as N;(P) := {p € P|p(p) = i}. The size of N;(P) is called the
ith Whitney number, denoted by W; = |N;(P)|. Note that W; =01if j < 0 or j > p(P)



from the definition of N;(P), since each layer N;(P) is empty. A generating function of
a ranked poset P is given by

p(P)
GF(P)=> ¢ =) Wy
weP i=0

We stated that posets in Figures[1.1[(b) and [L.1|(d) are ranked. Hence, there is a gener-
ating function for each poset. The generating function for the poset in Figure [1.1)(d) is
1+3q¢+4¢> + 3¢+ ¢*, GF(D3g) = 1+ 2q + 3¢ + 2¢° + ¢*.

A poset is rank unimodal if there exist j such that Wy < Wy < .- < W <
Wi > Wiy > > Wyp). A rank symmetric poset is a ranked poset whose Whitney
numbers are symmetric with respect to the middle layer(s), i.e.; W; = Wpy—i for
0 <i < p(P)/2. Again, if we look at Figures [L.1{b) and [1.1{d), sequences of Whitney
numbers are (1,2,3,2,1) and (1,3,4,3,1), respectively. Both sequences are symmetric
and unimodal but only the division poset has a SSCD.

Posets P and Q are isomorphic, P = Q, if there is a bijective mapping ¢ from P

onto Q such that p <p ¢ if and only if p(p) <g ¢(q).

Theorem 2.1 (Sperner’s Theorem). Let n be a positive integer and F be a family of
subsets of [n] :={1,2,...,n} such that no member of F is included in another member

of F, that is, for all X, Y € F we have X ¢ Y. Then

(n%) if n is even,

((n—q)/Q) if n is odd.

Sperner’s Theorem was at the beginning of the Poset Theory and many important
results were obtained by using this theorem. Three different proofs of this theorem can
be found in [4], as well as other important results. We will prove this theorem in the next
chapter using a symmetric chain decomposition of the family of subsets of {1,2,...,n}.

Since each level set of a poset contains only incomparable elements, a lower bound



(a) By (b) A lattice without the Sperner property.

Figure 2.2: Examples of two different lattices.

for the size of the largest antichain is given by the largest Whitney number. Sperner’s
Theorem was stated for the family of subsets of a set ordered by inclusion and it says
that this lower bound is tight, the size of the biggest antichain is equal to the largest
Whitney number. A generalization of this theorem is available for other types of posets;
a ranked poset P has the Sperner property if the size of any antichain is less than or
equal to the biggest Whitney number.

The two lattices in Figure both have the Sperner property. However, the lattice
in Figure (b) is rank symmetric but it does not have the Sperner property nor a
SSCD, the antichain {3,4,5,6,7} is larger than the size of the middle layer.

Unfortunately, it is not true that every poset with the Sperner property has a sym-
metric saturated chain decomposition. An example of such a poset is in Figure [L.1}(d).
This poset satisfies the Sperner property, the size of each antichain is not bigger than 4
which is the size of the biggest antichain formed by the middle layer. However, there is
no SSCD of this poset as we discussed in Chapter

We will find a use of g-functions in examining rank functions. A g¢-analog of n is

defined as {n}, = % and we often want to evaluate the g-analog of n for ¢ = 1. This



value does not exist, but we can find a limit as ¢ approaches 1,

N O ) e ek i .
lim = lim
q—1 1——q qg—1 1—-q

=liml+qg+g+-+¢" ' =n
qg—1

Additionally, we will use a continuous extension of g-analog of n,

n

1—gq

=1ltq+q*+ g
l—gq

because % =1+q+¢*+ -+ ¢" ! almost everywhere.
A g-factorial of n, {n},!, is defined as a product of g-analogs of i, where 0 < i < n.

Hence,

{nt! = {ntg-{n—1}--- {1}

1—q 1—q 1—q
I+g+@+ - +¢"DHA+g+e+-+¢"7?) - (1+)(1).

Similar as the binomial coefficient, the ¢-binomial coefficient is given by

(;D . {m}q!{{z}q—! m}g!

The Boolean algebra B,, is the poset of all subsets of a set with n elements, ordered

by an inclusion. The size of B,, is 2" and its Whitney numbers correspond to a row in
the Pascal’s triangle. The rank of an element is its cardinality.
The division poset D, is a poset of all divisors of n, ordered by divisibility. Let n =

pIps? ... pzk be the prime factorization of n. Each element of the division poset can be

written as pll’lpg2 .. .pzk, where 0 < b; < a; for each i. The rank ofpll’lpg2 .. .pZ’“ is Zle b;.
The Symmetric group S, is the group of all permutations of (1,2,...,n). The sum
of all Whitney numbers of any partial ordering on S,, has to be n! since there are n!

possible arrangements of n elements in a sequence. Suppose a = (a1, aq,...,a,) and

b= (b1,ba,...,b,) are elements of S,,. A pair (i,7) is called an inversion of a if i < j

10



(a) Inversion poset I3

(b) Young lattice L(3,3)

Figure 2.3: Diagrams of an inversion poset and a Young’s lattice.

and a; > aj. The inversion sequence of a is a sequence (i1,12,...,4,) Where each iy
represents how many elements in a on the left of aj, are greater than ay, [7]. For example,
consider a sequence (7,5,8,3,2,6,1,4). A pair (2,7) is an inversion since 5 > 1 and the
inversion sequence is (0, 1,0, 3,4,2,6,4). The inversion number of a permutation is the
sum of its inversion sequence, i.e., inv(a) = > %_, i; [I1]. The set S, with a relation
given by a < b, if b is created from a by interchanging a; with a;+1 when a; < a;41, is
called the inversion poset, I,,. This binary relation is called the (weak) Bruhat order.
The generating function is given by
n—1

GF(I,) ={n}'=[[0+aq+ P+ +q)
=0

11



(a) Inversion poset Iy 1 23} (b) Inversion poset {22 3}

Figure 2.4: Diagrams of inversion posets for multisets.

and the rank of an element is its inversion number.

Similar to inversion posets we define an inversion poset for multisets ordered by
inversions. Inversion posets for {1,1,2,3} and {1,2,2,3}, I1;123) and {223y, re-
spectively, are shown in Figure 2.4 The generating function for Iy, where N =

{ni,n1,...,n1,n2,n9,...,N9, ..., Nk, Nk, ..., Nk} is given by a g—multinomial coefficient,

(1,

15 la Uk
p— — q .
{hteh - {la}g! - {lk}q!
q

k

> b

=1
l17l27"'alk‘

GF(Iy) =

We will prove this result in Chapter 3. For example, for I{; 1 531 we have

24141} Q+g+ P+ A0 +a+ )1 +9)(1)
CEUnazs) = Gy, EDI0

= (1+q+P+)1+q+4?)

= 1+4+2¢+3¢*>+ 3¢+ 2¢* + ¢

12



Note that the generating function for Iy 953y is the same as the generating function
for Iy 12,3 even though these posets are not isomorphic.

The Young’s lattice, L(m,n), is a poset of n-tuples (a1, as,...,a,), where 0 < ay <
ay < -+ < a, < m with order relation (aj,as,...,a,) < (b1,ba,...,by) if a; < b;
for all i. The rank function is given by a sum of all elements in an n-tuple, hence
p((a1,ag,...,a,)) = a1+ a2+ -+ + an. We can find in [11 p. 72] that the generating

function for a Young’s lattice is

GF(L(m,n)) _ (m—l—n) _ (1 _ qn+1)(1 _ qn+2) L (1 _ anrm)‘

m 1-q)(1—¢* - (1—qgm)

Theorem 2.2 ([2]). If P and Q are posets with a symmetric saturated chain decompo-

sition, then P x Q has a symmetric saturated chain decomposition.

Proof. Let Py, P,..., P, and Qg,Q1,...,Q, be SSCD’s for P and O, respectively.

Consider a pair of chains (P, Q;), say
Pi=po<pr <---<ppand Qj =qo <q1 <+ < gp
We can create a new chain Ej, where

E = ((po,Ql), P, q)s - Pr—1-a), Pr—1:2141)5 - - - (pkflth))a

for 0 <1 < min{k, h}. Each Ej is evidently a saturated chain in P x Q, since the change

is only in the first or the second term and both P; and @; are saturated. P; and Q; are

13



symmetric, so p(P) = p(po) + p(px) and p(Q) = p(qo) + p(qn). Additionally, since

p(q) + p(pr—1) + p(an)
p(ar) — (k—1) + p(po) + (k= 1) + p(an)
p(ar) + p(po) + p(qn)

p((po, ) + p((Pr—1,qn)) = p

E is also symmetric. If k& < h, the number of elements in all E;’s for a pair (P, Q;) is

k k k
SIE| = Sth+h+tl-2)=E+D(k+h+1)—231
=0 =0 =0

= k>4 kh+2k+h+1-2kE!
= K2+kh+2k+h+1—k(k+1)=kh+k+h+1
= (k+1)(h+1)=|R]-]Qj.

If h < k, the same result can be obtained by the same procedure. Since we can do this
procedure for each pair of chains from the decomposition, the total number of elements

in all E;’s is

m n min{k,h} m n m n
Do IEI=) D IR = YR 1Qil =Pl - 12l
=0 j=0 =0 =0 j=0 =0 7=0

Hence we will obtain new symmetric chain decomposition of P x Q by this procedure. [

For example, consider a direct product of I3 and a chain of three elements, C' =
(c1,¢2,c3). A diagram of this direct product is shown in Figure To follow the proof
of Theorem we pick a symmetric saturated chain in each poset. These chains are
highlighted by thick solid line. These chains will yield, by Theorem [2.2] three symmetric
saturated chains in the direct product, since the shortest chain contains three elements.

If we follow the same notation, we have chains Ey, £1 and E>. The chain Ej is the

14



Figure 2.5: Example of theorem

longest chain and Es is the shortest. Additionally, these chains cover all elements in the
Cartesian product of the original highlighted chain in I3 and C'. We can describe this
construction easier if a diagram of the direct product is available. Given two saturated
symmetric chains P and Q, each from a different poset, a SSCD of the direct product

P x Q can be found by following an algorithm:
1. Let S =P x Q.
2. Pick an element p with the smallest rank in S.

3. Construct a new symmetric saturated chain F; which starts at p, follows an upward
path given by P as far as it can and then continues to the right following a path

given by Q.

4. If we have not used all elements in P x Q we have to shrink S and find a next

chain. In order to do that we have to remove F; from S and go back to 2.

We will investigate a few types of posets which are created as a direct product of two

or more ranked posets. To analyze their properties we prove the following theorems.

Theorem 2.3 ([4]). The generating function for the direct product of two ranked posets

15



P and Q is given by
GF(P x Q) =GF(P)-GF(Q).
Proof. Since the generating function of a poset P is given by GF(P) = q*®) | we

peEP
can use this formula on P x Q

GF(Px Q) = S gleb) = 5 gela)te(d) — S ST gela)ta(d)
(a,b)ePxQ (a,b)ePxQ a€P geQ

= ¥ qp(a) > qp(b) = GF(P)-GF(Q).
a€EP beQ

O]

Theorem 2.4. A poset with a symmetric saturated chain decomposition has the Sperner

property.

Proof. If a poset P has a SSCD then the largest Whitney number is WL@J (P). We
need to prove that every antichain has size less than or equal to WL o(P) | (P).

Let A = {a1,aq,...,a;} be an antichain and C = {C,C»,...,Cy} be a SSCD of P.
Since C' contains all elements of P, suppose, without loss of generality that a; € Cf.
All elements in C are comparable with a;. Hence, without loss of generality, say that
as € Cy. Since ag is not comparable with neither a; nor as it cannot be in C; or Cs,
say ag is in C'3. We can conclude, by reordering the C’s as necessary, that a; € C; for
each ¢ <[, therefore [ < k.

It is clear from the definition of SSCD that the biggest Whitney number, the size of

the middle layer(s), is equal to the number of chains in a SSCD. Therefore,
lSk:WL@J(’P) — ZSWL@J(,P)’

which completes the proof. O

16



Chapter 3

Additional properties of posets

3.1 Division and Boolean posets

Theorem 3.1. A division poset D, is isomorphic to the direct product of chains C' =

(1<p1<p%<---<p‘1“)><(1<p2<p%<~-<p§2)><---><(1<pk<pi<---<pzk), where

n = pi'py? ... pe* is the prime factorization of n.

Proof. Let I be a function from D,, to C given by

by b b b b b
I(p'p? ... p%) = (py" v, - - Dy ).

It is clear that the function I is one-to-one. Let p = plil pSQ e pi’“ and ¢ = p{'p5* ... pZ’“,
where b; < ¢; for each i. Apparently, ¢ is divisible by p, ¢/p = p?*bl . p§27b2 . pz’“fb’“
where each ¢; — b; > 0 and therefore p <p, q.

Since I(p) = (P?lap?, . ,pzk) we can construct a chain ((plil,p’f, .. ,pZ’“) <

b b b .
(07055 p) < (07057 p) < - S (7P ) = I(q)> in C, therefore
I(p) <¢ I(q) from the transitive property of the relation.

To finish the proof we need to show that I(p) <¢ I(q) implies p <p_  gq. To show
this, again suppose that I(p) = (pll”,ng, . ,pZ’“) and I(q) = (pi*,p3, ..., "), where

b; < ¢; for each 4. It is clear, since I is one-to-one, that p divides q. O
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We can find the generating function for a division poset by combining Theorems [3.1]
and 2.3

Corollary 3.2. The generating function for a division poset Dy,, wheren = p{*p5? ... p*

is the prime factorization of n, is given by
k

GF(Dy) =[[A+a+a+-+q¢%).
=1

For example the generating function for Dsg is
GF(D3s) = GF(Dyp.g2) = (1 +q+¢°) - (1 +q+¢*) =1+2¢+3¢" +2¢° +¢".

We can compare this rank function with a diagram of the division poset Dsg in Figure
1.1{(b), there is one element with rank zero, two with rank one and three with rank two.

Now, we may focus on Boolean posets and show that a Boolean poset has the same
properties as a division poset. In fact, a Boolean poset is a special case of a division

poset D,,.

Theorem 3.3. A Boolean poset By, is isomorphic to D,,, where n = pips---pr and

each p; is a distinct prime number.

Proof. Since elements of By, are subsets of {1,2,...,k}, we can introduce an one-to-one

function I from By into D,,. Say

I({a17a27 cee 7ai}) = Pa1Pas ** " Pa;>

where I(()) = 1. Consider two subsets of By, A and B, such that A C B. Suppose that
A ={ai,a,...,a;} and B = {ai,as,...,a;,b1,b2,...,b;} since A is a subset of B. We
have to show that I(A) <p,_ I(B), i.e., that the function I respects the order. Observe

that
o pa1pa2 e paiplnpbz o 'pbj . I(B)
Db Dby - 'pbj Pb1Pby - * ‘pbj .

I<A) = Pa1Pas * * * Pa;

18



Thus

~

EBi = Dby Dby """ Db

~

which indicates that I(A) divides I(B), therefore I(A) <p, I(B). O

Now we know that a Boolean poset is a ranked poset with a SSCD. Using Corollary
the generating function for B, is given by

GF(B.) = ilj(l o) = ; (7)s"

which explains why a sequence of Whitney numbers corresponds to a row in the Pascal’s

triangle.

Theorem 3.4. Given a division poset D,,, where n = p{*p5? ... p* is the prime factor-
ization of n, we can find an isomorphism I between D,, with a standard order and D,

with a reversed order.
Proof. We will prove that this isomorphism is given by

by, b b n
I(p11p22 pkk) = b1 bo by *
Py Py ---Dy

The function I is one-to-one, therefore we have to check only that if b <p ¢ then

I(b) >p, I(c). Since c is divisible by b we have

n
n

o
Q I=|o—

Q I= o=
NEISE
~
—

~

—~
2}

~

as required. ]

Given a poset P, the poset with the same underlying set but reversed order is called
the dual of P, P* [4]. If a poset and its dual are isomorphic, then this poset is called
self-dual [10].
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Theorems and imply that each division poset has a SSCD, therefore each
division poset has the Sperner property by Theorem In particular, the Boolean
poset B, satisfies the Sperner property, proving Theorem

3.2 Inversion posets and Young’s lattices

Let S(m + n,m) be a poset of all bit strings of length m + n with m ones. We define a
partial order which is the same as for an inversion poset I,,. That is, p < ¢ if ¢ is created
by some number of adjacent transpositions of elements in p, where the second element

is larger than the first. The smallest and the greatest elements are 0000---00011---111
—_—— —

n m

and 11---1110000---000, respectively.
—— ———

m n

Theorem 3.5. S(m +n,m) and L(m,n) are isomorphic.

Proof. Let I be a function from L(m,n) to S(m + n, m) given by

[<(a1,a2,...,an)) —1-2101---101---10--- 1---101---1
S~ S S~ —— S~
al as—ai1 az—as An—0n_1 M—an

To show that I is one-to-one suppose that a = (a1, a2,...,ay,),b = (b1,be,...,b,) and

I(a) = I(b). Then

I(a) = I(b)
1...101---101---10---1---101--1 = 1---101---101---10---1---101---1.
S~ ==~ = N e N e e e e

ai az—ai1  az—a2 aAn—an—-1 M—an b1 bo—b1 b3—ba bp—bp—1 Mm—an

If the two strings are the same, then the number of ones separated by a zero has to be
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the same. Hence, we get this system of equations

ap = b
as —ay = b2 — b1
az—az = bz—by
p — Gp—1 = by —by_1
m-—a, = m—b,.

We can use the solution of the first equation, a1 = by, to solve the second equation and
get ag = by. It is easy to see that the solution of this system is a; = b; for 1 < ¢ <n
and therefore a = b.

To show that the function I preserves order, let a <r, b. I(a) is less than or equal
to I(b) if the number of ones on the left from each zero in I(a) is less than or equal to
the number of ones on the left from each zero in I(b). For I(a), the number of ones
before the first zero is a1, before the second zero it is a1 + a9 — a1 = asg, there are ag
ones before the third zero, etc., up to m. Similarly, the sequence for b is by, ba, ..., m.
Each a; is less than or equal to b; since a <p, b and therefore I(a) < I(b).

The opposite, I(a) < I(b) implies a <p, b comes from the same effort of comparing

number of ones which precede a zero. O

The function I from the proof above is one-to-one and therefore it has an inverse.
The function 1~! takes a bit string s and returns a vector containing only those elements
from the inversion sequence of s which correspond to zeros in s. An example of an

isomorphism between L(2,3) and S(5,2) can be seen on Figure

m+n
m

Kyle Krueger in his Master’s project[8] proved that ( )q is the generating function
of S(m-+n,m). This result together with the previous theorem shows that the generation

function for L(m,n) is

m

GF(L(m,n)) = <m + ”)q.
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Figure 3.1: An isomorphism between L(3,2) and S(5, 3).

Theorem 3.6. The generating function for an inversion poset for a multiset In, where

N ={ni,ni,...,n1,n2,N2, ..., N2y ..., Mg, Nk, ..., N} 18

I ly I

k
>l
=1

lilo, o Ik
q

Proof. We prove this theorem using strong induction on k, the number of distinct ele-
ments in N. Let k = 2 be our base case. Krueger in [8] provides the formula for the

generating function in this base case as a ¢g-binomial coefficient,

l1+l2> IR URRIE
< b )y {lde! - {la}g!

This is the same formula that we get from our hypothesis, since

2
Dl )l )y

=1 = —-
{litq! - {l2}q!
li,1ls
q
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Assume that the formula holds for each k between 1 and m. The generating function

for I, where N = {ny,ny,...,n1,n2,n2,...,N02, ..., Ny, N, - . . , Ny }, can be found in

I la lm
a few steps. First, let us recall a definition of the generating function for the inversion

poset

GF(Iy)= 3 ¢™®),

wely

where the inversion number of w is a sum of its inversion sequence. Additionally,
we introduce a bijection ¢ : Iy — W' x W” where p(w) = (w',w”). The permu-
tation w’ is a copy of w without any n,,’s and w” is a copy of w where each ele-
ment smaller than n,, is replaced by zero. For example if N = {1,1,2,2,2,3,3,4,4}
and w = (3,1,2,4,1,2,4,3,2) then v’ = (3,1,2,1,2,3,2), v’ = (0,0,0,4,0,0,4,0,0),
inv(w) = 13, inv(w’) = 7 and inv(w”) = 6.

This bijection splits the inversion number of w into two parts. The inversion number
of w” expresses the contribution of the n,,’s to the inversion number of w and the
inversion number of w’ indicates the contribution of all other elements. We can represent

this relation by the following equation,
inv(w) = inv(w’) + inv(w”).

It is apparent that ¢ is an injective function. To show that it is also surjective, given
a pair w’, w” we can find w by replacing all zeros in w” with elements from w’ in a given
order.

This bijection allows to rewrite the generating function for Iy,

inv(w) inv(w’)+inv(w”) _ inv(w’) | inv(w’)
d g > g > g q

wEIN ( , wHG)IN ( ) (wl,w//)EW/XWN
w’ w")=p(w
_ Zqinv(w/) . § :qinv(w”)
wIEW/ w/IGW//
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Since W’ contains all permutations of {ny,...,n1,na..., N2, ..., Nyp—1,...,Mm—1}, the
—_— —

I l2 lm—1

generating function will be the same as for Iyp, ... nyng ... 0o i1, ..., nm_1} a0d
N — N———

51 l2 lm—1

therefore by the induction assumption,

m—1
m=1 { Z lz} !
o )= &t — = g .
{ll}q! ’ {12}41! T {lm—l}q!

w'ew’ l17l27' : 'almfl

q

Similarly, W” contains all permutations of {0,0,...,0,0,n,,...,n,,} and therefore the

I +12+f+lm71 Im
generating function will be the same as the generating function for I 0,0,...,0,00m, ..., m}"

~~

~
li+lg+-+lm—1 Im

This function is our base case, thus

m—1 m I |
Z Ui+l y (o
B =1 q

Zqinv(w ) — ’L::qln—l — — )
S}t
q

wl W Y U I
q

=1

Using the general definition of a generating function for an inversion poset we can

describe the generating function for Itny ny, ... nyn9,na, ...\ N2 Tim, Tans « -« s Tom} 35

151 lo lm
a product of the g-multinomial coefficient and the g-binomial coefficient,

£ B {54,

OVER CYRER (R {mz} TR R R O

=1
2.l
=1
ll)l25--'7lm

q

as required.
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Theorem 3.7. An inversion poset for a multiset Iy is self-dual.

Proof. Let F': In — Iy be given by

F((p17p27 cee 7pm)> = (pmapm—la v 7p2>p1)-

Let a and b be two permutations of Iy such that F(a) = F(b). Elements a and b must
be the same, since their reverses are the same and therefore F is one-to-one.

Let a < b, thus b can be constructed from a by some number of swaps of consecutive
elements where the element on the right is greater than the element on the left. Let
C = (a,c1,¢2,...,Cm,b) be a saturated chain between a and b. Since ¢, < b, there has
to be a pair of consecutive elements in b where the element on the right is less than
the element on the left. Thus, we know that F'(b) < F'(c,,) since F' reverses the order
of b and ¢;,. Similarly, we can show that F(c,,) < F(¢pm—1) < -+ < F(c1) < F(a) and
therefore F'(b) < F(a). O

The next theorem introduces another isomorphism between inversion posets which

is convenient when a SSCD is being found.

Theorem 3.8. The inversion poset 11y,  nino...no,.ng,n,) 15 180morphic to the dual
~—— ~——

I Iy Uy
of the inversion poset I{nl,...,nl,nz,...,nz,...,nk,...,nk}'
——

K le—1 1
Proof. For the sake of simplicity let m; = ng_;11 and m = Zle li. Let F': In, — Iy,

be a function given by

F((p17p27"'7pm)) = (17171727"'7%)7

where Nl = {nh...,nl, 72,000y TV2y « « » ,nk,...m,k} and N2 = {nk,...,nk, Ty Th—Ty » = » ,n17...,n1}.
S—— SN—— S—— N—— SN——

l1 l2 g 1 lo ke

Consider two permutations a and b of Iy, such that F(a) = F(b). It is clear from the
definition of F' that since F'(a) = F(b) then a = b and therefore F' is one-to-one.
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E

(a) The dual of the inversion poset Iy ;2 33 (b) The inversion poset I¢ 23 3}

Figure 3.2: An illustration of an isomorphism between I;; 13y and Ij; 2 33;-

To prove the isomorphism we have to show that a < b if and only if F(a) > F(b).
Since we showed that F' is one-to-one it is enough to show that a < b if and only if
F(a) > F(b). To show this, we will prove that a < b if and only if F'(a) > F(b) because

these statements are equivalent since there is always a saturated chain between a and b

if a < b.
Let a = (a1, a9, ...,ai,ai+1,...,an), where a; < a;4+1 and suppose that a < b, with
b= (al,CLQ, cees Qi1 Ay e 7a'm)-

F(b) = (aihai?)' "7ai+17a7’i7“- 7@)

Let’s focus on the pair (@;31,a;). Since a; < a;41 we can say that nj, = a; < aj11 = nj,,
where j1 < jo. Then @; = nj; = np_j, 41 and @11 = Ny, = Ng_j,41. It follows from the
inequality j1 < j2 that kK —jo+1 <k — j1 + 1, ng—j,4+1 < ng—j,+1 and hence a;17 < @;.

Therefore, we can conclude that

F(b) = (a1,a2, -, Qit1, Uiy -+, Gm) < (1,02, - ., Gj, Cig1s - - - ) = F(a),
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as required.
If we follow previous steps in the opposite direction we get that F'(a) > F(b) implies

a < b, which completes the proof. O

The previous theorem implies that I; 23 is isomorphic to the dual of Iy 33y
Additionally, the dual of the inversion poset Iy 33} is isomorphic to Iy 7 33y, because
the inversion poset is self-dual. Therefore, Theorems and yield the following

corollary.
Corollary 3.9. The inversion poset Ity . ning,..no,.np,...ny} 8 1s0morphic to the in-
SN—— SN——

1 DS U
version poset I{nl7--~7n1:n27~--’n27--~7"k’~~-7nk}'
S~ Y=
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Chapter 4

The algorithm

We described, with a proof, an algorithm for finding a SSCD for a division poset in
Chapter We introduced Inverse posets and Young’s lattices but we didn’t indicate
any decomposition for these posets. The reason for this is that there is no general proof
that these posets have a SSCD. Stanley gave a combinatorial proof that a Young’s
lattice, L(m,n), is rank unimodal and has the Sperner property in [9]. Although, it
was proven by Sylvester in 1878 that L(m,n) is rank unimodal, Stanley gave the first
combinatorial proof. He also conjectured that L(m,n) has a SSCD for every positive
m and n. This conjecture has not yet been proven for a general case, only cases where
min(m,n) < 4 were proven [3].

We will introduce an enhanced algorithm for finding a SSCD for a general ranked
poset P based on the previous work of Katsumata in [7]. The algorithm starts with
W, (p)/2) chains located in the middle of P since the center of every symmetric saturated
chain is located in the middle layer(s). It will create chains of length 0 or 1 based on
the number of layers and then it will augment some of these chains in a way that they
will remain symmetric and saturated.

Our algorithm differs significantly from the algorithm provided by Katsumata, since

it uses a flow algorithm for the augmentation of chains and it can work with any poset

28



given by its adjacency list, not just with an inversion poset I,,. If the program finds a
SSCD of the poset, it saves this decomposition into a text file and creates four pictures

of Hasse diagrams with highlighted chains. Pictures for selected posets are displayed in

appendix [B]

4.1 Finding a flow in a graph

A directed graph can represent many structures from everyday life, like public trans-
portation, supply chains, road maps, computer networks or simplified water supply
system. Each of these structures can be represented as a system of pipes, connected
with joints, with a flow of an incompressible fluid. We will focus on a system with only
one point of entry and only one exit point for the fluid and we will try to investigate
what the maximal flow through the system is.

This abstraction gives rise to three constraints on the flow based on physics. There is
a limitation on how fact we can transport the fluid through a pipe based on the material
of the pipe, its radius and a viscosity of the fluid and other factors. This limitation is
called a capacity and each pipe can have a different capacity. The next constraint is
called antisymmetry and it means that a flow in a pipe is uniform — the flow is always
in only one direction. The last constraint is that fluid can leave the system only at one
joint and it can enter only at one joint and these joints have to be different. The exact
definitions follow.

Let a directed graph G = (V, E) with a capacity function ¢ : V2 — R, where
cle) = 0if e ¢ F, is given. Furthermore, denote sizes of V and E by n and m,
respectively. A flow between two distinct vertices, source s and sink ¢, is given by a

function f: V? — Rg such that Ve € E:

fle) <c(e) (capacity constraint), (4.1)

f((u,v)) = =f((v,u)) where (u,v) =e (antisymmetry constraint), (4.2)
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Z f((u,v)) =0 (flow conservation constraint). (4.3)
(u,0)eV\{s,t}

The value |f] is defined as the total flow into the sink, i.e. [f| = > f((u,t)). A
mazimum flow is a flow of maximum value. We define a residual capac;tzvcr(e) to be a
difference between a capacity of an edge and a flow through an edge, ¢,(e) = c(e) — f(e).
An edge is saturated if its residual capacity is zero.

Many algorithms are available for finding a maximum flow in a graph [5]. We will

focus on two types of flow algorithms, on the Ford—Fulkerson algorithm and the Push—

Relabel algorithm.

The Ford—Fulkerson algorithm

This algorithm was first published in 1956 and improved versions of this algorithm were
published by Dinic in 1970 and by Edmonds and Karp in 1972 [5]. This algorithm works

as follows:
1. f((u,v)) < 0 for every pair of vertices in V

2. while there exist a path p between s and ¢ such that ¢,(e) > 0 for every edge in

this path p:
(a) denote the smallest residual capacity in p by r
(b) for each edge (u,v) in p:
L f((w,0) « f((u,0)) +r
i f((v,u)) < f((v,u) =7
The Ford—Fulkerson algorithm finds a path through unsaturated edges in each iteration
and it adds this path to the flow. This path is frequently called an augmenting path and
the performance of this algorithm depends on an algorithm used for finding this path.

Finding a path in a graph is generally implemented as a depth—first or breadth—first

search on vertices. Both of these methods have their advantages. The Ford—Fulkerson
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algorithm has a running time of O(n?m) or O(nm?) depending on whether a breadth—
first or a depth—first search is used, respectively [6].
Using the Ford—Fulkerson algorithm, we have to find a new path between s and ¢ in

every cycle. This disadvantage is addressed in the next maximum flow algorithm.

The Push—Relabel algorithm

This algorithm does not find only one path from the source to the sink as the Ford-
Fulkerson algorithm, but it pushes through the graph as much flow as is possible. For
this purpose it manages a preflow and a vertex labeling d. Preflow is a function from V2
to R which satisfies equations and for every edge in the graph. Preflow does
not have to conserve the flow, it allows an incoming flow into a vertex to be bigger then
an outgoing flow from the vertex. The algorithm starts with a preflow and it improves it
into a maximal flow. Any valid preflow can be used, but commonly a preflow f, where
fp((s,p)) = c((s,p)) for every (s,p) € E, where s is the source, and f,(e) = 0 for other
edges is used.

After an initialization the algorithm either pushes a flow through a vertex or it up-
dates the labeling. This vertex labeling provides estimates for a distance from the source
and a distance to the sink for each vertex. The first implementation of this algorithm,
by Goldberg in 1985, had a running time of O(n3) [6]. One year later, Goldberg and

Tarjan published an implementation with a running time of O(nmlog(n?/m)) [5].

4.2 Algorithm description

Our algorithm, similar to an algorithm of Katsumata, is implemented in three stages.

These stages are making a poset, finding a SSCD and arrangement of chains.

1. Firstly, we create the Hasse diagram of a given poset or we read the poset structure
from files. We represent the poset as a directed graph, e.g. as a list of vertices

and an adjacency list, V and F, respectively. This graph can be partitioned into
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levels since we are representing the Hasse diagram and we store these levels in
another list to improve the performance. Denote the rank of the poset by &k and
let N = {Np, N1,..., N} be the collection of level sets. Additionally, we will

create an empty list C for storing a SSCD.

When the first stage is finished, the list NV has k+1 elements in it: Ny, Ny, ..., Ng.

Each of these lists contains vertices with the same rank.

. If k£ is odd, there are two middle levels in the poset, we have to find a perfect
matching between them. This matching yields the two middle elements from each
chain and it can be found by making a graph H. This graph contains vertices
from N(x_1)/2, N41)/2 and two other vertices s and ¢. We add all edges between
N(x—1)/2 and Nj41)/2 from E to H, connect s with every vertex from N_y)/, and
connect each vertex from N3 1)/2 to t. Finding a maximum flow in H between s
and ¢, where the capacity of every edge is 1, yields the matching. If the flow value
is equal to \N(k,l) /2|, we erase edges with no flow in H, all incidence edges of s,
t and the vertices s and ¢t. Edges which are left are saved into C. If the value is

smaller, the poset does not have a SSCD.
If k is even, we fill C' with vertices from Nj .

For i = |k/2],|k/2| —1,|k/2] —2,...,1 perform following:

(a) Make a graph H which contains vertices from N;_1, N;, Nj_;, Ny_(;_1) and
two extra vertices s and t. Connect s with each vertex in IV;_; and each
vertex in Njp_(;_1) with ¢. If there is an edge in E between vertices from
N;—1 and N;, connect the corresponding vertices in H. Similarly, for layers
Ni—; and Nj_(;_1). Layers N; and Ny_; are connected using chains in C,
each chain which starts in IV; and ends in Nj_; will be represented as an edge

in H.

(b) Find a maximum flow between s and ¢, where the capacity of every edge
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is one. If the value of the flow is equal to |N;|, we remove all edges with-
out any flow, vertices s and t and their adjacent edges. The next step is
extending the chains in C', which correspond to the edges between N; and
Nyi_;, with the flow. The list C' contains now a SSCD for subgraph induced
by Ni—1, Ni, Nit1,. .., Ny_i—1) levels of G. If the value is smaller, the poset
does not have to have a SSCD.

3. A symmetric saturated chain decomposition is stored in C.

Let us follow steps of this algorithm on Iy. We start by creating the Hasse diagram of

the poset and dividing its vertices into seven level sets: Ng, V1, ..., Ng as shown below.

In the next step we save N3 into C' and set ¢ = 3 since the rank of I is 6. A graph
H contains vertices from levels Nao, N3, N3 and Ny of the original graph. The edges
between Ny and N3 are determined by the original graph, likewise the edges between
N3 and N4. Additionally, corresponding vertices in N3 and N3 are connected by an
edge. The next picture contains a diagram of H with a maximum flow for ¢ = 3. The

edges with a nonzero flow are denoted by a thicker line.
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When we find a maximum flow, we remove all edges without any flow and vertices

s and t. Remaining chains are used for extending chains in C'. The list C' is shown

beneath.
(37 2747 1) (2747 3’ 1) (37 4’ 172) (47 1737 2) (4’ 27173)
(3,2,1,4) (2,3,4,1) (2,4,1,3) (3,1,4,2) (1,4,3,2) (4,1,2,3) C
(2737 174) (27 174’3) (37 1’274) (1737472) (1’47 73)

In the next iteration, when ¢ = 2, the graph H will contain levels Nj, No, Ny and
N5. Additional vertices s and t are connected to N1 and N5, respectively. The diagram

of H with a maximum flow is shown below.
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Removing unsaturated edges and vertices s and ¢t from H yields three saturated
chains of length 3. These three chains are used to extend some of the existing chains in

C. The list C after the extension is illustrated below.

(3,4,2,1) (4,3,1,2) (4,2,3,1)
(3,2,4,1) (2,4,3,1) (3,4,1,2) (4,1,3,2) (4,2,1,3)
(3,2,1,4) (2,3,4,1) (2,4,1,3) (3,1,4,2) (1,4,3,2) (4,1,2,3)| ¢
(2,3,1,4) (2,1,4,3) (3,1,2,4) (1,3,4,2) (1,4,2,3)
(2,1,3,4) (1,3,2,4) (1,2,4,3)

In the last iteration, the graph H contains levels Ny, N1, N5 and Ng since ¢ = 1.
®

A maximum flow in G yields only one chain because Ny and Ng contain only one

vertex. Therefore, we expand only one chain in C', this is the longest chain in I4.
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(3,4,2,1
(3,2,4,1
(3727174) (2737471
(2,3,1,4
(2,1,3,4

/\/‘\/\/—\/\/—\/\
NN AN

When the last chain is extended, C' will contain a SSCD of Iy.
The running time of this algorithm is polynomial, since it does not include back-

tracking. For this reason, the algorithm might not find a SSCD even if a SSCD exists.

35



Figure 4.1: Two different flows in a graph.

If the algorithm finds a maximal flow, with its value smaller than the number of neigh-
bors of s or t, it fails to find a SSCD. The algorithm has a running time of O(n®*m) or
O(n?m?), using the Ford-Fulkerson algorithm, depending on whether a breadth-first or
depth-first search is used. The running time is O(n?mlog(n?/m)) if the Push-Relabel

algorithm is used.

Anomalies

Some posets do not have a SSCD. If we run the described algorithm on these posets we
should be able to recognize this. One of the first steps of the algorithm, if we run it on
the poset shown in Figure (d), is constructing the graph in Figure and finding
a maximal flow. Two maximal flows are highlighted in this picture and as we can see,
there is always one edge adjacent to s or t with no flow. The algorithm continues with
removing s,t and edges without any flow, this step will continue without any problems.
But contracting all remaining edges will not create symmetric saturated chains and the
algorithm fails. Actually, the algorithm fails on this poset every time; there is at least
one edge adjacent to s or t with no flow and our implementations of this algorithm
contains such a check. This behavior is needed, since there is no SSCD of this poset.
As mentioned before, the described algorithm does not include backtracking. The
algorithm processes a poset from middle layer(s) outward and it does not return to

already processed layers. This is the main reason why the running time is polynomial,
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Figure 4.2: An example of two different maximal flows between middle layers and how
they can affect the poset decomposition.

but on the other hand this may cause additional problems. While a SSCD contains
a maximal flow between layers which are symmetric to the middle layer(s), not every
maximal flow between these layers is extendable to a SSCD. There are two choices for
a maximal flow between the middle layers for the poset shown in Figure If the
algorithm picks the maximal flow which contains the edge (5,9), then it fails to find a
SSCD because there will be always two unconnected vertices as in Figure [1.2(a). On
the other hand if we choose the second maximal flow between middle layers, we would
be able to extend this chains into a SSCD, this is shown in Figure [£.2|(b).

There is no simple solution for this problem, the algorithm would have to contain
backtracking to solve this and the total running time of such an algorithm would be
significantly larger. Fortunately, we were able to find a SSCD for all important posets
we ran this algorithm on, even with this imperfection. This was surprising and led us
to additional statistics described in the next chapter focused on maximal chains in a

poset.
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Chapter 5

Results

Two computer programs, which are listed in appendix [C| were written using Python and
C++. Both of these programs use advanced graph libraries — NetworkX and PyGraphviz
in Python and Boost libraries in C++. Both programs can find a SSCD for an inversion
poset given its multiset or for a Young’s lattice given its two constants m and n. The
program written in C++ can additionally find a SSCD for a Boolean algebra and it can
read a poset from files. To make sure that our programs provide correct results we
checked some decompositions by another program. This additional program checked
that the decomposition contained each element of a posed exactly once and that the
chains were valid and symmetric.

While the Boost libraries implement the Push—Relabel algorithm, the NetworkX
library in Python does not implement this algorithm. Unfortunately, NetworkX im-
plements only the Ford—Fulkerson algorithm with a depth—first search approach. The
running time of this algorithm allowed us to find a SSCD, in a reasonable time, for all
inversion posets where the multiset contained less than 11 elements. This was a big
improvement from the work of Katsumata but we were able to successfully run this pro-
gram on an inversion poset with 11 distinct elements after improving the Ford—Fulkerson

algorithm.
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We observed that the performance of the Ford-Fulkerson algorithm with the depth—
first search varies significantly. The algorithm is fast at the beginning but it slows down
rapidly. On the other hand, the breadth-first search is slower than the depth-first
search for paths at the beginning, but its performance does not change over time. It
seems that the best solution can be achieved by combining these two approaches. Our
implementation of the Ford—Fulkerson algorithm uses the depth—first search first and it
switches to the breadth—first search when the breadth—first search is faster.

Additionally, we managed to improve the breadth—first search as well. The regular
breadth—first search from a source in a graph would visit all neighbors of the source first,
then it would visit neighbors of those neighbors, etc. Our improved implementation of
the breadth—first search randomly chooses some of source’s neighbors and performs full
breadth—first search on them. If it will not find a path from the source to the sink it
continues with the next part of nonvisited neighbors of the source until it finds a path
from the source to the sink. We achieved the best performance when the algorithm
processed 2% of source’s neighbors at a time.

The implementation in C++ does not need this improvement because Boost libraries
contain an implementation of the Push—Relabel algorithm. This flow algorithm is faster
than our improved Ford—Fulkerson algorithm. Since this program is faster than imple-
mentation in Python, we extended the input options for it. It can find a SSCD for
inversion posets, Young’s lattices, Boolean algebras and it can read a poset from files
with its structure.

As mentioned in Chapter 3, we can use Corollary when testing all inversion
posets. Suppose that we would like to find a SSCD for all inversion posets where the
multiset contains 4 distinct elements and its length is 6. Let us denote the elements as
1,2,3 and 4, where the order is naturally 1 < 2 < 3 < 4. There are 10 different possible
multisets. This means that we would have to run the program ten times, but using
Corollary [3.9]we can reduce the number of instances to 6 because some of these multisets

will create isomorphic posets. A list with these combinations of multisets follows.
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Poset name ‘ Size

Boolean algebra B, n <25

Inversion poset for a multiset I | |[N| < 11

Young’s lattice L(m,n) m+n < 30

Table 5.1: Summary of posets with the maximal size for which a symmetric saturated
chain decomposition was found by our program.

1. {1,1,1,2,3,4}, {1,2,3,4,4,4}

(\V)

. {1,2,2,2,3,4}, {1,2,3,3,3,4}

w

c{1,1,2,2,3,4}, {1,2,3,3,4,4}

W

C{1,1,2,3,3,4}, {1,2,2,3,4,4}

ot

. {1,1,2,3,4,4}

(=)

. {1,2,2,3,3,4}

Fach multiset in one row will yield the same poset, up to isomorphism. There are
2047 multisets with less than 12 elements, but only 1086 of them are different up to
isomorphism.

As mentioned before, the program written in C++ is faster than the program in
Python and therefore all our tests were performed with this program. Table[5.1]contains
all posets we tested and for which we found a SSCD. It is surprising that the program
never failed and always found a SSCD for all tested inversion posets, Young’s lattices
and Boolean algebras since we provided a poset for which our program fails. It may
be possible to extend these boundaries a little bit, but this depends on the computer

which runs the program.
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n ‘ Number of different longest chains in I, Bad chains

4 |16= 5 4

5 | 768 = 10~ 147

6 | 292,864 = gttt 24,363

7 1,100,742,656 = ﬁ Out of reach
8 | 48,608,795,688,960 = m Out of reach
9 | 29,258,366,996,258,488,320 = 36! Out of reach

15-132-113.94.75.56.37

10 | 273,035,280,663,535,522,487,992,320 = torey ok | Out of reach

Table 5.2: Number of different longest chains in inversion posets I,,, where 4 < n < 10.

5.1 Future work

There are several ways this work might be extended. From a computational point of
view, the main reason we could not run our programs on bigger posets was the amount
of memory needed. Our implementations construct a poset and keep it as list of vertices
and list of edges in the memory. However, because we have to keep only three layers of
the poset in memory, the whole poset can be saved in external memory and loaded into
internal memory only when needed. This approach, when using a compression, should
be investigated in the future.

The memory issue may have an another solution. Distributing the vertex and edge
lists over more computers should allow to improve the upper bounds we set in this
paper. Distributed flow algorithms are available, although the required communication
can be a new limiting factor.

We modified our program to count the number of maximal chains in inversion posets
I, and to find a SSCD given a maximal chain. The number of maximal chains corre-
sponds to the number of different standard Young tableaux of shape (n—1,n—2,...,2,1)

and it can be found by the Hook formula [I1]. This is another piece of evidence that
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our program performs correctly. The program did not find a SSCD for some maximal
chains; we call these chains bad chains. Table shows how many maximal chains
I, has and for small n, how many bad chains I, has. For example, in I, 4 of the 16
maximal chains cannot be extended to a SSCD by our algorithm. Since our algorithm
can fail to find a SSCD, table provides only upper bounds on the number of bad
chains. However, we checked that the exact number of bad chains for Iy is 4.

Another way to find a SSCD can be by finding symmetric chains from the longest
to the shortest. This approach itself may not perform well, but it may be combined
with the approach used in our algorithm, since it seems that the majority of the longest
chains will not make the rest of the poset undecomposable into symmetric saturated
chains.

From a mathematical point of view, Stanley’s conjecture that there is a SSCD for
any Young’s lattice as well as for any inversion poset is still open. However, some
progress has been made in determining the Sperner property and other combinatorial

properties of these and similar posets [3].
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Appendix A

Program interface

We explain how to compile and run programs we developed and what each input pa-
rameter means in this chapter. In our description we will assume that we work on a

Debian-based Linux machine.

A.1 Python

To successfully run this program we need to have files diagram.py and main.py inside
a folder and install two additional Python libraries, NetworkX and PyGraphviz. The

program can be called from a terminal by using this command

H$ python main.py [—-h] [-—inversion 1 2 3 4 ...] [-—young m n] [——no_pict]

The optional arguments are
e ——h or ——help
— This argument prints a help message and exits the program.
e ——inversion

— This argument starts the program for an inversion poset and a name of the

minimal vertex with the smallest rank follows as a list of numbers, each
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separated by a space. For example a SSCD for I5 can be found by this

command

H$ python main.py —inversion 1 2 3 4 5

e ——young

— Two numbers, m and n, separated by a space follow this argument. The
program tries to find a SSCD for a Young’s lattice L(m,n). For example a

SSCD for L(5,5) can be found by this command

H$ python main.py —young 5 5

e ——no_pict

— The program automatically stores the decomposition in a text file and it
creates pictures of the Hasse diagram of the poset with the decomposition
highlighted. When using this argument, no pictures will be created. Gener-
ating pictures for big posets like I1( is time consuming and the usability of

such pictures is questionable.

If the program finds a SSCD it saves it together with its output into a text file and

creates four pictures, depending on the --no_pict argument.

“... _FULL.png” Contains all vertices with labels. Each level is

ordered exactly as it is saved in the memory.

“ .._FULLNO_LABELS.png” Contains all vertices without labels. Each level is

ordered exactly as it is saved in the memory.

“..._SPARSE.png” Contains all vertices with labels. Each level is
ordered such that the final graph has less inter-

secting edges.
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“ .. .SPARCE_NO_LABELS.png” Contains all vertices without labels. Each level is
ordered such that the final graph has less inter-

secting edges.

A2 C++

To be able to compile the program we need to install Boost libraries. Optionally, we

can install the OpenMP library if we have more CPUs available. The program can be

compiled by this command

$ g++ —o main main.cpp node.cpp node.h —lboost_program_options
—lboost_serialization —lboost_system —lboost_filesystem
—I/usr/include/python2.7 —lpython2.7 —fopenmp —O3

assuming that Python 2.7 is installed on the system. This will generate an executable

file named “main” which contains our program. The program can be called by using

this command

$ ./main [-—bool n] [-—file name] [-—inversion 1 2 3 4 ...] [-—young m n]
[-—no_pict] [——help]

The program in C++ shares some arguments with the program in Python and their

effects are the same. These arguments are --inversion, --young, --no_pict and --help.

The rest of arguments are described below.

e ——bool

— This argument together with a number n will find a SSCD for a Boolean
algebra B,,. The program call for By is

H$ ./main —bool 6

o ——file

A string (name) follows this argument. The current folder has to contain

two files, “name_levels” and “name_nodes”. As their names may suggest,
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“name_levels” contains nodes separated into layers and “name_nodes” con-
tains neighbors of each vertex corresponding to the line number. Vertices
have to be identified by sequential numbers starting from zero. For example
the poset, for which our algorithm fails, from Figure 4.2| can be saved into

two files:

my _levels:

0|0

1 11,2,3

2 |4,5,6,7
8,9,10,11
12,13,14
5 115

my_nodes:

0(1,2,3
1 14,5,6
2 |6
7
1|8
9,10
6 10,9
7|11
g |12
9 (13,14
0 |14
11|14
12 |15
13 |15
14 |15

15 |15

As we see, the last vertex has to be connected to itself. The algorithm

will fail to find a SSCD for this configuration, but the poset has a SSCD.

48



If we change the sixth line of my_nodes to “9,10” instead of “10,9” the
algorithm will find the SSCD because it will find a maximal flow which
is shown in Figure [£.2b). The program can be called by

H$ ./main —file my

Additionally, all pictures are generated by the Python class diagram.py and therefore
this class has to be in the same folder as the executed main file if the argument ——no_pict
is not used. If the argument ——no_pict is used, then program generate the same pictures

as the program written in Python.
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Appendix B

Performance of programs and

generated figures

We provide running times for our programs in selected posets in Table and Figures
and Note that these times do not include the time needed to generate the

poset in memory.

Program version

Time needed to find a SSCD

Inversion poset, I,

n= 6 7 8 9 10 11
C++ 1s 1s 1s 15s 175s | 38.5min
Python, Ford-Fulkerson from NetworkX 1s | b.1s | 278.7s 11.72h n/a n/a
Python, improved Ford-Fulkerson 1s | 2.5s | 75.2s 2.86h n/a n/a
Young’s lattice, L(m,n)

(m,n) = 77 [ B8) [ (99 ] (10,10) [ ALID) | (1212)
C++ 1s 1s 2s 8s 35s 170s
Python, Ford-Fulkerson from NetworkX | 2.1s | 25.6s | 453.4s | 148.9 min 56.3h n/a
Python, improved Ford—Fulkerson 1.3s | 12.4s | 141.0s 37.1 min 12.4h n/a

Table B.1: Performance of each program on selected posets.

When we focus on the graphs which correspond to the program written in C++, it

appears that the last three points or each graph form a line. Since the axes of both

graphs have a logarithmic scale, we can estimate the program complexity using the
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slopes of these lines. The slope for the line which approximates the performance for
inversion posets is 1.07; this implies that the running time is O(n!*%7). Similarly, the
slope of the line which approximates the last three points for Young’s lattices is 1.14
which corresponds to O ((m:{”)l'M). Using these estimations we can conclude that if
we had a computer with enough memory, if the program did not fail, we would need 9.2

and 22.2 hours to find a SSCD for ;2 and L(16, 16), respectively.

Inversion poset, |,
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——C++, Push-Relabel —&—Python, Ford-Fulkerson —&—Python, improved Ford-Fulkerson
Figure B.1: Performance of programs on inversion posets.
Young's lattice, L(m,n)
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Figure B.2: Performance of programs on Young’s lattices.
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Selected figures generated by the program are displayed below and on the following

pages.

(a) 1,2,3,4 FULL.png (b) 1,2,3,4_SPARSE.png

(c) 1,2,3,4 FULL_NO_LABELS.png (d) 1,2,3,4. SPARSE_NO_LABELS.png

Figure B.3: Inversion poset, I4
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(a) 3.FULL.png ) 3_SPARSE.png
(¢) 3.FULL.NO_LABELS.png ) 3.SPARSE_NO_LABELS.png

Figure B.8: Boolean algebra, Bj
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(a) 4 FULL.png (b) 4.SPARSE.png

i

(c) 4 FULL.NO_LABELS.png (d) 4. SPARSE_NO_LABELS.png

Figure B.9: Boolean algebra, B3
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Figure B.12: Young’s lattice, L(4, 2)
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Figure B.13: Young’s lattice, L(2,4)
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Appendix C

Source codes

The purpose of this section is to provide two implementations, in Python and in C++,

of the algorithm given in the text.

C.1 Python

To run the Python implementation we need two external libraries NetworkX and Py-
Graphviz. The Ford—Fulkerson algorithm is implemented in the NetworkX library and
the PyGraphviz library creates figures of the poset and its symmetric saturated chain
decomposition.

The first script tries to find a SSCD. If this script finds a SSCD, it saves the decom-
position into a text file and calls the second script (diagram.py) to generate figures of
the poset and its decomposition. The first script accompanied with comments is listed

below.

main.py:

#!/usr/bin/python

## list of libraries
from array import array
import networkx as nx
import itertools
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7 |import time

8 |import collections
9 | import sys

10 | import math

11 | import random

12 | import argparse

13 | import diagram

15 |## global variable for the number of already found paths
16 | global gCount

17

18 | class Node:

19 ## each node has 4 properties

20 #4# mname: name of the node

21 ## level: the number of the level

22 ## mneighbors: list of neighbors in the next level
23 ## nameOfMatchingNode: name of the matched node
24 def __init__(self, name, level):

25 self .name = name

26 self.level = level

27 self .neighbors = list ()

28 self .nameOfMatchingNode = name

29 #4# checks if there is possible inversion of its elements
30 def isLast(self):

31 for i in xrange(len(self.name)—1):

32 if self.name[i] < self.name[i+1]:

33 return False

34 return True

35 ## generate next inversion

36 def generateNext (self ,dictOfNextLevel):

37 for i in xrange(len(self.name)—1):

38 if self.name[i] < self.name[i+1]:

39 tmpName = list (self.name)

40 tmp = self.name[i]

41 tmpName|[i] = tmpName[i+1]

42 tmpName[i+1] = tmp

43 self .neighbors.append(tuple (tmpName))
44 if “dictOfNextLevel.has_key (tuple (tmpName)) :
45 dictOfNextLevel [tuple (tmpName)| = Node(tmpName, self.level+1)
46 @property

47 def Name(self):

48 return tuple(self.name)

49 @property

50 def NameOfMatchingNode(self):

51 return tuple(self.nameOfMatchingNode)

52

53 |## logger for easier handeling with output

54 | def loggerOut (xmessage):

55 msg f— ” 9

56 for m in message:

57 msg = ’’.join ([msg,str(m)])

58 print msg

59 f.write(’’.join ([msg, ’\n’]))

60 sys.stdout . flush ()

61

62 |## constructing an Inverse poset given a multiset

63 | def makeGraphOfInversePartialyOrderedMultiSet (rootList):
64 listOfLevels = [dict(),dict ()]

65 root = Node(rootList ,0)
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66
67
68
69

87

88

90
91

92

93
94
95
96
97
98
99
100
101
102
103

104
105

106
107
108
109

110
111
112
113
114
115
116
117

listOfLevels [0][tuple(root.name)]| = root

root.generateNext (listOfLevels [1])

level =1

while (len(listOfLevels[level]) > 1) or (mnot listOfLevels[level].values()[0].
isLast ()):

listOfLevels .append(dict ())
d = listOfLevels[level]
for node in d.itervalues():
node . generateNext (listOfLevels [level +1])
level +=1
return listOfLevels

## constructing a Young lattice given its size
def makeGraphOfYoungsLattice(m,n):
listOfLevels = [dict () for x in xrange (mxn+1)]
tmp = [0 for i in xrange(n)]
root = Node(tmp,0)
listOfLevels [0][root.Name] = root
for i in xrange(len(listOfLevels)—1):
for node in listOfLevels[i].values():
if sum(node.Name) < mx*n:
for ii in xrange(n):
if (node.Name[ii] < m) and ( (ii = n—1) or (node.Name[ii] <
node.Name[ ii+1]) ):
new = list (node.name)
new|[ii] 4= 1
newNode = Node(new, i+1)

if listOfLevels[i+1].has_key (newNode.Name) = True:
node.neighbors.append(listOfLevels [i+1][newNode.Name
| . Name)
else:

node.neighbors . append (newNode . Name)
listOfLevels [i+1][newNode.Name] = newNode
return listOfLevels

## Expanding the graphs for additional layers.
def expandGraph (graph,middleLayer ,listOfLevels ,intActualLayer):
if (len(graph) = 1) and (intActualLayer = —1): return
graph.clear ()
for node in listOfLevels[intActualLayer].values():
graph.add_edges_from ([(node.Name, listOfLevels [intActualLayer+1][neighbor
| - NameOfMatchingNode) for neighbor in node.neighbors], capacity=1.0)
for node in listOfLevels[len(listOfLevels)—intActualLayer —2].values():
graph.add_edges_from ([(node.NameOfMatchingNode, listOfLevels [len (
listOfLevels)—intActualLayer —1][neighbor].Name) for neighbor in node.
neighbors], capacity=1.0)

## Adding ’source’ and ’sink’ nodes for a flow algorithm.
def addEndNodes(graph,bottomLevel ,upperLevel):
graph.add_edges_from ([( ’rootDown’ ,node) for node in bottomLevel], capacity
=1.0)
graph.add_edges_from ([(node, ’rootUp’) for node in upperLevel], capacity=1.0)

## Removing edges without any flow.
def removeExtraEdges(graph,flow ,middleLayer):
graph.remove_nodes_from (( 'rootUp’, 'rootDown’))
for node in middleLayer.values():
for nodeTmp in graph.successors ((node.NameOfMatchingNode, ’u’)):
if flow [(node.NameOfMatchingNode, ’u’) ] [nodeTmp] = O0:
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graph.remove_edge ((node.NameOfMatchingNode, u’) ,nodeTmp)
for nodeTmp in graph.predecessors ((node.NameOfMatchingNode, 'd’)):
if flow [nodeTmp|[( node.NameOfMatchingNode, 'd’)] = 0:
graph.remove_edge (nodeTmp, (node . NameOfMatchingNode, ’d’))

## Contracting edges with a flow — exanding a list with the SSCD.
def contractEdges (graph,bottomLayer , middleLayer ,upperLayer):
graphNew = nx.DiGraph ()
for node in middleLayer.values():
if len(graph.successors ((node.NameOfMatchingNode, ’u’))) > 0:
graph.add_path ((graph. predecessors ((node.NameOfMatchingNode, ’d’)) [0] ,
node . NameOfMatchingNode , graph . successors ((node. NameOfMatchingNode

;'u’))[0]))
else:

graph.add_node (node.NameOfMatchingNode)
graph.remove_nodes_from (((node.NameOfMatchingNode, u’) ,(node.
NameOfMatchingNode, ’d’)))
for node in bottomLayer.keys () :
neigh = graph.neighbors(node) [0]
graph.remove_node (node)
nodeNew = (node,neigh ,graph.neighbors(neigh) [0])
graph.remove_nodes_from (nodeNew [1:3])
graphNew . add_node (nodeNew)
bottomLayer [nodeNew [0]]. nameOfMatchingNode = nodeNew
upperLayer [nodeNew [2]]. nameOfMatchingNode = nodeNew
return graphNew, graph.nodes()

result = None

## Finding a path between source and sink using depth—first approach.
def find_pathDepthFirst (graph, visitedNodes, source, sink, path):
result = None
visitedNodes .append (source)
if source = sink:
return path
for succesor in graph.successors(source):
residual = graph.edge[source][succesor ][ capacity’] — graph.edge[source]]
succesor | [ "flow 7]
if residual > 0 and not succesor in visitedNodes:
if not succesor in path:
result = find_pathDepthFirst( graph, visitedNodes, succesor, sink
, path + [succesor] )
if result != None:
return result
for predecessor in graph.predecessors(source):
residual = graph.edge|[predecessor |[source][ flow’]
if residual > 0 and not predecessor in visitedNodes:
if not predecessor in path:
result = find_pathDepthFirst( graph, visitedNodes, predecessor,
sink , path 4+ [predecessor] )
if result != None:
return result

## Finding a path between source and sink using enhanced breadth—first approach.
This function process nodes attached to the source in blocks. Each block
contain certain percentage of neighbors to source. The breadt—first search
then continue with those nodes. If no path to the sink is found, then the
function investigate next block of neighbors.

def find_pathBreadthFirst(graph, sink, actualLayer, layers, percentage):
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if percentage =— 0:

raise Exception(’Percentage._cannot.be.0!")
visitedNodes = dict ()
#4 erase visited tokens in graph at the beginning
if actualLayer = 0:

if not layers.has_key(1):

layers [1] = list ()
for source, path in layers[0]:

visitedNodes [source] = True
for succesor in graph.successors(source):
residual = graph.edge[source][succesor ][ capacity’] — graph.edge]|

source | [succesor |[ "flow ']
if (residual > 0) and (not succesor in path) and (not
visitedNodes . has_key (succesor)):
visitedNodes [succesor] = True
layers [1].append ([succesor , path+[succesor]])
actualLayer 4= 1
## change from percentage to a number of nodes
if (actualLayer == 1) and (percentage <= 1):
percentage = math. ceil (len(layers[1]) x percentage)

while actualLayer > 0:
newNodes = False
if not layers.has_key(actualLayer+1):
layers [actualLayer—+1] = list ()
## neighbors of the source node
if actualLayer = 1:
for i in xrange(int(percentage)):
if len(layers[actualLayer]) = O:
break
item = layers[actualLayer].pop(random.choice(xrange(len(layers|
actualLayer]))))
source = item [0]
path = item [1]
if source = sink:
return path
for succesor in graph.successors(source):
residual = graph.edge[source|[succesor ][ capacity’] — graph.
edge [source][succesor |[ "flow ]
if residual > 0 and (not succesor in path) and (not
visitedNodes . has_key (succesor)):
layers [actualLayer +1].append ([succesor , path+[succesor]])
visitedNodes [succesor] = True
newNodes = True
for predecessor in graph.predecessors(source):
residual = graph.edge[predecessor |[source][ flow’]
if residual > 0 and (not predecessor in path) and (not
visitedNodes . has_key (predecessor)):
layers [actualLayer+1].append ([ predecessor , path+]
predecessor|])

visitedNodes [ predecessor] = True
newNodes = True
## Investigate the whole path for nodes not attached to source.
else:
for source, path in layers[actualLayer]:
if source = sink:

return path
for succesor in graph.successors(source):
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residual = graph.edge[source][succesor || capacity’] — graph.

edge [source ][ succesor ][ flow ]
if residual > 0 and (not succesor in path) and (not
visitedNodes . has_key (succesor)):

layers [actualLayer+1].append ([succesor, path+[succesor]])

visitedNodes [succesor] = True
newNodes = True
for predecessor in graph.predecessors(source):
residual = graph.edge[predecessor |[source][ flow’]

if residual > 0 and (not predecessor in path) and (not
visitedNodes . has_key (predecessor)):
layers [actualLayer+1].append ([ predecessor , path+]
predecessor|])
visitedNodes [ predecessor] = True
newNodes = True
if newNodes:
actualLayer 4= 1
else:
actualLayer ——= 1

return None

## Ford—Fulkerson algorithm with adaptive switching between depth and breadth
search
def myFord_fulkerson (graph, source, sink):
for x in graph.edge:
for y in graph.edge[x]:

graph.edge[x][y][ 'flow’] =0

path = find_pathDepthFirst (graph, [], source, sink, [source])
tmpTime = time.time ()
tmp = find_pathBreadthFirst (graph, sink, 0 , {0:[[source,[source]]]}, .02)
timeBreadth = time.time() — tmpTime
value = 0
breadth = False
while path != None:

value 4= 1

for i in xrange(1l,len(path)):
if graph.edge[path[i—1]].has_key(path[i]):

graph.edge[path[i —1]][path[i]][ flow’] =1
else:
graph.edge[path[i]][path[i—1]][ flow’] = 0
if breadth:

path = find_pathBreadthFirst (graph, sink, 0 , {0:[[source,[source
111}, .02)
else:

start = time.time ()
path = find_pathDepthFirst (graph, [], source, sink, [source])
if time.time() — start > timeBreadth=x2:
breadth = True
loggerOut ('——_—_Breadth—search_activated ! —_—")
flow = dict ()
for x,y in graph.edges():
f = graph.edge[x][y].pop(’flow’)
if flow.has_key(x):
flow [x][y] = f
else:
flow [x] = {y: f}
return value, flow
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## Extending the middle layer and finding a maximal flow through a graph.
def extendAndFlow (graph,middleLayer ,bottomLayer):
for node in middleLayer.values():
neighDown = graph.predecessors (node.NameOfMatchingNode)
neighUp = graph.successors (node.NameOfMatchingNode)
graph.remove_node (node. NameOfMatchingNode)
graph.add_edge ((node. NameOfMatchingNode, ’d’) ,(node . NameOfMatchingNode, u’
), capacity=1.0)
graph.add_edges_from ([((node.NameOfMatchingNode, ’u’) ,x) for x in neighUp
|, capacity=1.0)
graph.add_edges_from ([(x,(node.NameOfMatchingNode, ’d’)) for x in
neighDown], capacity=1.0)
value, flow = myFord_fulkerson (graph, 'rootDown’, ’rootUp’)
return value, flow

## Main body of the program.
def main(f, listOfLevels):

gCount = 0

start = time.time ()

numberOfLayers = len(listOfLevels)—1
decomposition = list ()

graph = nx.DiGraph ()
middleLayer = list ()

if numberOfLayers%2 =— 0:
## there is one layer in the middle
loggerOut ('—_One_layer_in_the_middle.—")

intActualLayer = numberOfLayers/2—1
## Make a graph with three layers.
loggerOut (’—c_Middle_part_start .—")
for i in xrange(numberOfLayers/2—1,numberOfLayers/2+1):
for item in listOfLevels[i].values():
for iitem in item.neighbors:
graph.add_edge (item .Name, iitem , capacity=1.0)
for item in listOfLevels [numberOfLayers/2].values():
middleLayer.append (item .Name)

loggerOut (’—c_Middle_part._done.—’ ,(time.time () — start), ”seconds.”)
else:
## There are two middle layers —> find matching, create a graph with 3 layers

loggerOut ('—_Two_layers._in.the_.middle.—")
intActualLayer = numberOfLayers/2
for item in listOfLevels[intActualLayer]. values():
for itemNeighbor in item.neighbors:
tmpNode = listOfLevels[intActualLayer+1].get (itemNeighbor)
graph.add_edge (item .Name, tmpNode.Name)
tmp = nx.DiGraph ()

loggerOut ( '—_matching.start .—’ (time.time() — start), ”seconds.”)
matching = nx.max_weight_matching (graph)
loggerOut (’—._matching.end.— ,(time.time () — start), ”seconds.”)

## Contract the matching into symmetric chains.
for item in matching.keys():
if listOfLevels[intActualLayer|. has_key (item):
newNode = (item ,matching[item])
listOfLevels [intActualLayer]. get (item).nameOfMatchingNode = newNode
listOfLevels [intActualLayer +1].get (matching[item]) .nameOfMatchingNode =

newNode
middleLayer . append (newNode)
intActualLayer —= 1

tmp.add_nodes_from (middleLayer)
graph = tmp
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## Add bottom neighbors for a matching.
for item in listOfLevels[intActualLayer]. values():
for itemNeighbor in item.neighbors:
tmpNode = listOfLevels[intActualLayer+1].get (itemNeighbor).NameOfMatchingNode
graph.add_edge (item .Name, tmpNode)
## Add upper neighbors for a matching.
for item in listOfLevels [numberOfLayers—intActualLayer —1].values():
for itemNeighbor in item.neighbors:
tmpNode = listOfLevels [numberOfLayers—intActualLayer]. get (itemNeighbor) .Name
graph.add_edge (item . NameOfMatchingNode , tmpNode)

while (intActualLayer >= 0):

loggerOut ('—_ActualLayer_is.’,intActualLayer ,’/’ ,numberOfLayers,’.—’ ,(time.
time () — start), ”seconds.”)

addEndNodes (graph, listOfLevels [intActualLayer]. keys () ,listOfLevels |
numberOfLayers—intActualLayer ]. keys())

loggerOut ('—_flow_start .— ,(time.time() — start), ”"seconds.”)

value, flow = extendAndFlow (graph,listOfLevels[intActualLayer+1],listOfLevels|
intActualLayer]. keys())

if value < len(listOfLevels[intActualLayer]):
raise Exception(’NO_matching”)

loggerOut ('—._flow._end.—’ ,(time.time() — start), ”seconds.”)
removeExtraEdges (graph, flow ,listOfLevels [intActualLayer+1])
loggerOut ( '—_removeExtraEdges_end .— ,(time.time () — start), ”"seconds.”)

graph, disconnectedNodes = contractEdges(graph,listOfLevels[intActualLayer],
listOfLevels [intActualLayer+1],listOfLevels [numberOfLayers—intActualLayer])
decomposition.extend (disconnectedNodes)

intActualLayer —= 1
loggerOut (’—_expandGraph_start .—’ ,(time.time () — start), ”seconds.”)
expandGraph (graph , middleLayer ,listOfLevels ,intActualLayer)
loggerOut ( '—_expandGraph_done_—" ,(time.time () — start), ”"seconds.”)
decomposition.extend (graph.nodes())
end = time.time ()
elapsed = end — start

loggerOut (” Time:.” , (time.time() — start), ”"seconds.”)
loggerOut (’\nDecomposition: )
for i in decomposition:

if type(i[0]) == tuple:
msg = 77
for m in 1i:
msg = '’ .join ([msg, str(m)])
else:

msg = str (i)

f.write(’’.join ([msg, ’\n’]))
f.close ()
## Processing user input, running the main function and generating graphs
parser = argparse.ArgumentParser(description="Program.for._finding._.a_.symmetric.

saturated .chain_decomposition ,_.created._as_a_part_of_Master_Thesis_by_Ondrej.
Zjevik _at_.University _of _Minnesota.’,usage="%(prog)s._[—h]_[—-—inversion.1.2.3.4

-...] -[-—young.m_n] ”)

parser .add_argument (’—inversion’, type=int, nargs=’4’, help=’element._with_.rank.0
’, metavar="1.2.3_4_..." 7, dest="root’)

parser.add_argument ('—young’, type=int, nargs=2, help="constants._of_a_Young’s._
lattice”, metavar=('m’,’n’))

parser.add_argument (’—no_-pict’, dest="picture’, default=True, const=False,
action="store_const’, metavar="", help="will_not.generate_pictures”)

args = parser.parse_args ()

if (args.root = None and args.young = None) :
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parser.print_help ()

exit ()

sys.setrecursionlimit (10000)

if (args.root != None):
listOfLevels = makeGraphOfInversePartialyOrderedMultiSet (args.root)
f = open(’’.join ([’, .join (map(str, args.root)),’.txt’]),’w’)

main (f, listOfLevels)
if args.picture:

diagram . makeGraphOfInversePartialyOrderedMultiSet (f,args.root)

else:
listOfLevels = makeGraphOfYoungsLattice(args.young|[0], args.young[1l])
f = open(’’.join ([, .join (map(str, [args.young[0] for i in xrange(args.young
1) 1) txt ), w)

main(f, listOfLevels)
if args.picture:

diagram . makeGraphOfYoungsLattice(f, args.young[0], args.young|[1l])

The second script written in Python generates pictures from an output from the

first script or from the script written in C++. The content of the second script follows.

diagram.py:

#!/usr/bin/python

from array import array
import pygraphviz as pgv
from random import randrange
color = True;

class Node:

def __init__(self, name, level):
self .name = name
self.level = level

self .neighbors = list ()
self .nameOfMatchingNode = name
def isLast(self):
for i in xrange(len(self.name)—1):
if self.name[i] < self.name[i+1]:
return False
return True
def generateNext (self ,dictOfNextLevel ,listOfNextLevel ,graph):
graph.add_node(self.Name)
for i1 in xrange(len(self.name)—1):
if self.name[i] < self.name[i+1]:
tmpName = list (self.name)
tmp = self.name|1i]
tmpName[i] = tmpName[i+1]
tmpName[i+1] = tmp
self.neighbors.append(tuple (tmpName) )
graph.add_edge(self.Name, tuple (tmpName) ,weight=1,style="solid ")
if “dictOfNextLevel.has_key (tuple (tmpName)) :
tmpNode = Node (tmpName, self.level+1)
dictOfNextLevel [tuple (tmpName)] = tmpNode
listOfNextLevel . append (tmpNode)
def generateNextBool(self ,dictOfNextLevel ,listOfNextLevel ,graph, size):
graph.add_node(self.Name)
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def

def

for i in xrange(l,size+1):
if self.name.count(i) = O0:
tmpName = list ( self.name)
tmpName . append (1)
tmpName. sort ()
self.neighbors.append(tuple (tmpName) )
graph.add_edge(self.Name, tuple (tmpName) ,weight=1,style="solid ")
if “dictOfNextLevel.has_key (tuple (tmpName)) :
tmpNode = Node (tmpName, self.level+1)
dictOfNextLevel [tuple (tmpName)] = tmpNode
listOfNextLevel . append (tmpNode)
Q@property
def Name(self):
return tuple (self.name)
@property
def NameOfMatchingNode(self):
return tuple(self.nameOfMatchingNode)

makeBool (graph, size):
dictOfLevels = [dict () ,dict ()]
listOfLevels = [list (),list ()]
root = Node(tuple () ,0)
dictOfLevels [0][ tuple (root.name)] = root
listOfLevels [0].append(root)
root.generateNextBool(dictOfLevels[1],listOfLevels[1],graph,size)
level =1
while (len (dictOfLevels[level]) > 1):

dictOfLevels.append(dict ())

listOfLevels .append(list ())

d = dictOfLevels[level]

for node in d.itervalues():

node . generateNextBool (dictOfLevels[level +1],listOfLevels[level +1],
graph , size)

level 4= 1
sparseGraph = graph.copy ()
for level in xrange(l,len(listOfLevels)):

for node in dictOfLevels[level —1].keys():

for node2 in dictOfLevels[level].keys():
if graph.has_edge(node2,node) = False:
graph.add_edge (node,node2, weight=1,style="invis ’)

return sparseGraph

makelnversePartialyOrderedMultiSet (graph, root):
dictOfLevels = [dict () ,dict ()]
listOfLevels = [list (),list ()]
root = Node(root ,0)
dictOfLevels [0][tuple(root.name)] = root
listOfLevels [0].append(root)
root . generateNext (dictOfLevels[1],listOfLevels[1],graph)
level =1
while (len(dictOfLevels[level]) > 1) or (not dictOfLevels[level].values()[0].
isLast ()):
dictOfLevels.append(dict ())
listOfLevels.append(list ())
d = dictOfLevels[level]
for node in d.itervalues():
node. generateNext (dictOfLevels[level +1],listOfLevels|[level+1],graph)
level 4+=1
sparseGraph = graph.copy ()
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for level in xrange(1l,len(listOfLevels)):
for node in dictOfLevels[level —1].keys():
for node2 in dictOfLevels[level].keys():
if graph.has_edge(node2,node) = False:
graph.add_edge (node,node2, weight=1,style="invis )
return sparseGraph

def makeYoungsLattice(graph, m, n):
dictOfLevels = [dict () for x in xrange (m#n+1)]
tmp = [0 for i in xrange(n)]
root = Node(tmp,0)
dictOfLevels [0][root .Name] = root
for i in xrange(len(dictOfLevels)—1):
for node in dictOfLevels[i].values():
if sum(node.Name) <= mx*n:
for ii in xrange(n):
if (node.Name[ii] < m) and ( (ii = n—1) or (node.Name[ii] <
node.Name[ ii +1]) ):
new = list (node.name)
new[ii] 4= 1
newNode = Node(new, i+1)
graph.add_edge (newNode.Name, node .Name, weight=1,style="

solid )
if dictOfLevels[i+1].has_key (newNode.Name) = True:
node.neighbors.append (dictOfLevels[i+1][newNode.Name
] - Name)
else:

node.neighbors.append (newNode . Name)
dictOfLevels[i+1][newNode.Name] = newNode
sparseGraph = graph.copy ()
for level in xrange(1,mxn):
for node in dictOfLevels[level —1].keys () :
for node2 in dictOfLevels[level].keys():
if graph.has_edge(node2,node) = False:
graph.add_edge(node2,node, weight=1,style="invis ’)
return sparseGraph

def makeFromFile(graph, fileName):

listOfLevels = []
f = open(fileName+” _levels”,’'r”)
level = —1;
for line in f:

listOfLevels.append(list ())

level 4= 1;

line.strip ()

for node in line.split(’,’):

listOfLevels[level |.append(int (node))

f = open(fileName+” _nodes” ,’r’)

nodeld = —1;
for line in f:
nodeld 4= 1;

if nodeld > level: continue
line.strip ()
for neighbor in line.split(’,’):
graph.add_edge ((int (nodeld),) ,(int (neighbor),),weight=1,style=’solid ’)

sparseGraph = graph.copy ()
for level in xrange(l,len(listOfLevels)):
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148 for node in listOfLevels[level —1]:

149 for node2 in listOfLevels[level]:
150 if graph.has_edge ((node2,) ,(node,)) = False:
151 graph.add_edge ((node,) ,(node2,) ,weight=1,style="invis )
152 return sparseGraph

153

154 | def makeGraphOfBool(oldFile , size):

155 graph = pgv.AGraph(rankdir="BT")

156 sparseGraph = makeBool(graph, size)

157

158 decomp = False;

159 i=0

160 d = dict ()

161 f = open(oldFile.name, 'r’)

162 generatePictures (f,graph,sparseGraph)

163

164 | def makeGraphOfInversePartialyOrderedMultiSet (oldFile , root):
165 graph = pgv.AGraph(rankdir="BT")

166 sparseGraph = makelnversePartialyOrderedMultiSet (graph ,root)
167

168 decomp = False;

169 i=0

170 d = dict ()

171 f = open(oldFile.name, 'r’)

172 generatePictures (f,graph,sparseGraph)

173

174 | def makeGraphOfYoungsLattice (oldFile ,m,n):

175 f = open(oldFile.name, 'r’)

176 graph = pgv.AGraph()

177 numberOfLayers = ms+n

178 sparseGraph = makeYoungsLattice (graph ,m,n)
179 generatePictures (f,graph,sparseGraph)

180

181 | def makeGraphFromFile(decomposition, fileName):
182 graph = pgv.AGraph(rankdir="BT")

183 sparseGraph = makeFromFile (graph , fileName)
184 f = open(decomposition.name, 'r’)

185 generatePictures (f,graph,sparseGraph)

186

187 | def generatePictures(f,graph,sparseGraph):

188 decomp = False;

189 i=0

190 d = dict ()

191 for line in f:

192 i4=1

193 line.strip ()

194

195 if decomp:

196 line = str.replace(line,’((’,’ ()

197 line = str.replace(line,’),.’,’")

198 line = str.replace(line,’))’,’”)

199 line = str.replace(line,’)’,’”)

200 line = str.replace(line,’\n’,’")

201 if str.count(line,’,.’) = O0:

202 line = str.replace(line,’,”,’,.")

203 lineList = list ()

204 for part in line.split(’(’)[1:]:

205 if len(part) > 0:

206 lineList .append(tuple (map(int, part.split(’,.’))))
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207 else:

208 lineList .append(tuple())

209 ¢ = "#%” % 77 .join ([hex(randrange (50, 255))[2:] for i in range(3)])
210 if (color): graph.node_attr[’style’] = ’filled”’

2 graph.get_node(lineList [0]).attr [’ fillcolor’] = ¢

2 if (color): sparseGraph.node_attr|[’style’] = ’filled”’

1
3 sparseGraph.get_node(lineList [0]) .attr [’ fillcolor’] = ¢
1 for ii in xrange(1l,len(lineList)):

1
1
1
1
21 graph.get_node(lineList [ii]).attr[ fillcolor’] = ¢
216 if (color):
217 graph.add_edge(lineList [ii —1],lineList [ii],weight=1,color=c, penwidth=2)
218 else:
219 graph.add_edge(lineList [ii —1],lineList [ii], weight=1)
220 sparseGraph.get_node(lineList [ii]).attr[ ' fillcolor’] = ¢
221 if (color):
222 sparseGraph.add_edge(lineList [ii —1],lineList [ii], weight=1,color=c,

penwidth=2)

223 else:

224 sparseGraph.add_edge(lineList [ii —1],lineList [ii],weight=1)
225

26 if (line = ’Decomposition:\n’): decomp = True

27

28 graphNoLabels = graph.copy ()

29 graphNoLabels.node_attr[’label’] = ’_~

sparseGraphNoLabels = sparseGraph.copy ()

1 sparseGraphNoLabels .node_attr[’label’] = .~

2 graph.layout (prog=’dot’)

3 graph.draw(str.replace (f.name,’.txt’,’’)+”_FULL.png”)
|

RN NN NN

sparseGraph .layout (prog="dot’)

2: sparseGraph.draw(str.replace (f.name,’.txt’,’ " )+”_SPARSE.png”)

236 graphNoLabels. layout (prog="dot ")

237 graphNoLabels.draw(str.replace (f.name, ’.txt’,’ )+’ FULL.NO_.LABELS.png”)

238 sparseGraphNoLabels .layout (prog=’dot’)

239 sparseGraphNoLabels.draw(str.replace (f.name, . txt’,’’)+” _SPARSE_NO_LABELS. png
77)

C.2 C++

We present the source code for the C++language in this section. The program contains
two classes, main and node. Each instance of the node class represents one vertex of the
poset and each instance stores an id, vertex label, level index and a list of its neighbors.

The classes are given below.

node.h:

1

2 |#ifndef NODEH
3 |#define NODEH
t
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45

#include <vector>

#include <string>

#include <map>

#include <fstream>

#include <boost/serialization/vector.hpp>
#include <boost/serialization /set.hpp>
#include <boost/serialization/array.hpp>
#include <boost/archive/text_oarchive.hpp>
#include <boost/archive/text_iarchive .hpp>
#include <boost/shared_ptr.hpp>

#include <boost/make_shared.hpp>

using namespace std;

typedef unsigned int IdType;
typedef unsigned char NameElementType;

class Node
{
public:

unsigned char level; // Good for up to 255 levels

IdType id; // Can store up to 12! elements

IdType boolSize; // store the number of elements in a set

vector <NameElementType> name;
vector<IdType> neighbors;

Node () ;

Node(std :: vector<NameElementType> name, int level , IdType id);

“Node () ;

void generateNextBool( map<vector<NameElementType>, boost::shared_ptr<Node> >x
tmp_level , vector<vector<IdType>x >x adjacentMatrix, vector<IdType>x
nextLevel , std::ofstreamx* fileWithNodeNames) ;

void generateNextInverse( map<vector<NameElementType>, boost::shared_ptr <Node>
>%x tmp_level , vector<vector<IdType>x >x adjacentMatrix, vector<IdType>x
nextLevel , std::ofstreamx fileWithNodeNames) ;

void generateNextYoung( map<vector<NameElementType>, boost::shared_ptr<Node> >x
tmp_level , vector<vector<IdType>* > adjacentMatrix, vector<IdType>=*
nextLevel , std::ofstreamx fileWithNodeNames, int m);

string getName () ;

string getNameYoung() ;

#endif // NODEH
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node.cpp:

// libraries:

#include ”node.h”

#include <vector>

#include <string>

#include <boost/concept_check.hpp>
#include <boost/lexical_cast .hpp>
using namespace std;

Node :: Node(vector <NameElementType> name, int level, IdType id){
this —>name = name;
this—>level = level;
this—>id = id;

// Default constructors:
Node :: Node () {

Node:: " Node () {

}

// generate next vertices in the boolean lattice
void Node:: generateNextBool( map<vector<NameElementType>, boost::shared_ptr<Node>
> tmp_level , vector<vector<IdType>x >x adjacentMatrix , vector<IdType>x
nextLevel ; std::ofstream=* fileWithNodeNames)
{
for (NameElementType i = 1; i <= this—>boolSize; i++)
{
if (name.size() = 0 || find (name.begin() ,name.end(),i) = name.end() )
{
vector <NameElementType> tmp;
for(int j = 0; j < name.size(); j++) tmp.push_back(name[j]) ;
tmp. push_back (1);
sort (tmp. begin (), tmp.end());
if (tmp_-level—>count (tmp) 0){
boost :: shared_ptr<Node> newNode = boost :: make_shared<Node>(tmp, level 41,
adjacentMatrix—>size ());
newNode—>boolSize = this—>boolSize;
string name = newNode—>getName () ;
int stringSize = (boolSize <= 9 ? 24+boolSizex2 : 249%24(boolSize —9)*3);
(xfileWithNodeNames) << name;
for(int k = 0; k < stringSize-—name.length(); k++)(xfileWithNodeNames) <<

”

(xfileWithNodeNames) << endl;
fileWithNodeNames—>flush () ;
adjacentMatrix—>at (id )—>push_back (adjacentMatrix—>size ());
nextLevel —>push_back(adjacentMatrix—>size ());
adjacentMatrix —>push_back (new vector<IdType>());
(*tmp_level) [tmp] = newNode;

} else{
adjacentMatrix —>at (id )—>push_back (tmp_level —>at (tmp)—>id ) ;

}

}
}
}

// generate next vertices using only inversion on an instantiation

7




83

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

void Node:: generateNextInverse( map<vector<NameElementType>, boost::shared_ptr<
Node> >x tmp_level, vector<vector<IdType>* >x adjacentMatrix, vector<IdType>x*
nextLevel , std::ofstreamx* fileWithNodeNames)
{
for (unsigned int i = 0; i < name.size()—1; i++)
{
if (name.at (i) < name.at(i+1))
{
vector <NameElementType> tmp;
for (int j = 0; j < name.size(); j++) tmp.push_back(name[j]);
NameElementType t = tmp.at(i);
tmp.at (i) = tmp.at(i+1);
tmp.at(i+1) = t;
if (tmp_level—>count (tmp) == 0){
boost :: shared_ptr<Node> newNode = boost :: make_shared<Node>(tmp, level 41,
adjacentMatrix—>size ());
string name = newNode—>getName () ;
(xfileWithNodeNames) << name << endl;
fileWithNodeNames—>flush () ;
adjacentMatrix—>at (id )—>push_back (adjacentMatrix—>size ());
nextLevel —>push_back (adjacentMatrix—>size ());
adjacentMatrix —>push_back (new vector<IdType>());
(*tmp_level) [tmp] = newNode;
} else{
adjacentMatrix—>at (id )=>push_back (tmp_level —=at (tmp)—>id ) ;
}
}
}
}
// generate next vertices in a Young’s lattice
void Node:: generateNextYoung( map<vector <NameElementType>, boost:: shared_ptr<Node
> >% tmp-_level , vector<vector<IdType>* >x adjacentMatrix, vector<IdType>x
nextLevel , std::ofstreams* fileWithNodeNames, int m)
{
for (int i = 0; i < name.size(); i++)
{
if (name.at(i) <mé&& (i = 0 || name[i—1] > name[i]) )
{
vector <NameElementType> tmp;
for (int j = 0; j < name.size(); j++) tmp.push_back(name[j]);
tmp. at (i)++;
if (tmp_level —>count (tmp) == 0) {
boost :: shared _ptr<Node> newNode = boost :: make_shared<Node>(tmp, level 41,
adjacentMatrix—>size ());
string name = newNode—>getNameYoung() ;
(xfileWithNodeNames) << name << endl;
fileWithNodeNames—>flush () ;
adjacentMatrix—>at (id )—>push_back (adjacentMatrix—>size ());
nextLevel —>push_back (adjacentMatrix—>size ());
adjacentMatrix —>push_back (new vector<IdType>());
(*tmp_level) [tmp] = newNode;
} else{
adjacentMatrix—>at (id )=>push_back (tmp_level —>at (tmp)—>id ) ;
}
}
}
}
// return name as a string
string Node:: getName ()
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}

string ret = " (7;

for(int i = 0; i < (int)name.size ()—1; i++){
ret += boost::lexical_cast <string >((int)name.at(i));
ret +: ” 7’7;
}
if (name.size () > 0) ret += boost::lexical_cast <string >((int)name. at (name. size ()
—1));
ret +: 7’)77;
return ret;

// return name as a string
string Node:: getNameYoung ()

{

string ret = 7 (”;
for (unsigned int i = name.size()—1; i > 0; i——){
if ((int)name.at (i) < 10) ret 4+= "07;
ret += boost::lexical_cast <string >((int)name.at(i));
ret +: ” 7”;
}
if ((int)name.at (0) < 10) ret 4= 707;
ret += boost::lexical_cast <string >((int)name.at (0));
ret += 7»)79;
return ret;
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main.cpp:

1 | //libraries:

2 |#include ”algorithm?”

3 |#include <iostream>

4 |#include <fstream>

5 |#include <limits>

6 |#include <time.h>

7 |#include <iterator >

8 |#include <vector>

9 |#include <map>

10 |#include <boost/program_options.hpp>

11 |#include <boost/program_options/options_description.hpp>
12 |#include <boost/algorithm/string .hpp>

13 |#include <boost/graph/adjacency_list.hpp>

14 |#include <boost/graph/graphviz.hpp>

15 |#include <boost/property_map/property_map.hpp>

16 |#include <boost/graph/boykov_kolmogorov_max_flow.hpp>
17 |#include <boost/graph/edmonds_karp_max_flow.hpp>

18 |#include <boost/graph/push_relabel_max_flow .hpp>

19 |#include <boost/graph/properties.hpp>

20 |#include <boost/graph/max_cardinality_matching.hpp>

22 |#include <boost/serialization /map.hpp>

23 |#include <boost/serialization/list .hpp>

24 |#include <boost/serialization/vector.hpp>
#include <boost/serialization/shared_ptr.hpp>
#include <boost/archive/text_oarchive.hpp>
#include <boost/archive/text_iarchive.hpp>
#include <boost/archive/binary_oarchive.hpp>
#include <boost/archive/binary_iarchive.hpp>
#include ”boost/graph/graph_traits.hpp”

W oW NN NN N
= O © 0 3 o »

%]

#include ”node.h”
#include <Python.h>

SN

using std::vector;
using namespace boost;
namespace po = boost:: program_options;

ENJCN

38
39 | typedef adjacency-list_traits < vecS, vecS, directedS > Traits;
10
11 | // vertex structure

42 | struct Vertex{

43 IdType id;

14 unsigned char level;

45 long distance;
16 default_color_type color;
47 Traits:: edge_descriptor predecessor;

s}

49 | // edge structure

50 | struct Edge{

long capacity;

long residual_capacity;

Traits :: edge_descriptor reverse;

54|}
5

56 | typedef adjacency_list < vecS, vecS, directedS, Vertex, Edge> Graph;
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typedef Graph::vertex_descriptor Nodeld;
typedef Graph::edge_descriptor Edgeld;
Graph graph;

vector<vector<IdType>x > listOfLevels;
time_t start_time;

// contains ids of neighbors of a node
vector<vector<IdType>* > arrayOfEdges;

void removeUnusedEdges(Graph sgraph, property_map<Graph, long Edge::* >::typex
m_e_c, property_map<Graph, long Edge::x >::typex m_e_r_c, int bottom_layer,
int upper_layer);
// output file
static std::ofstream* output;
// logger
static void loggerOut(string message){
cout << message << ”\n”;
*output << message << ”\n”;
}
unsigned int charInLine = 0;
// helper class
std ::istream& GotoLine(std::istreamé& file , unsigned int num){
if (charInLine = 0){
file .seekg(std::ios ::beg);
string line;
getline (file ,line);
charInLine = file.tellg();

file .seekg(charInLine*num) ;
return file;

// add an edge between two vertices and set its parameters

Edgeld+* AddEdge(Graph:: vertex_descriptor &vl, Graph::vertex_descriptor &v2, const
int capacity , Graphx g)

{

Edgeld el = add_edge(vl, v2, xg).first;
Edgeld e2 = add_edge(v2, vl, *g).first;
g—>operator [](el).capacity = 1;

g—>operator [](el).reverse = e2;
g—>operator [](e2).capacity = 0;
g—>operator [](e2).reverse = el;
g—>operator [](v2).predecessor = e2;
return &el;
// Uses Push—Relabel flow algorith to find a matching between middle layers.

void findMatching (Graph* graph, int layer)
{
loggerOut ("—_Middle_part.start .—”);
Graph g = *graph;
int 1 = listOfLevels.size()—1 — layer;
Nodeld sink = add_vertex(*graph);

graph—>operator [|( sink).id = —1;
for (vector<IdType >::const_iterator it = listOfLevels[l]—>begin(), e =
listOfLevels[1]—>end(); it != e; ++it)

//add the upper layer

Nodeld n = add_vertex (xgraph); //(xit) — (xlistOfLevels[l]—>begin()) + 1;
//id of a node in the graph

graph—>operator [](n).id = *it;
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AddEdge(n,sink ,1,graph);
l——;

Nodeld src = add_vertex(*graph);

for (vector<IdType >::const_iterator it = listOfLevels[l]—>begin(), e =
listOfLevels[1l]—>end (); it != e; ++it)

{

//add bottom layer and connect nodes with its neighbors

add_vertex (*graph);

Nodeld n = (xit) — (*xlistOfLevels[l]—>begin()) + 2 + listOfLevels [l+1]—>size
(); //id of a node in the graph

graph—>operator [](n).id = *it;

AddEdge(src ,n,1,graph); //connect with source

for (vector<IdType >::const_iterator neigbour = arrayOfEdges[*it]—>begin (), ee
= arrayOfEdges[*it]—>end(); neigbour != ee; 4++neigbour)

Nodeld nn = (xneigbour) — (xlistOfLevels[l+1]—>begin()) + 1;
AddEdge(n,nn,1,graph);

}

property_map<Graph, long Edge::x >::type map_edge_capacity (get(&Edge:: capacity ,x
graph) );

property_map<Graph, long Edge::* >::type map_edge_residual_capacity (get(&Edge::
residual_capacity ,xgraph) );

property_map<Graph, Graph::edge_descriptor Edge::* >::type map_edge_reverse(get
(&Edge :: reverse ,xgraph) );

property_map < Graph, vertex_index_t >::type map_vertex_index = get (
vertex_index ,* graph) ;

long flow = 0;

time_t time_start , time_end;

double time_push;

time(&time_start);

flow = push_relabel_max_flow (xgraph,src,sink ,map_edge_capacity ,
map-edge_residual_capacity ,map_edge_reverse , map-_vertex_index) ;

time(&time_end) ;

time_push = difftime (time_end ,time_start);

time(&time_start);

loggerOut ("—._Middle_part._done.—"+lexical_cast <string >(time_push));
removeUnusedEdges (graph,&map_edge_capacity ,&map_-edge_residual_capacity , 1, 1+41)

)

}
// removes edges without any flow
void removeUnusedEdges(Graph sgraph, property_map<Graph, long Edge::* >::typex
m_e_c, property_map<Graph, long Edge::x >::typex m_e_.r_.c, int bottom_layer,
int top-layer){
property_map<Graph, long Edge::x >::type map_edge_capacity = *xm_e_c;
property_map<Graph, long Edge::* >::type map_edge_residual_capacity = sm_e_r_c;
graph_traits <Graph>::vertex_iterator u_iter , u.end,u-it;
graph_traits <Graph>::edge_iterator ei, e_end;
int id_bottom_first = listOfLevels[bottom_layer]—>at(0), id_bottom_last =
listOfLevels [bottom_layer]—>at (listOfLevels [bottom_layer|—>size ()—1);
int id_top_first = listOfLevels[top_-layer]—>at(0), id_-top-last = listOfLevels]|
top_-layer]|]—>at (listOfLevels[top_layer]—>size () —1);
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int id-before_top-first = listOfLevels[top-layer —1]—->at(0), id_before_-top-_-last
= listOfLevels [top_layer —1]—>at (listOfLevels [top_layer —1]—>size () —1);

for (int i = id_bottom_first; i <= id_bottom_last; i++4) arrayOfEdges[i]—>clear ()
; // erase all links for bottom layer

for(int i = id_before_top_first; i <= id_before_top_last; i++) arrayOfEdges]|[i
]|->clear (); // erase all links to upper layer

for (boost:: tie(ei,e_end) = edges(xgraph); ei != e_end; ei++){
if ( map-edge_capacity[+xei] = 1 && (map_edge_capacity [*ei]
map_edge_residual_capacity [xei]) = 1 ){
//keep the edge — save the connected node into arrayOfEdges as the only
neighbor
IdType id_source = graph—>operator [](source(*xei, xgraph)).id;
IdType id-target = graph—>operator [](target(xei, xgraph)).id
if (id_source >= id_bottom_first && id_source <= id_bottom_last && id_target
I= -1 && id-target != id_source){
//edge goes from bottom layer
arrayOfEdges [id_source]—>push_back (id_-target);
} else
if (id_-target >= id_-top-_-first && id_-target <= id-top_last && id_target != —1
&& id_target != id_source){
//edge goes to the top layer
arrayOfEdges [id_source|—>push_back(id_target);
}
}
}

// extends the middle layer and run the flow algorithm on the constructed graph
int extendAndFlow (Graphx graph, int layer) //layer is the # of actual layer and

{

it ’s going to zero

loggerOut ("—_flow_start —");
int upperLayer = listOfLevels.size ()—1 — layer;
Nodeld sink = add,vertex(*graph);

graph >operat0r [](sink).id = —1;
Nodeld src = add_vertex(sgraph); //source node
graph—>operator [|(src).id = —1;

//upper layer
for (vector<IdType>::const_iterator it = listOfLevels|[upperLayer]—>begin(), e =
listOfLevels [upperLayer]—>end (); it != e; 4++it)

Nodeld n = add_vertex (xgraph);

graph—>operator [](n).id = *it;
AddEdge(n,sink ,1,graph);

//middle layer

upperLayer ——;
for (vector<IdType >::const_iterator it = listOfLevels|[upperLayer]—>begin(), e =
listOfLevels [upperLayer]—>end (); it != e; 4++it)

{

Nodeld n = add_vertex (xgraph);
graph—>operator [](n).id = *it;

Nodeld nn = add_vertex (xgraph);

graph—>operator [](nn).id = *it;
AddEdge(n,nn,1,graph); //edge in the middle
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for (vector<IdType >::const_iterator neighbour = arrayOfEdges[*it]—>begin(), ee
= arrayOfEdges [+ it]—>end(); neighbour != ee; +4neighbour)

Nodeld tmp = vertex ((#neighbour) — (xlistOfLevels[upperLayer+1]—>begin()) +
2,*graph);
AddEdge (nn,tmp,1,graph);

}

//bottom layer

for (vector<IdType >::const_iterator it = listOfLevels[layer]—>begin(), e =
listOfLevels [layer]—>end (); it != e; ++it)

{

Nodeld n = add_vertex (xgraph);
graph—>operator [](n).id = *it;
AddEdge(src ,n,1,graph);

for (vector<IdType >::const_iterator neighbor = arrayOfEdges[+it]—>begin (), ee
= arrayOfEdges [+ it]—>end(); neighbor != ee; +4neighbor){
Nodeld nn = *neighbor;

for (int i = layer; i < upperLayer—1; i++) nn = arrayOfEdges[nn]—>at (0);

nn = vertex (2+(nn — listOfLevels [upperLayer]—>at (0))+2+1listOfLevels |
upperLayer+1]—>size () ,xgraph);

AddEdge(n,nn,1,graph);

graph—>operator [](nn).id = *neighbor;

property_map<Graph, long Edge::* >::type map_edge_capacity (get(&Edge:: capacity ,x
graph) );

property_map<Graph, long Edge::* >::type map_edge_residual_capacity (get(&Edge::
residual_capacity ,xgraph) );

property_map<Graph, Graph::edge_descriptor Edge::* >::type map_edge_reverse(get
(&Edge :: reverse ,xgraph) );

property_map < Graph, vertex_index_t >::type map._vertex_index = get (
vertex_index ,* graph) ;

long flow = 0;

time_t time_start , time_end;

double time_push;

time(&time_start);

flow = push_relabel_max_flow (xgraph,src,sink ,map_edge_capacity ,
map-_edge_residual_capacity ,map_edge_reverse ,map_vertex_index) ;

time(&time_end) ;

time_push = difftime (time_end ,time_start);

time(&time_start);

loggerOut ("—._flow._end.—"+lexical_cast <string >(time_push));

removeUnusedEdges (graph,& map_edge_capacity ,& map_edge_residual_capacity ,layer ,
upperLayer+1);
return flow;

// the main class , which tries to find a Symmetric Saturated Chain Decomposition
of poset saved in listOfLevels and in arrayOfEdges
void findSSCD (Graph *g, boost::program_options::variables_.map vm){
Graph graph = xg;
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int layer;
string name = ”"nodes.dat”;

if (listOfLevels.size() % 2 = 0)

//Two layers in the middle

loggerOut (”—Two.layers.in.the_.middle—");

//layer is the number of the actual layer; layer goes to zero
layer = listOfLevels.size()/2 — 1;

graph.clear ();

findMatching(&graph, layer ——);

}

else

{
//One layer in the middle
loggerOut (”—One_layer_in_the_middle—");
layer = listOfLevels.size()/2 — 1;
graph.clear ();
extendAndFlow(&graph , layer ——);

while (layer >= 0){
graph.clear ();
loggerOut (” Actual_layer_is."+lexical_cast <string >(layer )+’ /"+lexical_cast <
string >(listOfLevels.size()));
if (extendAndFlow(&graph,6 layer ——) != listOfLevels[layer+1]—>size ()){
loggerOut ("—Possibly .no_symmetric_.chain_decomposition!_Terminating...—
output—>flush () ;
exit (EXIT_FAILURE) ;
}
}

//Print founded symmetric chains decomposition

std ::ifstream fileWithNodeNameRead (name. c_str ());

std ::istream& nodeNames = fileWithNodeNameRead ;

name = ”decomposition.dat_tmp”;

std :: ofstream fileWithTmpDecomposition(name.c_str (), ios::trunc);
string line;

time_t tmp;
time (&tmp) ;
loggerOut ("—Total_time: _"+lexical_cast <string >(tmp—start_time)+’—");

loggerOut (" Decomposition:”);
if (listOfLevels.size () % 2 1){
for (vector<IdType >::const_iterator it = listOfLevels[listOfLevels.size ()
/2]—>begin (), e = listOfLevels[listOfLevels.size ()/2]—->end(); it != e;
it){
if (arrayOfEdges[*it]—>size () = 0){
GotoLine (nodeNames, *it);
getline (nodeNames, line ) ;
trim (line);
(vm.count (” file”)) ? (fileWithTmpDecomposition << 7 (7 << *it << 7)” <<
endl) : (fileWithTmpDecomposition << line << endl);
}

}

}
for (int 1 = 0; i < listOfLevels.size()/2; i++){
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for (vector<IdType>::const_iterator it = listOfLevels[i]—>begin(), e =
listOfLevels [i]—>end (); it != e; ++it){

IdType tmp = *it , tmp_new;
if (arrayOfEdges [tmp]—>size () > 0){
fileWithTmpDecomposition << endl;

}

bool print = false;
if (arrayOfEdges [tmp]—>size () > 0){
do

{
print = true;
GotoLine (nodeNames, tmp) ;
getline (nodeNames, line) ;
trim (line);
(vm.count (” file”)) ? (fileWithTmpDecomposition << 7 (7 << tmp << ”)”)
(fileWithTmpDecomposition << line);
tmp_new = arrayOfEdges [tmp]—>at (0);
arrayOfEdges [tmp]—>clear () ;
tmp = tmp_new;
} while (arrayOfEdges[tmp]—>size () > 0);
if (print && tmp != arrayOfEdges.size ()—1){
GotoLine (nodeNames, tmp) ;
getline (nodeNames, line) ;
trim (line);
(vim. count (” file”)) ? (fileWithTmpDecomposition << 7 (7 << tmp << 7)”)
(fileWithTmpDecomposition << line);

fileWithTmpDecomposition. close () ;

for(int i = 0; i < arrayOfEdges.size(); i++) delete arrayOfEdges|[i];
for(int i = 0; i < listOfLevels.size(); i++) delete listOfLevels[i];

//erase empty lines printed to decomposition.dat_tmp
name = ”decomposition.dat_tmp”;
std ::ifstream fileWithTmpDecompositionRead (name. c_str ());
std ::istream& decomposition = fileWithTmpDecompositionRead;
name = ”decomposition.dat”;
std :: ofstream fileWithDecomposition(name.c_str (), ios::trunc);
while (getline (decomposition, line)){
if (line.size () > 0){
fileWithDecomposition << line << endl;
loggerOut (line);

fileWithTmpDecompositionRead . close () ;
remove (” decomposition.dat_tmp”);

fileWithNodeNameRead . close () ;
fileWithDecomposition. close () ;
output—>flush () ;

output—>close () ;

delete output;

remove (”nodes.dat”) ;

remove (”decomposition.dat”);
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}

// helper to load the Inverse poset into the memory
void makeBoolPoset (Graph *g, boost::program_options::variables_.map vm){
Graph graph = xg;
int layer;
string name = ”"nodes.dat”;
std :: ofstream fileWithNodeName (name. c_str (), ios::trunc);
boost :: shared_ptr<Node> root;

vector <NameElementType> rootName;

root = boost:: make_shared<Node>(rootName,0,0) ;

root—>boolSize = vm[” bool” ].as<int >();

string fileName = boost::lexical_cast <string >(root—>boolSize )+ .txt”;
output = new std::ofstream (fileName.c_str (), ios::trunc);
arrayOfEdges . push_back (new vector<IdType>());

name = root—>getName () ;

int stringSize = (root—>boolSize <= 9 ? 24root—>boolSize*2 : 24+9*2+(root—>
boolSize —9)%3) ;

fileWithNodeName << name;

for(int k = 0; k < stringSize—name.length(); k++)fileWithNodeName << 7.7 ;

fileWithNodeName << endl;

map<vector <NameElementType>, boost::shared_ptr<Node> >x layerAct = new map<
vector <NameElementType>, boost::shared_ptr<Node> >;
layerAct—>operator [] ( root—>name) = root;

vector<IdType>* tmp_level = new vector<IdType>();

tmp_level —>push_back (root—>id) ;

listOfLevels.push_back(tmp_level);

map<vector <NameElementType>, boost::shared_ptr<Node> >x layerNext;
map<vector <NameElementType>, boost::shared_ptr<Node> >::const_iterator it , e;

// generating all elements

while (true) {
layerNext = new map<vector <NameElementType>, boost::shared_ptr<Node> >();
tmp_level = new vector<IdType>();

for (it = layerAct—>begin(), e = layerAct—>end(); it != e; ++it)

{

it —>second—>generateNextBool (layerNext , &arrayOfEdges, tmp_level, &
fileWithNodeName) ;

if (tmp_-level —>size () == 0) break;
listOfLevels.push_back(tmp_level);

layerAct—>clear () ;
delete layerAct;

layerAct = layerNext;

// include small loop for the top node for printing decomposition
arrayOfEdges [arrayOfEdges. size () —1]—>push_back (arrayOfEdges. size () —1);
delete layerAct;

fileWithNodeName. close () ;

// calling Python diagram class to generate pictures

if (listOfLevels.size () > 1){
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findSSCD (&graph, vm);

if (vm. count (" no_pict”) = 0){
Py_Initialize () ;
PyRun_SimpleString (”import_os,sys”)
PyRun_SimpleString (”sys.path.append
PyRun_SimpleString (”import._diagram”
ofstream py(”python.in”);
py << "f_=_open(’” << fileName << ”’,’r’)\nf.close ()\ndiagram.

makeGraphOfBool (f,”<< root—>boolSize <<”)”;

py.close();
FILE *fp = fopen(”python.in”, 7r”);
PyRun_SimpleFile (fp ,” python.in”);
fclose (fp);

”

)

gos.getcwd())”);

Py_Finalize () ;
remove (” python.in”);

}
}
else
loggerOut (”—The_poset _has_only_one_vertex..The.SSCD_is _obvious.——");
// helper to load the Inverse poset into the memory

void makelnversePoset (Graph #g, boost::program_options:: variables_map vm){
Graph graph = xg;
int layer;
string name = ”"nodes.dat”;
std :: ofstream fileWithNodeName (name. c_str (), ios::trunc);
boost :: shared_ptr<Node> root ;

vector <NameElementType> rootName (vm[” inversion” ].as<vector<int> >().begin () ,vm|
”inversion” ].as<vector<int> >().end());

root = boost:: make_shared<Node>(rootName,0,0) ;

string fileName = root—>getName () .substr (1,root—>getName().size ()—2)+".txt”;

output = new std::ofstream (fileName.c_str (), ios::trunc);

arrayOfEdges . push_back (new vector<IdType>());

fileWithNodeName << root—>getName ()<<endl;

map<vector <NameElementType>, boost::shared_ptr<Node> > layerAct = new map<
vector <NameElementType>, boost::shared_ptr<Node> >;
layerAct—>operator [] ( root—>name) = root;

vector<IdType>* tmp-_-level = new vector<IdType>();

tmp_level —>push_back (root—>id) ;

listOfLevels.push_back(tmp_level);

map<vector <NameElementType>, boost::shared_ptr<Node> >x layerNext;
map<vector <NameElementType>, boost::shared_ptr<Node> >::const_iterator it , e;

// generating all elements

while (true) {
layerNext = new map<vector <NameElementType>, boost:: shared_ptr<Node> >();
tmp_level = new vector<IdType>();

for (it = layerAct—>begin(), e = layerAct—>end(); it != e; ++it)
{
it —>second—>generateNextInverse (layerNext , &arrayOfEdges, tmp_level , &
fileWithNodeName) ;
if (tmp_level =>size () == 0) break;

listOfLevels.push_back(tmp_level);
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layerAct—>clear () ;
delete layerAct;

layerAct = layerNext;

// include small loop for the top node for printing decomposition
arrayOfEdges [arrayOfEdges. size () —1]—>push_back (arrayOfEdges. size () —1);
delete layerAct;
fileWithNodeName. close () ;
// calling Python diagram class to generate pictures
if (listOfLevels.size () > 1){
findSSCD(&graph, vm);
if (vim. count (" no_pict”) = 0){
Py_Initialize ();
PyRun_SimpleString (”import_os,sys”)
PyRun_SimpleString (”sys.path.append
PyRun_SimpleString (”import._diagram?”
ofstream py(”python.in”);
py << 7f_=_open(’” << fileName << ”’,’r’)\nf.close ()\ndiagram.
makeGraphOfInversePartialyOrderedMultiSet (f ,[”<< root—>getName () .substr
(1,root—>getName () .size ()—2) <<"])7;
py.close();
FILE *fp = fopen(”python.in”, 7r”);
PyRun_SimpleFile (fp ,” python.in”);
fclose (fp);

”»

)

gos.getcwd())”);

Py_Finalize () ;
remove (” python.in”);
}
}

else
loggerOut (”—The_poset _has_only_one_vertex..The.SSCD.is._obvious.——");

// helper to load the Young’s lattice into the memory
void makeYoungsLattice (Graph #g, boost::program_options::variables_.map vm){
Graph graph = xg;
int layer;
string name = ”"nodes.dat”;
std :: ofstream fileWithNodeName (name. c_str (), ios::trunc);
boost :: shared_ptr<Node> root;

int m = vin[”young” ].as<vector<int> >()[0], n = vm[”young”].as<vector<int> >()
[1];
vector <NameElementType> rootName;
for (int i = 0; i < n; i++){
rootName . push_back (0) ;
}

root = boost:: make_shared<Node>(rootName,0,0) ;

string fileName = 77

for(int i = 1; i < n; i++) fileName += lexical_cast <string>@m) + 7,”;
fileName += lexical_cast <string >@m) + 7 .txt”;

output = new std::ofstream (fileName.c_str (), ios::trunc);

arrayOfEdges . push_back (new vector<IdType>());

fileWithNodeName << root—>getNameYoung() << endl;
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map<vector <NameElementType>, boost::shared_ptr<Node> >x layerAct = new map<
vector <NameElementType>, boost::shared_ptr<Node> >;
layerAct—>operator [] ( root—>name) = root;

vector<IdType>* tmp_level = new vector<IdType>();

tmp_level —>push_back (root—>id) ;

listOfLevels.push_back(tmp_level);

map<vector <NameElementType>, boost::shared_ptr<Node> >x layerNext;
map<vector <NameElementType>, boost::shared_ptr<Node> >::const_iterator it , e;

// generating all elements

while (true){
layerNext = new map<vector <NameElementType>, boost::shared_ptr<Node> >();
tmp_level = new vector<IdType>();

for (it = layerAct—>begin(), e = layerAct—>end(); it != e; ++it)
{
it —>second —>generateNextYoung (layerNext , &arrayOfEdges, tmp_level, &
fileWithNodeName ,m) ;

if (tmp_level >size () == 0) break;
listOfLevels.push_back (tmp-level);

layerAct—>clear () ;
delete layerAct;

layerAct = layerNext;

// include small loop for the top node for printing decomposition
arrayOfEdges [arrayOfEdges. size () —1]—>push_back (arrayOfEdges . size () —1);
delete layerAct;
fileWithNodeName . close () ;
// calling Python diagram class to generate pictures
if (listOfLevels.size () > 1){
findSSCD (&graph, vm);
if (vm. count (" no_pict”) = 0){
Py_Initialize () ;
PyRun_SimpleString (”import.os,sys”)
PyRun_SimpleString (” sys.path.append
PyRun_SimpleString (”import._diagram”
ofstream py(”python.in”);
py << 7f_=_open(’” << fileName << ”’,’r’)\nf.close ()\ndiagram.
makeGraphOfYoungsLattice (f,”+lexical_cast <string >(m)+” ,_-"+lexical_cast <
string >(n)+")";
py.close () ;
FILE *fp = fopen(”python.in”, 7r”);
PyRun_SimpleFile (fp,” python.in”);
fclose (fp);

9

gos.getcwd())”);

)

Py_Finalize () ;
remove (” python.in”);
}
}

else
loggerOut (”—The_poset _has_only_one_vertex._.The_.SSCD_is _obvious.——");

// helper to load a poset from the given file into the memory
void readPosetFromFile (Graph *g, boost:: program_options:: variables_map vm){
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// Load all nodes
Graph graph = xg;
string fileName = vm|[” file” ].as<string >()+”.txt”;
output = new std::ofstream (fileName.c_str (), ios::trunc);
string name = vim[” file” ].as<string >()+” -nodes”;
std :: ifstream ifFile (name.c_str());
std ::istream& isFile = ifFile;
string line;
while (getline (isFile, line)){
vector<string> strs;
boost :: split (strs, line, boost::is_any_of(”,”));
arrayOfEdges . push_back (new vector<IdType>());
for(int 1 = 0; i < strs.size(); i++){
if (strs [0].size() = 0) continue;
if(strs.at(i).at(strs.at(i).size()—1) = 13) strs.at(i).resize(strs.at(i).
size () — 1);
arrayOfEdges [arrayOfEdges . size () —1]—>push_back (lexical_cast <IdType>(strs.at
(1)));

ifFile.close();

// load the level structure
name = vm[” file”].as<string >()+" _levels”;
ifFile.open(name. c_str ());
isFile.copyfmt(ifFile);
while (getline(isFile, line)){
vector<string> strs;
boost :: split (strs, line, boost::is_any_of(”,”));
listOfLevels.push_back(new vector<IdType>());
for(int i = 0; i < strs.size(); i++){
if(strs.at(i).at(strs.at(i).size()—1) = 13) strs.at(i).resize(strs.at(i).
size () — 1);
listOfLevels [listOfLevels.size ()—1]—>push_back(lexical_cast <IdType>(strs . at
(1))

// calling Python diagram class to generate pictures
if (listOfLevels.size () > 1){
findSSCD (&graph, vm);
if (vm. count (" no_pict”) = 0){
Py_Initialize ();
PyRun_SimpleString (”import_os,sys”)
PyRun_SimpleString (”sys.path.append
PyRun_SimpleString (”import._diagram”
ofstream py(”python.in”);
py << "f_=_open(’” << fileName << ”’,’r’)\nf.close ()\ndiagram.
makeGraphFromFile(f,’"+vm|[” file” ]. as<string >()+7 )" ;
py.close();
FILE *fp = fopen(”python.in”, 7r”);
PyRun_SimpleFile (fp ,” python.in”);
fclose (fp);

”

)

gos.getcwd())”);

Py_Finalize () ;
remove (” python.in”);
}
}

else
loggerOut (”—The_poset _has_only_one_vertex..The.SSCD_is _obvious.——");
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}

int main(int argc, charxx argv)
{
time(&start_time);
boost :: program_options:: options_description desc(” Allowed_options”);
desc.add_options ()
("bool”, po::value<int >(), ”set._the_number_of_elements_in_a_set;.——bool_47)
(7 file”, po::value<string >(), ?——file.[name]\nRead_a_poset._from._files._There.
have_to_be_two_files _in_the_current_folder ,. ’[name] _nodes’_and. ’[name]
_levels ’. _Each.line_.of_.’[name]| _-nodes’_contains.a.list .of_neighbors.of.
node_with_id _equal_to_the_line _number_starting _from._zero._Each_line_of._ "]
name] _levels’_contains_a_list _of_.nodes.in_the_layer _which_number.
corresponds._to_the_number_of_the_current_line_starting _from_zero.\n[name]
_levels:\n0\nl,2\n3\n\n[name] -nodes:\nl,2\n3\n3\n3”)
(”inversion”, po::value< vector<int> >()—>multitoken (), ”element._with_.rank.O0;

—inversion.1.2_.3_4_[7_...]")

(”young”, po::value< vector<int> >()—>multitoken (), ”set.m_.and_n.values;._—
young.3.4")

//(?sum”, po::value<int >(), ”"construct a poset using sum decomposition up to
given number; —sum_decomposition 57)

("no_pict”, ?will _not_generate_pictures”)

("help”, ”produce_help_message”)

po::variables_map vm;
po::store(po::parse_.command_line(argc, argv, desc), vm);
po::notify (vm);

if (vm.count(”help”) || ( !vm[”young”].empty() && vm[”young”].as<vector<int>
>().size() !'= 2 ) || ( vn[”young”].empty() && vm[” inversion”].empty() && vm
[?sum” | . empty () && vm[” file” ].empty () && vm[”bool” |.empty () ) ) {
cout << desc << "\n";
return 1;

}

Graph graph;

if (!'vin[”bool”].empty())
makeBoolPoset(&graph ,vm) ;

if (!vmm[” file”].empty())
readPosetFromFile(&graph ,vm) ;

if (!vin[”inversion”].empty())
makelnversePoset(&graph ,vm) ;

if (!vin[”young”].empty())
makeYoungsLattice(&graph ,vm) ;

return O;
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