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Chapter 1 - Introduction 

It is well known that any real number has a unique (or almost unique) decimal expansion. Since 

we do not typically write an infinite string of zeros down, these expansions can be either finite or 

infinite. For instance in base 10, 31/25 has decimal expansion 1.24, 1/3 has decimal expansion 

0.3333…. = 0.3 , and  has decimal expansion 3.14159…… However, in base 3 the decimal 

expansions of 31/25, 1/3, and  are 1.020110221221, 0.1, and 10.0102110122… respectively. 

Notice that not only do the decimal expansions change with different bases, but also whether the 

expansion is finite or infinite. Real numbers have another interesting expansion called a continued 

fraction expansion. In a sense, the continued fraction expansion of a real number is base 

independent. Since these expansions are given by listing nonnegative integers, when we consider 

expansions in different bases the only thing that changes is how we represent those integers. 

Whether or not the expansion is finite or infinite does not change, even if we do change the base. 

For example, in base 10, 31/25 has continued fraction expansion [1,4,6], the expansion of 1/3 is 

[0,3], and the expansion for  is[3,7,15,1,…]. In base 3, the expansions of 31/25, 1/3, and  are 

[1,11,20], [0,10], and [10,21,120,1,…]. These expansions are unique, with one exception. 

Continued fraction expansions are much different than decimal expansions and the expansion 

alone can provide us with a considerable amount of information. In this regard, representing 

numbers as continued fractions is more beneficial than using a decimal system. However, it does 

have drawbacks as even operations such as addition are extremely difficult to perform on two 

continued fraction expansions [3, p.p.19-20].To understand what this expansion is, we must first 

define a continued fraction. 

Definition 1: An expression of the form 

(1)                                                                     
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where ,i ia b  are real or complex numbers is called a continued fraction. An expression of the form  

(2)                                                                     
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where 1ib  for all i ,
0a is an integer, and 

0 1 2, , ,...a a a are each positive integers  is
 
called a simple 

continued fraction. Due to the cumbersome nature of the notation above, it is more common to 

express (2) as  0

1 2 3

1 1 1
a

a a a


  
 or simply as 0 1 2 3[ , , , ,...]a a a a . We will mostly use the latter of 

the expressions, and we sometimes refer it to as the continued fraction expansion of a number. 

The terms 0 1 2, , ,...a a a  are called partial quotients. If there are a finite number of partial quotients, 

we call it a finite simple continued fraction, otherwise it is infinite. In this paper when we refer to 

continued fractions, we really are referring to simple continued fractions, the only continued 

fraction we consider. 

As an example of a continued fraction, let’s calculate the continued fraction expansion of a 

rational number. 

Example 1. To find the continued fraction expansion of 
43

19
 we can proceed as follows: 

43 5 1 1 1 1 1
2 2 2 2 2 2

19 4 1 1 119 19
3 3 3 3

5 1 15 5
1 1

14 4
3

1

           

   

 



 

We can see from this that both the last two expressions match expression (2). Hence this example 

shows us that 
43

19
has two continued fraction expansions, [2,3,1,4] and[2,3,1,3,1] .  This leads us 

to our first theorem. 

Theorem 1  [6, p.14]. Any finite continued fraction represents a rational number, and any rational 

number can be represented as a finite continued fraction. Furthermore, this continued fraction is 

unique, apart from the identity 0 1 2 0 1 2[ , , ,..., ] [ , , ,..., 1,1]n na a a a a a a a  . 

Although in example 1 we showed a method of calculating the continued fraction expansion of a 

number, it would be nice to have a systematic approach to finding the expansion of any real 

number, not just rational ones. The continued fraction algorithm gives us just that.  
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The Continued Fraction Algorithm 

Suppose we wish to find the continued fraction expansion of x . We proceed as follows. Let 

0x x and set
0 0a x    . We then define 

1

0 0

1
x

x x


   
 and set

1 1a x    . We proceed in this 

manner; 

2 2 2

1 1

1
x a x

x x
     

   
,…. , 

1 1

1
k k k

k k

x a x
x x 

     
   

,…. We either continue 

indefinitely, or we stop if we find a value ix   [5, p.p.229-230]. 

To illustrate this algorithm, consider the following example. 

Example 2
 
We shall calculate the continued fraction expansion of

414
1.4629

283
 .  

Let 
0

414

283
x  , so 0 1a  .Then 

1 1

1 283
2.1603 2

414 131
1

283

x a    



, 

2 2

1 131
6.2381 6

283 21
2

131

x a    



, 

3 3

1 21
4.2000 4

131 5
6

21

x a    



, 

4 4

1
5 5

21
4

5

x a   



. 

Since 4 5x  , we are done. Thus we conclude that
414

[1,2,6,4,5]
283

 . 

As mentioned above, the continued fraction algorithm can be applied to irrational numbers as 

well. As a consequence of Theorem 1, the algorithm, when applied to an irrational number, will 

continue indefinitely. Some irrational numbers, square roots for example, have continued fraction 
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expansions that exhibit nice periodic behavior. Other numbers such as e have evident patterns that 

occur in their expansions, and yet others such as have expansions that do no not appear to 

follow any patterns. Below are some examples along with their continued fraction expansions. 

3 [1,1,2,1,2,1,2,...] [1,1,2]

7 [2,1,1,1,4,1,1,1,4,1,1,1,4,...] [2,1,1,1,4]

[2,1,2,1,1,4,1,1,6,1,1,8,1...]

[3,7,15,1,292,1,1,1,2,1,...]

e

 

 





 

  It is difficult to prove the above expansions of or e, however the next example illustrates that 

one can find the expansion of 3 with ease. 

Example 3 We follow the continued fraction algorithm. Let
0 3x  . Since1 3 2  , 0 1a  . 

Now, 

1 1

1 3 1 3 1
1

2 23 1
x a

  
     

  
, 

     
2 2

1 2 2 3 2
3 1 2

23 1 3 1
1

2

x a


      
 



, 

    3 1

1 1

3 1 2 3 1
x x  

  
. 

Since 3 1x x this clearly forces 4 2 5 1 2 2 2 1 1, ,..., , ,...k kx x x x x x x x     and so the corresponding 

partial quotients alternate between 1 and 2 indefinitely. Therefore, 3 [1,1,2] . 

 

 

Uses of Continued Fractions 

Continued fractions constitute a major branch of number theory because they have many 

applications within the field. First of all, they provide us with a method to find the best rational 
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approximations of a real number in the sense that no other rational with a smaller denominator is 

a better approximation [3, p.p.26-28]. Continued fractions allow one to find solutions of linear 

Diophantine equations with ease. See [6, p.p.31-46]. Also the continued fraction expansion of 

n  can be used to find solutions to Pell’s equation,
2 2 1x ny  . For more information on Pell’s 

Equation and continued fractions, refer to [2]. Furthermore, continued fractions can be put to use 

in the factorization of large integers [5, p.246]. We can also make use of continued fractions to 

help prove that any prime p of the form 4 1k  can be expressed uniquely as the sum of two 

squares [6, p.p.132-133].  

 

Motivation of our problem 

This paper was inspired by the following question. Suppose we start with some number x which 

has known expansion 0 1 2[ , , ,...]a a a and we add to it a decreasing sequence of positive values nr . 

Then as the value of nx r  approaches x  what happens to the corresponding continued fraction 

expansion? It turns out that some interesting patterns become evident. To illustrate this consider 

the following: 

 

Example 4 Let 2 91 2 2x      which has expansion[1,3,1,31,4] . Now the following table gives 

the expansions of the numbers 2 91 2 2 2 i      for10 22i  . 

 

i  Continued Fraction Expansion 

10 [1, 3, 1, 20, 1, 1, 2, 2] 

11 [1, 3, 1, 24, 1, 5, 1, 2] 

12 [1, 3, 1, 27, 1, 2, 3, 1, 2] 

13 [1, 3, 1, 29, 2, 1, 2, 1, 1, 3] 

14 [1, 3, 1, 30, 3, 1, 1, 3, 5] 

15 [1, 3, 1, 30, 1, 3, 7, 1, 7] 

16 [1, 3, 1, 31, 516] 

17 [1, 3, 1, 31, 7, 1, 31, 4] 
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18 [1, 3, 1, 31, 5, 3, 31, 1, 3] 

19 [1, 3, 1, 31, 4, 1, 1, 3, 31, 1, 3] 

20 [1, 3, 1, 31, 4, 3, 1, 3, 31, 1, 3] 

21 [1, 3, 1, 31, 4, 7, 1, 3, 31, 1, 3] 

22 [1, 3, 1, 31, 4, 15, 1, 3, 31, 1, 3] 

Table 1 

 

Looking at the table we see that the [1,3,1,...] pattern appears in each expansion and when 16i 

each pattern starts with[1,3,1,31,...] , the first 4 partial quotients of x . For 18i  , the entire 

expansion of x appears in the beginning. However this isn’t the only interesting thing to make 

note of. For 19i   we also see that the only partial quotient that changes is the one immediately 

following the 4 while the rest of the partial quotients are[1,3,31,1,3] . If we look at this portion in 

reverse order, we see that [3,1,31,3,1] [3,1,31,4] which exactly matches all but the first term of 

the expansion of x . In this paper, we will look into other interesting patterns that arise in 

continued fraction expansions and explain when precisely this pattern occurs and why it does. A 

particularly nice result that came about from this investigation can be found in chapter 4.  It gives 

explicitly the continued fraction expansion for a rational number of the form 
2

( 1)

( 1)

np

q k q





for k a 

nonnegative integer, given the expansion of
p

q
. 

We pause here to make a quick note regarding the Theorems discussed in this paper. The first 

nine theorems are commonly found in any textbook on continued fractions. Theorems 10 and 

those that follow are introduced in this paper. That Theorem 17 exists, however, is hinted at in [5, 

p.238].   
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Chapter 2 - Properties and Important Relations 

One essential tool in studying the theory of continued fractions is the study of the convergents of 

a continued fraction.  

Definition 2: Let 0 1 2[ , , ,..., ,...]nx a a a a . The reduced fractions given below are called the 

convergents of x and are defined by: 

0
0

0

p
a

q
  ,     1

0

1 1

1p
a

q a
  ,     2

0

2 1 2

1 1p
a

q a a
 


,         , 0

1 2 3

1 1 1 1n

n n

p
a

q a a a a
 

   
. 

 

Theorem 2  [5, p.233]. Let 0 1 2, , ,...p p p  denote the numerators of the convergents of some number

x while 0 1 2, , ,...q q q  denotes the denominators. Now define
2

2

0,

1,

p

q










1

1

1

0

p

q








and define ix as in the 

continued fraction algorithm.  Then the following relations hold. 

i. 
1 2

1 2

k k k k

k k k k

p a p p

q a q q

 

 

 


 
 for 0k   

ii. 
1 1 ( 1)k

k k k kp q p q     for 1k    

iii. 1 2

1 2

k k k

k k k

p x p
x

q x q

 

 





 for 0k   

iv. 2 2

1 1

k k
k

k k

p q x
x

p q x

 

 


 


 

Proof 

We prove (ii.) and (iii.). Property (iv.) follows directly from property (iii). 

Proof of (ii): This result follows by making use of relation (i) and induction. To establish a basis 

for induction, we use the given initial values to show the relation holds for 1k   , 0k  , and 

1k  . 

1

2 1 1 2 0 0 1 1 ( 1)p q p q 

           
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0

1 0 0 1 01 1 0 ( 1)p q p q a         

1

0 1 1 0 0 1 0 1( 1) 1 ( 1)p q p q a a a a        

Now suppose it holds for some integer 3m  . Then, 

1 1m m m mp q p q   

                                                                     1 1 1 1( ) ( )m m m m m m m mp a q q a p p q        

1 1m m m mp q p q    

1 11( )m m m mp q p q     

1( 1)m                           by our induction assumption 

1( 1)m   

So it holds for m+1 as well. 

Proof of (iii): Again we proceed by induction. Recall from the continued fraction algorithm that  

0x x                and               
1 1 1 1

1 1
k

k k k k

x
x x x a   

 
   

 

For 0k  , 

1 0 2

1 0 2

1 0

0 1

p x p x
x

q x q x

 

 

  
 

  
 

For 1k  , 

0

00 1 1 0 0 0

0 1 1 0

0

1
0

11
1 0

a
x ap x p x a a x a

x
q x q x a

x a





 
 

    
  

  
  

 

. 

So the result holds for 0k  and 1k  . Assume it holds for some number 2n  , then we have  
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1

1 1

1 1

1

1

1

n n

n nn n n n n

n n n n n

n n

n n

p p
x ap x p x a

q x q x a
q q

x a



 

 



 
 

  


  
 

 

 

1 1 2 1

1 1 2 1

( ) ( )

( ) ( )

n n n n n n n n n n

n n n n n n n n n n

p p x a a p p p x a

q q x a a q q q x a

   

   

    
 

    
 

1 2

1 2

n n n

n n n

p x p
x

q x q

 

 


 


                   by the induction assumption. 

So the result holds for n+1 as well. 

 

Applying property (i) of Theorem 2 can give us an efficient way of calculating the convergents of 

a continued fraction if we know the partial quotients. Example 5 demonstrates this. 

Example 5 Consider 
1380

[1,3,5,7,9]
1051

 . We can calculate the convergents by using the following 

table: 

 i  -2 -1 0 1 2 3 4 

 ia    1 3 5 7 9 

 ip  0 1 1 4 21 151 1380 

 iq  1 0 1 3 16 115 1051 

Notice that if we follow the arrows in the diagram above, to find 3 151p  we multiply 7 by 21 

and add 4. Similarly, to find 4 1051q  we multiply 9 by 115 and add 16 to it. We can also use the 

table above to illustrate properties (ii) and (iii) from Theorem 2. For property (ii), we see that

2 3 3 2 21(115) 151(16) 1p q p q     . To demonstrate property (iii) for say, 2x  and 3x , first 

observe that 

0

1380

1051
x x  so 1

1 1051

1380 329
1

1051

x  



and 2

1 329

1051 64
3

329

x  



. Now, 
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1 2 0

1 2 0

329
4 1

138064

329 1051
3 1

64

p x p

q x q

 
   

 
  

 
 

            and           2 3 1

2 3 1

64
21 4

13809

64 1051
16 3

9

p x p

q x q

 
   

 
  

 
 

. 

 

The following is an interesting and useful result. 

Theorem 3 [6, p.26]. If 
0 1 2[ , , ,..., ]n

n

n

p
a a a a

q
 then 

2 1

1

[ ,..., , ]k
k

k

q
a a a

q 

  for 1 k n  .Also if 

0 0a   then 
2 1 0

1

[ ,..., , , ]k
k

k

p
a a a a

p 

 . If 0 0a  then for 2 k n   
4 3 2

1

[ ,..., , , ]k
k

k

p
a a a a

p 

 . 

Proof 

Making use of Theorem 2(i) for 1k  we have: 

1 0 11 1
1 1 1

0 0 0

0

1

a q qq q
a a a

q q q

 


      . 

For 2k  we have: 

2 1 0 02
2 2 2

11 1 1 1

0

1 1a q q qq
a a a

qq q q a

q


       . 

Now assume the result holds for some integer 2m  . So, 

1 1

1
1

1

1
[ , ,..., ]

1

1

m
m m m

m
m

q
a a a a

q
a

a






  





. 

Now, 

1 1 1m m m m

m m

q a q q

q q

  
  

1
1 1

1

1m
m m

mm

m

q
a a

qq

q


 



     
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1

1

1

1

1

1

1

m

m

m

a

a

a

a





 







     by the induction assumption. 

Thus the result holds for 1m so it holds for 1 k n   by induction. The proof for the 

2 1 0

1

[ ,..., , , ]k
k

k

p
a a a a

p 

  case is similar.    

                                                                                                                                                                      

 

Theorem 4 [6, p.70]. Every infinite continued fraction 0 1 2[ , , ,..., ,...]na a a a uniquely represents an 

irrational number y . Conversely, if y is an irrational number then its continued fraction expansion 

is infinite. 

It is important to note a few things regarding Theorem 4. First, as mentioned earlier, from 

Theorem 1 we immediately know that an irrational number will have an infinite continued 

fraction expansion. Next, we need to clarify what is meant when we say the expression 

0 1 2[ , , ,..., ,...]na a a a  represents an irrational number. Saying that y = 0 1 2[ , , ,..., ,...]na a a a means that

lim n

n
n

p
y

q
 . At this stage, we should provide some justification for this. First, observe that for any 

nonnegative integer n ,  

2 2 2 2 2 2 2 2 2

2 2 2 2 2 2

n n n n n n

n n n n

p p p q p q

q q q q

  

 


   

2 2 1 2 2 2 2 2 2 2 2 1 2 2

2 2 2

( ) ( )n n n n n n n n

n n

a p p q p a q q

q q

     



  
      By Theorem 2 (i) 

2 2 1 2 2 2 2 2 1

2 2 2

( )n n n n n

n n

a p q p q

q q

   




  

2 2

2

2 2 2

( 1) n

n

n n

a

q q






             by Theorem 2 (ii) 
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2

2 2 2

n

n n

a

q q 

 . 

In a similar manner, it can be shown that  

2 1 2 1 2

2 1 2 1 2 1 2 1

n n n

n n n n

p p a

q q q q

 

   


  . 

These results tell us that the even convergents form an increasing sequence while the odd 

convergents form a decreasing sequence. That is, 

(3)  0 22 4

0 2 4 2

... ...n

n

p pp p

q q q q
         and   2 1 5 3 1

2 1 5 3 1

... ...n

n

p p p p

q q q q





     . 

 

Applying Theorem 2 (ii) for any nonnegative integer n  we also have, 

2 1

2 2 1

2 2 1 2 2 1 2 2 1

( 1) 1n

n n

n n n n n n

p p

q q q q q q





  

 
    

(4)                                                            2 2 1

2 2 1

n n

n n

p p

q q





  , 

so the even convergents are less than the odd convergents. Combining (3) and (4) now tells us 

that: 

(5)                              0 2 2 1 5 32 4 1

0 2 4 2 2 1 5 3 1

... ... ...n n

n n

p p p p pp p p

q q q q q q q q





          . 

Now the sequences 2

2

n

n

p

q

 
 
 

and 2 1

2 1

n

n

p

q





 
 
 

are both monotonic and bounded, and therefore are 

convergent. Furthermore, they are subsequences of n

n

p

q

 
 
 

. Finally, observe that  

2 2 1

2 2 1 2 2 1

1
lim lim 0n n

n n
n n n n

p p

q q q q



 
 

   
     

   
since nq  as n . Hence, the sequence n

n

p

q

 
 
 

 is a 

Cauchy sequence and therefore converges to some irrational number, say y . 
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Now since n

n

p

q

 
 
 

converges to y so do 2

2

n

n

p

q

 
 
 

and 2 1

2 1

n

n

p

q





 
 
 

. This leads us to the following: 

Theorem 5 [6, p.63]. The even convergents of the continued fraction expansion of y are all less

 
than y  and they form an increasing sequence. The odd convergents of y  are all greater than y  

and they form a decreasing sequence. That is, 

0 2 2 1 5 32 4 1

0 2 4 2 2 1 5 3 1

... ... ... ...n n

n n

p p p p pp p p
y

q q q q q q q q





            . 

Important Remark: Suppose  is some real number and 0 1 2 1[ , , ,..., ,...]ka a a a  . If we let 

0 1 2 1[ , , ,..., , ]k ka a a a  where 
1 2

1 1
k k

k k

a
a a


 

 
 

and if we define k analogously to kx

from the continued fraction algorithm, then Theorem 2 (iii) still holds. The proof given was 

independent of whether kx was rational or irrational. That is, 1 2

1 2

k k k

k k k

p p

q q





 

 





. The upshot of 

this is that if we write any real number  as 0 1 2 1[ , , ,..., , ]k ka a a a   then we can still apply all the 

properties of Theorem 2 just as if k  were ka even though k  can be any real number greater than 

or equal to 1. We refer to k as a complete quotient [5, p.231]. 

Theorem 6 (Lagrange’s Theorem) [1, p.144]. Any quadratic irrational number has a continued 

fraction expansion which is periodic from some point onward. Conversely, if we start with a 

continued fraction expansion that is eventually periodic, then it represents a quadratic irrational 

number. 

We will just provide a sketch of the proof. For a more detailed proof see [1, p.p. 144-145]. 

Proof Sketch Suppose x is a real number with a continued fraction expansion that is eventually 

periodic with a period length of l . That is, 0 1 1 1[ , ,..., , ,..., ]k k k lx a a a a a   . If 

1 1[ , ,..., ]k k k k lx a a a    then  1 2 1[ , ,..., ]k k l k l k lx a a a      as well. Now by Theorem 2(iii) we have, 

1 2 1 2

1 2 1 2

k k k k l k k l

k k k k l k k l

p x p p x p
x

q x q q x q

     

     

 
 

 
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It is clear from above that 
kx is irrational and that 

kx satisfies a quadratic equation with integral 

coefficients. By substituting 2 2

1 1

k k
k

k k

p q x
x

p q x

 

 


 


from Theorem 2(iv), it becomes evident that x  is 

a quadratic irrational as well. 

To prove the converse, suppose that x is some quadratic irrational. Hence, x  satisfies the 

quadratic equation 

2 0,Ax Bx C    

for some integers A, B, and C. Once again by Theorem 2 parts (iii) and (iv), 1 2

1 2

k k k

k k k

p x p
x

q x q

 

 





 for 

0k   and 2 2

1 1

k k
k

k k

p q x
x

p q x

 

 


 


. Thus kx is a quadratic irrational as well and so it satisfies the 

equation  

2 0k k k k kA x B x C   , 

where the integers kA , kB  ,and kC  are each defined in terms of the integers A, B, and C 

respectively. From here, it can be shown that
kA ,

kB , and 
kC are all bounded by some constant, 

say m, independent of k. Therefore, there can only be a finite number of different triples

 , ,k k kA B C , and hence we can find 3 distinct indices, say 1 2,  n n ,and, 3n  such that 

     
1 1 1 2 2 2 3 3 3
, , , , , ,n n n n n n n n nA B C A B C A B C  . So 

1nx , 
2nx , and 

3nx  are three roots of the quadratic 

equation corresponding to this triple, which means that two of them must be the same. Since ka  

is determined directly from kx , if 
1 2n nx x say, then its expansion must be periodic from that 

point on.  
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Chapter 3 – Approximation 

It is often very practical to approximate irrational numbers with rational numbers. It is clear that 

given any irrational number, we can approximate it with a rational number to any desired 

accuracy. The more accurate an approximation we desire, the larger the denominator of the 

rational must be. The convergents of a continued fraction provide us with a method to find 

rational numbers that approximate irrational numbers while having as small a denominator as 

possible. In fact, no other rational numbers with smaller denominators can approximate irrational 

numbers better than its convergents. For example, consider 3.141592653...  which has 

expansion[3,7,15,1,292,1,1,1,2,1,...] . We can easily find that 
3141592 392699

3.141592
1000000 125000

 

matches the first 7 digits of the decimal expansion of . However, if we look at the convergents 

of  we see that one of them is 
355

[3,7,15,1]
113

 which has decimal expansion 3.1415929… 

which is actually not only a better approximation for  but also has a denominator that is a great 

deal smaller. No rational number with a denominator smaller than 113 can provide a better 

approximation to . 

In this paper, we investigate quantities of the form
p

r
q
  . When r happens to be irrational, we 

can use the approximation properties of the convergents of r to help assist us in studying the 

continued fraction expansion of
p

r
q
 .  Some classic theorems on continued fractions and 

approximation are given below. If you wish to learn more about approximation using continued 

fractions, see [4] or [1, p.p. 154-176]. 

Theorem 7 [6, p.72]. Let y be an irrational number and 1

1

,k k

k k

p p

q q





be successive convergents of .y

Then 

1

1

k k

k k

p p
y y

q q





  
. 

Furthermore, at least one, say
p

q
, satisfies the inequality: 
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2

1

2

p
y

q q
  . 

Corollary If x is irrational, then there exists an infinite number of rationals 
p

q
such that  

2

1p
x

q q
 

. 

The next theorem is extremely interesting and somewhat surprising, as it tells us that if a rational 

number approximates an irrational number well enough, then it must be one of its convergents. 

Theorem 8 [5, p.p.237-238]. For any real number  , if  

2

1

2

p

q q
 

 

Then
 

p

q
is necessarily one of the convergents of the continued fraction expansions of  . 

The following theorem gives upper and lower bounds on the distance between an irrational 

number and any of its convergents. 

Theorem 9  [5, p.237]. If  is irrational then for any 0k  , 

1 1

1 1

( )

n

n n n n n n

p

q q q q q q


 

  


. 

Proof Let 0 1 1[ , ,..., , ]n na a a   where 1 1 2[ , ,...]n n na a    . Then by Theorem 2 parts (ii) and (iii) 

we have, 

1 1

1 1

n n n

n n n

p p

q q





 

 





 and so 

1 1 1 1

( 1) 1

( ) ( )

n

n

n n n n n n n n n

p

q q q q q q q


    


  

 
. 

Now observe that 

1 1 1 1 1n n n n n n nq a q q q q          
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1 1 1

1 1

( )n n n n n nq q q q q   

 


, 

and also that 

   1 1 1 1 1 1 11n n n n n n n n n n n nq q a q q a q q q q q                 

1 1 1

1 1

( ) ( )n n n n n n nq q q q q q   

 
 

. 

This completes the proof. 

 

Corollary [5, p.237] If  is irrational then, 

2

1n

n n

p

q q
   . 
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Chapter 4 - Patterns in Continued Fraction Expansions 

As previously mentioned, the goal of this paper is to investigate how the continued fraction 

expansion of 
p

r
q
 changes as the value of r changes. We begin this chapter by investigating the 

continued fraction expansions of various infinite series. Let’s first consider the simple geometric 

series 
2 3

0

1 1 1
1 ... n

n

q
q q q






      where q is an integer greater than 1. The ratio of terms in 

this series is 
1

q
 so we know this series converges to 

1
.

1 1
1

q

q

q






 In the next example we show 

how the continued fraction expansions of the partial sums can be used to derive this. 

 

 Example 6  The first two partial sums of 
0

n

n

q






  clearly have expansions [1]  and [1, ]q . Now 

let’s find the expansion of 
2

1 1
1

q q
  .  

2 22 2

1 1 1 1 1 1 1
1 1 1 1 1 1

( 1)( 1) 1 11 1
1

1 11 1

q

q qq qq q q
q

q qq q


           

   
 

  

, 

thus 2

1 1
1 [1, 1, 1]q q

q q
     .  In the same manner, we shall now find the expansion of the thk  

partial sum, where 3k  . Observe that, 

             

1 2

0

... 1
1

k kk
n

k
n

q q q
q

q

 




   
   

1 2

1
1

... 1

k

k k

q

q q q 

 

   

 



 

19 
  

1 2

1
1

1 1

... 1

k

k k

q

q q q 

 
 

   

 

1 2

1 2

1
1

( 1)( ... 1) 1

... 1

k k

k k

q q q

q q q

 

 

 
    

   

 

(6)                                                                

1 2

1
1

1
1

... 1k k
q

q q q 

 

 
   

. 

Therefore,
1 2

2

1 1 1
1 .... [1, 1, ... 1]k k

k
q q q q

q q q

           . Since  

1 2

1
0

... 1k kq q q 


   
 as k  , from (6) we see that the simple geometric series 

0

n

n

q






 converges to
1

1
1 1

q

q q
 

 
, as expected. 

 

It is useful to note that in example 6 we used a quite obvious but useful fact that in general, 

 0 1 0 1lim [ , ,..., , ] [ , ,..., ]k k
m

a a a m a a a


 . 

In the next example, we consider the expansion of the series
2 3

2

1 1
... n

n

p p
q

q q q q






     , for 

specific values of p and q. Although the expansion of this series has similarities to the one above, 

the 
p

q
term complicates things. 

Example 7 Suppose
129

[0,3,5,6,4]
412

p

q
  . The following table gives the first 5 partial sums 

of the series
2

n

n

p
q

q






 . 
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n Continued Fraction Expansion 

2 [0, 3, 5, 6, 5, 3, 6, 5, 3] 

3 [0, 3, 5, 6, 5, 3, 8, 3, 15, 1, 2, 1, 1, 4, 3] 

4 [0, 3, 5, 6, 5, 3, 8, 3, 6607, 1, 2, 1, 1, 4, 3] 

5 [0, 3, 5, 6, 5, 3, 8, 3, 2722511, 1, 2, 1, 1, 4, 3] 

6 [0, 3, 5, 6, 5, 3, 8, 3, 1121674959, 1, 2, 1, 1, 4, 3] 

     Table 2 

 

We see that the expansion becomes fixed except for one partial quotient when 3n  . The non-

fixed partial quotients are 15, 6607, 2722511, and 1121674959. Observe that: 

2

3 2

15 16(1) 1,

6607 16(412 1) 1,

2722511 16(4

1121674959

12 412 1) 1,

16(412 412 412 1) 1.

 

  

   

    

 

From this we see that the non-fixed partial quotient corresponding to the n
th
 partial sum( 3n  ) 

takes the form  
3

0

16 1
n

k

k

q




 . We can use the information from Table 2 to tell us what the series 

2

n

n

p
q

q






 converges to. Similar to example 6, the non-fixed partial quotients go to infinity as n 

goes to infinity. Thus, 
2

n

n

p
q

q






 converges to
13255

0,3,5,6,5,3,8,3]
4

[
2333

 .  As mentioned 

prior to example 7, the expansions that appear in Table 2 are much more difficult to predict than 

the expansions that appear in the partial sums of a geometric series. However based on several 

examples, we were able to make some conjectures that predict certain patterns that will appear. 

We make no attempt to prove these in this paper, but they appear in Chapter 5.  

In example 4, we generated a table of continued fraction expansions for numbers of the form

2 91 2 2 2 i      for10 22i  . We noted a particular pattern that occurred for values of 19i 

where only a single partial quotient changed. Part of the table is given again below.   
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i Continued Fraction Expansion 

18  [1, 3, 1, 31, 5, 3, 31, 1, 3] 

19 [1, 3, 1, 31, 4, 1, 1, 3, 31, 1, 3] 

20 [1, 3, 1, 31, 4, 3, 1, 3, 31, 1, 3] 

21 [1, 3, 1, 31, 4, 7, 1, 3, 31, 1, 3] 

22 [1, 3, 1, 31, 4, 15, 1, 3, 31, 1, 3] 

                     Table 3 

 

An inspection of the table reveals that the pattern of interest occurs at the next integer after 18i  , 

the square of the denominator of our original number, 
2 91 2 2   . A clear pattern is also 

evident in the only non-fixed quotients of the expansions, i.e. 1, 3, 7, and 15. They are all of the 

form 2 1k  where k is the difference between i and 18. This is not true in general. That is, if we 

constructed a similar table with a different initial number, the non-fixed quotients may not have 

the form 2 1k  .  However, the least common denominator of our original number, x, is 
92 and so 

its square is
182 . When 21i  for instance, the denominator of the resulting number is 3 182 (2 )

which is 8 multiples of 
182 , while the non-fixed partial quotient is8 1 7  . This is actually the 

key to the value of the non-fixed term in general as we see in the following theorem.  

 

Theorem 10 Suppose 
1 2[ , , ,..., ]o n

p

q
a a a a  where 1n   and 1na  . Then for k  , 

2 1 2 1 1 2 1

( 1)

( 1)
[ , , ,..., , , ,1, 1, , ,..., ]

n

o n n n n n

p

q k q
a a a a a k a a a a  




    

and 

2 1 2 1 1 2 1

( 1)

( 1)
[ , , ,..., , 1,1, , , , ,..., ]

n

o n n n n n

p

q k q
a a a a a k a a a a  




   . 

 

Proof: Since continued fraction expansions are unique, consider the following cases. 
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Case 1: Suppose
1 2 1 1 2 1[ , , ,... , , ,1, 1, ,... , ]o n n n nx a a a a a k a a a a   , we will show that x  

necessarily can be written in the form 
2

( 1)

( 1)

n
p

q k q




 . Observe that the first 1n  convergents of 

p

q
 and x  are exactly the same, so 

i

i

p

q
 for i n  are all convergents of x . Now suppose 

1 2 1[ , , ,... , , ]o n nx a a a a a   where 

1 2 1

1

1

1
[ ,1, 1, ,..., , ]

1
1

1
1

1

1

n n

n

n

k a a a a k

a

a

a

 



   



 





 

1

1

1

1
1

1
1

1

1

n

n

k

a

a

a



 


 
 
 
   
 

 
 

 

. 

Since 1 2[ , , ,..., ]o n

p

q
a a a a , by Theorem 3, 2 1

1

[ ,... , ]n
n

n

q
a a a

q 

  . Hence, 

1

1

1

1 1

1
1 1

1

n

n n n

n

k k
q

q q q

q








   

 


 

 

1 1 .n n n n n

n n

q q kq q q
k

q q

   
    

 

Now since
1

1

n n

n n

p p
x

q q













, by substitution we get the following: 
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1
1

1

11
1

( )

( )

n n n
n n

n n n

n n nn n
n n

n

kq q q
p p

p p q
x

kq q qq q
q q

q













 



 

 


 

         1 1( ) ( 1)

( ) ( )

n

n n n n n n n n

n n n

kp q p q p q p q kpq pq

q kq q q kq q

      
 

 
 By Theorem 2 (ii) 

2 2 2

( 1) ( 1) ( 1)

( 1) ( 1) ( 1)

n npq k p

q k q k q k q

  
   

  
. 

 

Case 2: Now let 1 2 1 1 2 1[ , , ,... , 1,1, , , ,... , ]o n n n ny a a a a a k a a a a   . We now show that y can be 

written in the form 
2

( 1)

( 1)

n
p

q k q




 . This time let the convergents of 

p

q
 be denoted by 

i

i

p

q
 for 

i n  while we denote the convergents of y by 

'

'

i

i

p

q
. Notice that from the expansion of y , 

'

'

i i

i i

p p

q q
  for 1i n  ,

'

n np p and 
'

n nq q , and 
'

1n np p   and
'

1n nq q  . We can easily 

calculate 
'

np  and 
'

nq : 1 2 1 2 1 1

'
( 1)

n n n n n n n n nn a p p a p p p p pp
     

         and similarly, 

1

'

n nn q qq


  . Now again let’s suppose 1 2 1[ , , ,... , 1,1, ]o n ny a a a a a    where

1 2 1[ , , ,... , ]n nk a a a a  . Then, again using Theorem 3 we have: 

1
1

2

1

1 1

1

1

1

1

n
n

n
n

n

k k
q

a
q

a

a

a






  









 

1 ,  n

n

q
k

q

  which implies 
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1 .n n

n

kq q

q
 
  

Once again we use substitution into the equation 1

1

' '

1

' '

1

n n n

n n n

n n

n n

p p p

q

p p
y

q q q q

 

 












 
 

 
 and we get: 

 

1
1

1

1 1
1

n n
n n n

nn n n

n n n n n
n n n

n

kq q
p p p

qp p p
y

q q q kq q
q q q

q










 


 
  

    
   

  
 

 

1

1 1

2 2 2

( ) ( 1)

( 1)

n

n n n nkpq pq p q p q kpq pq

kq q k q



      
 

 
By Theorem 2 (ii) 

1 1

2 2

( 1) ( 1)

( 1) ( 1)

n nkpq pq p

q k q k q

    
  

 
.     

                                                                                                                                                                                       

 

From the proof of Theorem 10, we see that the expansion changes based on whether n is even or 

odd. The following corollaries tell us exactly how each case plays out.  

Corollary When n is even, 

2 1 2 1 1 2 1

1

( 1)
[ , , ,..., , , ,1, 1, , ,..., ]o n n n n n

p

q k q
a a a a a k a a a a  


     

2 1 2 1 1 2 1

1

( 1)
[ , , ,..., , 1,1, , , , ,..., ]o n n n n n

p

q k q
a a a a a k a a a a  


   . 

Corollary When n is odd, 

2 1 2 1 1 2 1

1

( 1)
[ , , ,..., , 1,1, , , , ,..., ]o n n n n n

p

q k q
a a a a a k a a a a  


     
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2 1 2 1 1 2 1

1

( 1)
[ , , ,..., , , ,1, 1, , ,..., ]o n n n n n

p

q k q
a a a a a k a a a a  


   . 

Theorem 10 tells how the expansions of rational numbers change as we add and subtract integral 

multiples of
2q . However, it does not tell us what happens when that multiple is 1. The next 

theorem takes care of that. 

Theorem 11 Suppose 
0 1[ , ,..., ]n

p

q
a a a  where 1n  , 0q   ,and 1na  . Then, 

2 1 2 1 1 2 1

( 1)
[ , , ,..., , 1, 1, , ,..., ]

n

o n n n n n

p

q q
a a a a a a a a a  


     

and
 

2 1 2 1 1 2 1

( 1)
[ , , ,..., , 1, 1, , ,..., ]

n

o n n n n n

p

q q
a a a a a a a a a  


    .

 

 

Proof: We proceed in the same manner as in the proof of Theorem 10.  

Case 1: Suppose 1 2 1 1 2 1[ , , ,..., , 1, 1, , ,..., ]o n n n n nx a a a a a a a a a     . We then note that the 

convergents of x and 
p

q
are the same up through 

1

1

n

n

p

q





. Let’s denote the n
th
 convergent of x by 

'

'

n

n

p

q
. Then we see from Theorem 2 (i) that

'

1 2 1( 1)n n n n n np a p p p p       . Similarly, 

'

1n n nq q q   .  Now if 0 1 1[ , ,..., , 1, ]n nx a a a a    where 1 1[ 1, ,..., ]n na a a    then 

1

1

1
1

1

n

n

a

a

a





   





 

1

1 n

n

q

q 

                                                  by Theorem 3 
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1

1

n n

n

q q

q






 . 

By Theorem 2 (iii),

'

1 1 1

'

1 1 1

( )

( )

n n n n n

n n n n n

p p p p p
x

q q q q q

 

 
  

  

  
 

  
and substituting 1

1

n n

n

q q

q
 




   we get: 

1
1 1

11 1 1

1 1 11
1 1

1

( )
( )

( )
( )

n n
n n n

nn n n n

n n n nn n
n n n

n

q q
p p p

qp p p q
x

q q q qq q
q q q

q






 

  

  
 



 
  

    
   

  
 

 

1 1 1 1

2

1 1 1

( )( )

( )( )

n n n n n n

n n n n n

q q p p p q

q q q q q

   

  

  


  
 

1 1

2 2

( ) ( 1)n

n n n n n n n n

n n

p q p q p q p q

q q

    
       by Theorem 2 (ii) 

2 2

( 1) ( 1)
n n

n n

n

p q p

q q q

  
   . 

Case 2: Suppose 1 2 1[ , , ,..., , 1, ]o n ny a a a a a    where 1 2 1[ 1, , ,..., ]n n na a a a    . This 

time, 

'

1 2 1( 1)n n n n n np a p p p p        and so 
'

1n n nq q q   . Thus, by Theorems 2 and 3, 

1

1 1
1

1

1
1 1

1

n n n
n

n n
n

q q q
a

q q
a

a

 

 



     





, and so 

'

1 1 1

'

1 1 1

( )

( )

n n n n n

n n n n n

p p p p p
y

q q q q q

 

 
  

  

  
 

  
. Substitution then yields, 

1
1 1

1 1

11
1 1

1

( )

( )

n n
n n n

n n

nn n
n n n

n

q q
p p p

q q
y

qq q
q q q

q


 

 


 



 
  

 

 

  
 
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1 1 1 1 1 1

2 2

1 1 1

( )( ) ( )

( )( )

n n n n n n n n n n n n

n n n n n n

q q p p p q p q p q p q

q q q q q q

     

  

    
 

  
 

1

2

( 1)n

n n

n

p q

q

 
                     By Theorem 2 (ii) 

1

2

( 1)np

q q


  . 

 

Corollary When n  is even,  

1 2 1 1 2 12

1
[ , , ,..., , 1, 1, , ,..., ]o n n n n n

p
a a a a a a a a a

q q
      , 

1 2 1 1 2 12

1
[ , , ,..., , 1, 1, , ,..., ]o n n n n n

p
a a a a a a a a a

q q
      . 

Corollary When n  is odd, 

1 2 1 1 2 12

1
[ , , ,..., , 1, 1, , ,..., ]o n n n n n

p
a a a a a a a a a

q q
      , 

1 2 1 1 2 12

1
[ , , ,..., , 1, 1, , ,..., ]o n n n n n

p
a a a a a a a a a

q q
      . 

 

To help clarify Theorems 10 and 11 let’s consider some examples. 

Example 8 Suppose
729

[1,3,4,5,7,1] [1,3,4,5,8]
557

p

q
   . Since n  is even, from Theorem 11 

we can conclude without any computation that 

2

729 1
[1,3,4,5,9,7,5,4,3]

557 557
  . 
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Again, we don’t need to do any computation to see that from Theorem 10 when 272k  ,  

2

729 1
[1,3,4,5,8,272,1,7,5,4,3]

557 (272 1)557
 


. 

So far in this paper we have started with the continued fraction expansion of 
p

q
 and then 

observed how the continued fraction expansion of 
p

r
q
 changed as we picked various values for 

r. However, sometimes we start with a certain form of continued fraction expansion, and find out 

what value of r would correspond to this expansion. For instance, looking at Theorems 10 and 11, 

we see that the expansions given are very close to being a palindrome. A palindrome is a word, 

phrase, or number that is the same read backwards and forwards, such as “12321” or “wow”. 

These expansions lead to the following question. If we ignore the first partial quotient, for what 

value of r does the expression 
p

r
q
 have a continued fraction expansion which is a palindrome? 

That is, an expansion of the form 0 1 1 1 1[ , ,..., , , , ,... ]n n n na a a a a a a  , 0 1 1 1 1[ , ,..., , , ,... ]n n na a a a a a  , 

or 0 1 1 1 1[ , ,..., , , , , ,... ]n n n na a a a k a a a   for some positive integer k. This question is not difficult to 

answer using the same technique used for the proofs of Theorem 10 and 11. It turns out that to 

find this value of r we need to know what 1nq  is. 

Theorem 12 Suppose 0 1 2[ , , ,..., ]n
n

n

p
a a a a

q
  where 1n  . Then  

0 1 1 1 1

1

( 1)
[ , ,..., , , , , ,..., ]

( 2 )

n

n
n n n n

n n n n

p
a a a a k a a a

q q kq q
 




 


. 

Proof Let 0 1 1 1[ , ,..., , , ]n n nx a a a a x   where 1 1 1[ , , ,..., ]n n nx k a a a  . Then,      

1
1

1
1

1

1 1

1

1

1

n n
n

n n
n

n
n

kq q
x k k

q q
a

q
a

a








    







     by Theorem 3. 
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Now by Theorem 2(iii) and substitution, 

1
1

1 1 1 1 1 1

1 1 1 1 11
1

( )

( ) ( 2 )

n n
n n

nn n n n n n n n n n n n n n

n n n n n n n n n n nn n
n n

n

kq q
p p

qx p p p kq q p q kp q p q p q
x

x q q q kq q q q q kq qkq q
q q

q




     

    


 
 

        
    

 
 

. 

Now observe that 

1 1

1( 2 )

n n n n n n n n

n n n n n

p kp q p q p q p
x

q q kq q q

 



 
  


 

1 1 1

1

( 2 )

( 2 )

n n n n n n n n n

n n n

kp q p q p q p kq q

q kq q

  



   



 

1 1 1

1

2

( 2 )

n n n n n n n n n n

n n n

kp q p q p q kp q p q

q kq q

  



   



 

1 1

1 1

( 1)

( 2 ) ( 2 )

n

n n n n

n n n n n n

p q p q

q kq q q kq q

 

 

 
 

 
    by Theorem 2(ii). 

Therefore, 0 1 1 1 1

1

( 1)
[ , ,..., , , , , ,..., ]

( 2 )

n

n
n n n n

n n n n

p
a a a a k a a a

q q kq q
 




 


 as desired. 

 

Theorem 13 Suppose 0 1 2[ , , ,..., ]n
n

n

p
a a a a

q
  where 1n  . Then 

1
0 1 1 1 12 2

1

( 1)
[ , ,..., , , , ,..., ]

( )

n

n n
n n n n

n n n n

p q
a a a a a a a

q q q q


 




 


. 

Proof Once again let 0 1 1 1[ , ,..., , , ]n n nx a a a a x   where 1 1 1[ , ,..., ]n n nx a a a  . Then by 

Theorem 3, 1

1

n
n

n

q
x

q




 . By Theorem 2(iii),  



 

30 
  

1

11 1 1 1

2 2

1 1 1

1

1

n
n n

nn n n n n n n

n n n n nn
n n

n

q
p p

qx p p p q p q
x

x q q q qq
q q

q



   

  





 
 

    
  

 
 

             so that  

2 2

1 1 1 1 1

2 2 2 2

1 1

( ) ( )

( )

n n n n n n n n n n n n n n

n n n n n n n

p p q p q p p q p q q p q q
x

q q q q q q q

    

 

   
   

 
 

2

1 1 1

2 2

1( )

n n n n n

n n n

p q q p q

q q q

  







 

1 1 1

2 2

1

( )

( )

n n n n n

n n n

q p q p q

q q q

  







 

1

2 2

1

( 1)

( )

n

n

n n n

q

q q q









                     by Theorem 2(ii). 

We now see that 1

2 2

1

( 1)

( )

n

n n

n n n n

p q

q q q q






 


0 1 1 1 1[ , ,..., , , , ,..., ]n n n na a a a a a a  . 

 

Theorem 14 Suppose 0 1 2[ , , ,..., ]n
n

n

p
a a a a

q
  where 2n  . Then  

2
0 1 1 1 1

1 2

( 1)
[ , ,..., , , ,..., ]

( )

n

n n
n n n

n n n n n

p q
a a a a a a

q q q q q


 

 


 


. 

Proof Let 0 1 1 1[ , ,..., , , ]n n nx a a a a x   so that 
1

1 1 2 1

2

[ , ,..., ] n
n n n

n

q
x a a a

q


  



   by Theorem 3. 

Then by Theorem 2(iii) we have, 
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1
1

21 1 1 1 2

1 1 1 1 21
1

2

n
n n

nn n n n n n n

n n n n n n nn
n n

n

q
p p

qx p p p q p q
x

x q q q q q qq
q q

q




    

    




 
 

    
  

 
 

. 

Thus, 

1 1 2

1 1 2

n n n n n n

n n n n n n

p p q p q p
x

q q q q q q

  

  


  


 

1 1 2 1 1 2

1 2

( ) ( )

( )

n n n n n n n n n n

n n n n

q p q p q p q q q q

q q q q

     

 

  



 

1 2 1 2 2 1 1

1 2 1 2

( )

( ) ( )

n n n n n n n n n n n

n n n n n n n n

p q q p q q q p q p q

q q q q q q q q

      

   

 
 

 
 

2

1 2

( 1)

( )

n

n

n n n n

q

q q q q



 





     by Theorem 2(ii). 

Therefore,  
2

0 1 1 1 1

1 2

( 1)
[ , ,..., , , ,..., ]

( )

n

n n
n n n

n n n n n

p q
a a a a a a

q q q q q


 

 


 


 as desired. 

 

 

Although Theorems 12, 13, and 14 have continued fraction expansions that are more pleasing to 

the eye than the expansions given in Theorems 10 and 11, the next example shows that they are 

not as natural. In order to apply Theorems 12, 13, and 14, we need to know the values of 1nq  and 

sometimes 2nq  . 

 Example 9 Notice that 
2222

[3,2,5,7,8] [3,2,5,7,7,1]
643

  . To proceed, we must first pick one 

of these expansions that we desire to work with. Let’s work with [3,2,5,7,7,1] this time. We 

start by observing that since 5 1a  is the last term, 5n  . Next we find 5 1 4q q  . The 
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convergents of 
2222

643
are 

3 7 38 273 1949 2222
, , , , ,  and 

1 2 11 79 564 643
 so 

4 564q  . Thus by Theorem 12 

when 32k  we see that 

52222 ( 1)
[3,2,5,7,7,1,32,1,7,7,5,2]

643 643(32 643 2 564)


 

  
. 

By Theorem 13, 

5

2 2

2222 ( 1) 564
[3,2,5,7,7,1,1,7,7,5,2]

643 643(643 564 )

 
 


. 

Finally by Theorem 14, 

52222 ( 1) 79
[3,2,5,7,7,1,7,7,5,2]

643 643 564(643 79)

 
 

 
. 

There is actually a specific case where Theorems 12 and 13 can be thought of as being just as 

natural as Theorems 10 and 11. If 
1[0, ,..., ]n

p
a a

q
  and 1[ ,..., ]na a is a palindrome, then it 

follows that 1nq p  . To see this, let 1 2[ , ,..., ]nx a a a  so that 
1

0 ,
p

q x
   and thus

q
x

p
 . 

Using this and the fact that x is a palindrome, Theorem 3 tells us 1 1

1

[ , ,..., ]n
n n

n

q
x a a a

q




   and 

hence,

1n n

q q

q p

 , giving 1nq p  . Therefore we can replace each 1nq   with np thus eliminating 

the need to find the convergents to apply these theorems. In fact, one could accomplish this by 

first applying one of the Theorems 12, 13, or 14 to a rational number less than 1. From there, the 

numerator of the resulting rational number would serve as 1nq   illustrated in the next example. 

Example 10 Suppose 
4

[0,3,4]
13

x   . We first apply Theorem 13 so that the partial quotients 

after the first become a palindrome. Doing so gives
2 2

4 3 55
[0,3,4,4,3]

13 13(13 3 ) 178
  


. 

Next, we will apply Theorem 12 with 24k  to 
55

178

p

q
 . Since the continued fraction 
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expansion of 
55

178
meets the conditions mentioned above, we know that

1nq p  . Thus 

55 1
[0,3,4,4,3,24,3,4,4,3]

178 178(24 178 2 55)
 

  
, which again has an expansion with the 

form zero followed by a palindrome.  

Theorems 10 and 11 have some interesting applications regarding infinite series. In particular, we 

will show that certain types of infinite series converge to an irrational number by observing that 

their continued fraction expansions are infinite. However, we will first want to define some tools 

to aid us in the proof. 

We start by defining a function, L, on the real numbers. If x , then ( )L x is equal to the 

number partial quotients in the continued fraction expansion of x  when the last partial quotient is 

not equal to one. We say ( )L x  if x  is irrational. That is, if 1na  , 

0 1 2([ , , ,..., ]) 1nL a a a a n   

and 

0 1 2([ , , ,...]) .L a a a   

For example, if [3,2,5,7,2] [3,2,5,7,1,1]x    then ( ) 5L x  . If 2y  , then ( )L y  . 

 

Next, we shall define the vector V . Suppose 1 2 1[ , , ,..., , ]o n nr a a a a a , 1na  . Then V will 

represent all the partial quotients of r except the first two and the last. That is, 2 1[ ,..., ]nV a a  . 

Now let’s denote the reverse of V by 
RV . That is, 

1 2 2[ , ,..., ]R

n nV a a a  . It is important to 

also note that ( ) ( ) 2RL V L V n   . 

 

We will now use these tools to prove the following theorem.  
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Theorem 15 Let 
p

q
be a nonzero rational number. Then the infinite series 

2

1

i

i

p
q

q






 converges 

to an irrational number. Furthermore, this irrational number is not a quadratic irrational. 

Proof: Suppose 1 2[ , , ,..., ]o n

p
a a a a

q
  where 1na   and n  is even (The case where n  is odd is 

very similar).  Now let 0 2 3 1( , ,..., )nV a a a  so 
0 1 2( ,...., )R

nV a a and thus 1 0[ , , , ]o n

p
a a V a

q
 . 

We know that   0

0 2 2 2L V n n    and 
01 2 1

p
L n n

q

 
    

 
. By Theorem 11,  

1
2

1 0 0 12
1

1
[ , , , 1, 1, , ]

i R

o n n

i

p p
q a a V a a V a

q q q





      . 

Now let  1 0 0, 1, 1, R

n nV V a a V   so that 

1
2

0 1 1 1

1

[ , , , ]
i

i

p
q a a V a

q





  . 

Note at this stage, if 
1 1a   then the final partial quotient of  

1
2

1

i

i

p
q

q





  would be converted to

2 1a  . This would only force us to use the second Corollary of Theorem 10 instead of the first. 

The proof would be nearly identical. 

Continuing on we see that, 

    1

1 02 2 2( 2) 2 2 2L V L V n n       , and so 

1
2 1

1

2 2 3 2 1
i

i

p
L q n n

q





 
      

 
 . 

Once again by Theorem 11, 

2
2

0 1 1 1 1 1 1

1

[ , , , 1, 1, , ]
i R

i

p
q a a V a a V a

q





    . 

Define  2 1 1 1 1, 1, 1, RV V a a V   so that

2
2

0 1 2 1

1

[ , , , ]
i

i

p
q a a V a

q





  . Hence, 



 

35 
  

    2

2 12 2 2(2 2) 2 2 2L V L V n n        and 

2
2 2 2

1

2 2 3 2 1
i

i

p
L q n n

q





 
      

 
 . 

Suppose we continue to define 3 4, ,..., kV V V as we did above. That is, 0 2 3 1( , ,..., )nV a a a  , and 

 1 , 1, 1, R

j j n n jV V a a V     for 0j  .  We shall now prove by induction that for each 0k 

the following holds: 

  2 2k

kL V n  and
2

1

2 1
i

k
k

i

p
L q n

q





 
   

 
 . 

We have already shown that it holds for 0,1,2k  . Suppose it holds for each of the integers from 

0 up to some integer 3m  . Then  1 1 1 1, 1, 1, R

m m mV V a a V     and 

2

0 1 1

1

[ , , , ]
i

m

m

i

p
q a a V a

q





  . By our induction assumption,  

  2 2m

mL V n   and 
2

1

2 1
i

m
m

i

p
L q n

q





 
   

 
 . 

Once again from Theorem 10 we know

1
2

0 1 1 1 1

1

[ , , , 1, 1, , ]
i

m
R

m m

i

p
q a a V a a V a

q






    . Since 

 1 1 1, 1, 1, R

m m mV V a a V     it follows that 

1
2

0 1 1 1

1

[ , , , ]
i

m

m

i

p
q a a V a

q








  . So, 

    1

1 2 2 2(2 2) 2 2 2m m

m mL V L V n n

         and 

1
2 1 1

1

2 2 3 2 1
i

m
m m

i

p
L q n n

q


  



 
      

 
 . 
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Hence, the result holds for each integer 0k  . This shows us that 
2

1

i
k

i

p
L q

q





 
  

 
 as 

k  . Therefore, we can conclude that 
2

1

i

i

p
q

q






 converges to an irrational number by 

Theorem 4. Also, since this infinite continued fraction expansion is clearly not periodic, Theorem 

6 tells us that the irrational number which the series converges to cannot be a quadratic irrational. 

 

Using Theorems 10 and 11, we know the precise form of the expansion of 
2

( 1)
n

p

q kq


 for any 

positive integer k. In a similar manner to Theorem 12, we could use this knowledge to prove that 

any infinite series of the form 
1

ib

i

p
q

q






 where  ib is any sequence with 1 2i ib b   for all i 

converges to an irrational number. 

To see Theorem 15 in action, consider the following example. 

Example 11 Consider the series 
2

2 4
0

1 1 1
...

i

i

a
a a a






     for some integer 2a  Using 

Theorem 10, we can calculate the continued fraction expansions of the first several partial sums 

of this series without doing any computation. They are given below. 

 

(7)  

0 1 2
2 2 2

0 0 0

[0, ],  [0, 1, 1],  [0, 1, 2, , 1],
i i i

i i i

a a a a a a a a a a  

  

           

(8)           

3
2

0

[0, 1, 2, , 1, 1, , 2, 1],
i

i

a a a a a a a a a



        

(9)           

4
2

0

[0, 1, 2, , 1, 1, , 2, , 2, 2, , 1, 1, , 2, 1].
i

i

a a a a a a a a a a a a a a a a a



             

From (7) we see that the first partial sum has two partial quotients and hence we apply the odd 

case of the corollary of Theorem 11. We then see that 
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1 2
2 2

0 0

3 and 3 2 1 5
i i

i i

L a L a 

 

   
       

   
   so we switch to the even case of the corollary 

and from then on we continue to use this case. (8) shows us that 
3

2

0

5 2 1 9
i

i

L a



 
    

 
  and 

from (9) we see that 
4

2

0

9 2 1 17
i

i

L a



 
    

 
 . From these calculations, it is apparent that 

2

0

i

i

L a






 
  

 
  and hence 

2

0

i

i

a






 converges to an irrational number. 

 

In the next example we consider the series 
1(2 1)

3 7 15
0

1 1 1 1
3 ...

3 3 3 3

i

i




 



      and show that it 

converges to an irrational number similar to the previous example. However, this time we apply 

Theorem 10 to find the expansion of the partial sums. This yields a more interesting pattern in the 

expansion. 

Example 12 By applying Theorem 9 to the partial sums of the series 
1(2 1)

0

3
i

i




 



 we get the 

following: 

   (10)  
1 1 1

0 1 2
(2 1) (2 1) (2 1)

0 0 0

3 [0,3],  3 [0,2,1,2,3],  3 [0,2,1,2,3,2,1,2, 2,1,2]
i i i

i i i

       

  

      

   (11)  
1

3
(2 1)

0

3 [0,2,1,2,3,2,1,2,2,1,2,2,1,1,1,2,2,1,2,3,2,1,2],
i

i

 



  

   (12)  
1

4
(2 1)

0

3 [0,2,1,2,3,2,1,2,2,1,2,2,1,1,1,2,2,1,2,3,2,1,2,2,1,1,1,2,3,2,1,2,2,1,1,1,2,2,1,2,2,1,2,3,2,1,2]
i

i

 



  

We first apply the odd case of Theorem 10 to get the second expansion in (10). Since 

3 2

1 1 1 1

3 3 3 (2 1)(3 )
  


our value of k in Theorem 10 is 2.  Note that in the calculation of each 

successive partial sum the value of k we are using is 2. For example let’s look at how we go from 

the second expansion to the third expansion in (10). The rational number represented by the third 
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expansion is
3 7

1 1 1

3 3 3

 
  

 
. If we think of 

p

q
in Theorem 9 as 

3

1 1

3 3

 
 

 
 then 

33q  and hence 

we are adding 
2

1

(2 1)q
to it.  It is not difficult to see that this is the case for each partial sum and 

hence why we get the expansions in (10), (11), and (12).  Once again we see that the length of 

these expansions is clearly going to infinity so 
1(2 1)

0

3
i

i




 



  represents an irrational number. 

     

Let us once again refer back to the example 4. We started with the rational number 

2 91 2 2x     which has expansion[1,3,1,31,4] . Observe that in Table 1, only once i was greater 

than 18 did each expansion start with[1,3,1,31,4,...] , the entire expansion of x . The next few 

theorems answer the questions of exactly what value needs to be added to x in order for this to 

occur. It turns out that the answer to this question depends on the n-1
st
 convergent and once again 

the parity of n.  

 

Theorem 16 If 0 1 1[ , ,..., , ]k kx a a a x   and we think of x as a function 1( )kf x  , depending on

1kx  then on the interval  1,  we have 

1

        
( ) is 

         .
k

A continuous monotonically decreasing function when k is even
f x

A continuous monotonically increasing function when k is odd






 

Proof: We have, 

  
' 1 1 1 1

1 2

1 1

( ) ( )
( )

( )

k k k k k k k k
k

k k k

x q q p x p p q
F x

x q q

   


 

  



 

1 1

2

1 1( )

k k k k

k k k

p q p q

x q q

 

 





 

(13)                                                             

1

2

1 1

( 1)

( )

k

k k kx q q



 





                              by Theorem 2 (ii). 
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From (13) it is now clear that when k is even F
’
 is always negative and when k is odd F

’
 is always 

positive, thus the result follows. 

 

 

Theorem 17 Suppose 0 1[ , ,..., ]k
k

k

p
a a a

q
 . Then the interval on the real line with continued fraction 

expansion of the form 0 1 1 2[ , ,..., , , ,...]k k ka a a b b  where ib is a positive integer for each i is: 

1

1

1

1

,  if k is even

, if k is odd.

k k k

k k k

k k k

k k k

p p p

q q q

p p p

q q q









 
 

 

 

  

 

Proof: Suppose 0 1( ) [ , ,..., , ]kf x a a a x where 1 2[ , ,...]k kx b b  . Then f has domain  1, and by 

Theorem 13 f is an increasing function when k is odd and a decreasing function when k is even. 

By Theorem 2(iii), 

1

1

( ) k k

k k

xp p
f x

xq q









. 

Since 

1

1

(1) k k

k k

p p
f

q q









 and lim ( ) k

x
k

p
f x

q
 , 

the result follows. 

 

Note that in Theorem 17, this is one of the rare cases where we don’t put the restriction that

1.ka  So one has to choose carefully if the desired form of the expansion has 1ka   or not. 

Since 0 1 1[ , ,..., ,1]ka a a  is equal to but has one more convergent and partial quotient than
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0 1 1[ , ,..., 1]ka a a   ; it must be understood what the parity of k is and what the values of the 

convergents 1

1

k

k

p

q





 and k

k

p

q
are, as they are different depending on what your desired form is. 

 

Making use of Theorem 17 leads us the to the following theorem, which now answers the 

question of what quantities we need to add to a rational number in order to preserve all or most of 

its partial quotients. 

Theorem 18 Suppose 0 1 1[ , ,..., , ]n
n n

n

p
a a a a

q
  then ( 1)nn

n

p
r

q
    where 

1

1
0

( )n n n

r
q q q 

 


has a 

continued fraction expansion of the form 0 1 1 1 2[ , ,..., , , , ,...]n n n na a a a b b   . 

Proof: From Theorem 17, we know that in order for the expansion of ( 1)nn

n

p
r

q
   to have the 

desired form, we need 

(14)                                                 

1

1

1

1

,  if n is even

( 1)

, if n is odd.

n n n

n n nnn

n n n n

n n n

p p p

q q qp
r

q p p p

q q q









 
 

 
   

 
  

 

Observe that 

                               
1 1 1

1 1 1

( 1)

( ) ( )

n

n n n n n n n

n n n n n n n n n

p p p p q p q

q q q q q q q q q

  

  

  
  

  
,              By Theorem 2(ii). 

Hence, 

(15)                                                                
1

1 1

( 1)

( )

n

n n n

n n n n n n

p p p

q q q q q q



 


 

 
. 

Since 1

1

n n

n n

p p

q q








is the upper or lower bound on the intervals above, we see from (14) and (15) 

that any r such that 
1

1
0

( )n n n

r
q q q 

 


 will have the desired expansion form. 
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In investigating quantities of the form 
p

r
q
  for small values of r given that 0 1[ , ,..., ]n

p
a a a

q
 we 

can see from (14) that when n is odd, adding any positive number r, no matter how small, will 

result in an expansion that does not preserve every partial quotient of 
p

q
. However, recall that 

any rational number has precisely two expansions. That is, if 1na  then

0 1 0 1[ , ,..., ] [ , ,..., 1,1]n na a a a a a  . With a proper re-indexing this now changes the parity of n and 

adding small enough quantities to this will now preserve every partial quotient. From this comes 

about the following corollary to Theorem 17. 

Corollary Suppose 0 1 1[ , ,..., , ]n
n n

n

p
a a a a

q
  where 1na  . The interval on the real line with 

continued fraction expansion of the form 0 1 1 2 3[ , ,..., , 1,1, , ,...]n n n na a a a b b    is  

1

1

1

1

2
,  when n is odd

2

2
,  when n is even.

2

n n n

n n n

n n n

n n n

p p p

q q q

p p p

q q q









 
 

 

 


 

 

Also, 1( 1)nn

n

p
s

q

    where 
1

1
0

(2 )n n n

s
q q q 

 


 will have a continued fraction expansion of 

the form  

 0 1 1 2 3[ , ,..., , 1,1, , ,...]n n n na a a a b b   . 

We can get another nice result by observing that since 1n nq q  , it follows that 

2

1

1 1

2 ( )n n n nq q q q 




.  We use this to give a corollary to Theorem 18. 
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Corollary Suppose 0 1[ , ,..., ]n

p
a a a

q
 . Now pick 1na  , if necessary, so that n is even. Then,

0 1 1[ , ,..., , ,...]n n

p
r a a a b

q
   if 

2

1
0

2
r

q
  . If instead we choose the expansion with an odd 

n, then 0 1 1[ , ,..., , ,...]n n

p
r a a a b

q
   if 

2

1
0

2
r

q


  . 

Notice that in Theorem 18 we started with a rational number 
p

q
 and gave the real number r so 

that ( 1)np
r

q
   had a continued fraction expansion which started with the entire continued 

fraction expansion of
p

q
. This begs the question of what happens if we replace 

p

q
with some 

irrational number x . In this case x  has an infinite continued fraction expansion so the expansion 

of x r clearly cannot begin with the entire expansion of x . We instead ask for what values of r

will the continued fraction expansions of x  and x r have the same first n partial quotients?  

That is, for what values of r does 0 1 1 2[ , ,..., , , ,...]n n nx a a a a a  and 0 1 1 2[ , ,..., , , ,...]n n nx r a a a b b   ? 

To find a precise answer we can use Theorem 17, however, the Theorem below gives a nicer 

result. 

Theorem 19 Suppose the irrational number x  has continued fraction expansion of the form

0 1 1 1[ , ,..., , , ,...]n n na a a a a   where 1 1na   . Then the continued fraction expansion of ( 1)nx r    

where 
2 2

1 1

1

2 3n n n n

r
q q q q 


 

will have an expansion of the form 0 1 1 1[ , ,..., , , ,...]n n na a a a b  . 

Proof: We prove the case where n is even.  According to Theorem 17 we know that, since n is 

even, we need to prove that 1

1

,n n n

n n n

p p p
x r

q q q





 
  

 
. Let 0 1 2 1[ , , ,..., , ]n nx a a a a x   so by Theorem 

2(iii) 1 1

1 1

n n n

n n n

x p p
x

x q q

 

 





. It is clear that n

n

p
x r

q
   so we just need to show that 

1 1 1 1

1 1 1 1

, or n n n n n n n

n n n n n n n

p p p p x p p
x r r

q q q q x q q

   

   

  
   

  
. 



 

43 
  

Observe that  

1 1 1 1 1 1 1 1

1 1 1 1 1 1

1

1 1 1

( ) ( )

( )( )

1
                        by Theorem 2(ii).

( )( )

n n n n n n n n n n n n n n

n n n n n n n n n n

n

n n n n n

p p x p p p q p q x p q p q

q q x q q x q q q q

x

x q q q q

       

     



  

    
 

   




 

 

Now the function defined by 1
1

1 1 1

1
( )

( )( )

n
n

n n n n n

x
f x

x q q q q




  




 
 is monotonically increasing on 

the interval 1,  and therefore takes on a minimum value at (1) 0f  . However, since we 

require 1 1na   then 1 2nx   .  Then
2 2

1

1
(2)

2 3n n n

f
q q q 


 

and so clearly any r smaller will also 

work. 

. 

 

Corollary If x is an irrational number and has an expansion of the form 0 1 1 1[ , ,..., , , ,...]n n na a a a a 

where 1 1na   , then ( 1)nx r   will have an expansion of the form 0 1 1 1[ , ,..., , , ,...]n n na a a a b  if 

2

1

6 n

r
q

 . 

Example 13 Suppose 
15 1

[1,2,3,2,3,2,3,...] [1,2,3]
2

x


    and we wish to add some quantity 

r so as to preserve the first 5 partial quotients of x. We find that 4 355, and 16,q q   so 

4

2 2

( 1) 1

2 55 3 55 16 16 8946
r


 

    
. Now the first 7 partial quotients of x r are 

[1,2,3,2,3,1,11,…].  If we instead pick a slightly larger value of r such as 
2

1 1

2 55 55 16 6930


   

then the first 7 partial quotients of x r are [1,2,3,2,4,11,1,…]. Notice that this time the first 5 

partial quotients of r are not preserved.  

The result given in Theorem 19 is not optimal, since the optimal value for such an r to preserve 

the first n partial quotients would simply be found by using Theorem 17 and some algebra. 

However, this value depends on the value of the initial irrational number x while the value for r 
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given in Theorem 19 only depends on nq and 1nq  . It is clear that we can find even smaller 

values for r to substitute into Theorem 19. We leave that for future work.  

Given that the expansion of 
p

q
 is 0 1[ , ,..., ]na a a , the following table summarizes the continued 

fraction expansions of various rational numbers that were discussed in this paper.  

Real Number Parity of N             Continued Fraction Expansion 

2

1

( 1)

p

q k q



 

 

even 

 

 0 1 1 1 2 1, ,..., , , ,1, 1, ,..., ,n n n na a a a k a a a a   

2

1

( 1)

p

q k q



 

 

odd 

 

 0 1 1 1 2 1, ,..., , 1,1, , , ,..., ,n n n na a a a k a a a a   

2

1

( 1)

p

q k q



 

 

even 

 

 0 1 1 1 2 1, ,..., , 1,1, , , ,..., ,n n n na a a a k a a a a   

2

1

( 1)

p

q k q



 

 

odd 

 

 0 1 1 1 2 1, ,..., , , ,1, 1, ,..., ,n n n na a a a k a a a a   

2

1p

q q
  

 

even 

 

 0 1 1 1 2 1, ,..., , 1, 1, ,..., ,n n n na a a a a a a a    

2

1p

q q
  

 

odd 

 

 0 1 1 1 2 1, ,..., , 1, 1, ,..., ,n n n na a a a a a a a    

2

1p

q q
  

 

even 

 

 0 1 1 1 2 1, ,..., , 1, 1, ,..., ,n n n na a a a a a a a    

2

1p

q q
  

 

odd 

 

 0 1 1 1 2 1, ,..., , 1, 1, ,..., ,n n n na a a a a a a a    

1

1

( 2 )n

p

q q kq q 




 
 

even 

 

 0 1 1 1 2 1, ,..., , , , , ,..., ,n n n na a a a k a a a a   

1

1

( 2 )n

p

q q kq q 




 
 

odd 

 

 0 1 1 1 2 1, ,..., , , , , ,..., ,n n n na a a a k a a a a   

1

2 2

1( )

n

n

qp

q q q q








 
 

even 

 

0 1 1 1 1[ , ,..., , , , ,..., ]n n n na a a a a a a   

1

2 2

1( )

n

n

qp

q q q q








 
 

odd 

 

0 1 1 1 1[ , ,..., , , , ,..., ]n n n na a a a a a a   

2

2

1 2( )

n

n n

qp

q qq q q



 




 
 

even 

 

0 1 1 1 1[ , ,..., , , ,..., ]n n na a a a a a   

2

2

1 2( )

n

n n

qp

q qq q q



 




 
 

odd 

 

0 1 1 1 1[ , ,..., , , ,..., ]n n na a a a a a   

Table 4 
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Chapter 5 - Future Work 

In Example 7 we looked at the continued fraction expansions that appear in the partial sums of 

the series 
2

i

i

p
q

q






 for specific values of p and q. From studying this example among others, it 

became evident that much more research can be done on the patterns found in the expansions of

2

i

i

p
q

q






 .  As mentioned at the end of Example 7 we made several conjectures regarding these 

expansions. To help us illustrate this, consider the following tables which give the expansion of 

2

i
k

k

p
q

q





 for various values of p, q, and i. 

Expression Expansion 

p/q = 137/89 [1, 1, 1, 5, 1, 6] 

i = 2 [1, 1, 1, 5, 1, 5, 7, 1, 5, 2] 

i = 3 [1, 1, 1, 5, 1, 5, 8, 2, 2, 3, 1, 2, 8, 2] 

i = 4 [1, 1, 1, 5, 1, 5, 8, 2, 2, 2, 89, 1, 1, 2, 8, 2] 

i = 5 [1, 1, 1, 5, 1, 5, 8, 2, 2, 2, 8010, 1, 1, 2, 8, 2] 

i = 6 [1, 1, 1, 5, 1, 5, 8, 2, 2, 2, 712979, 1, 1, 2, 8, 2] 

Table 5 

Expression Expansion 

p/q = 388/93 [4, 5, 1, 4, 3] 

i = 2 [4, 5, 1, 4, 4, 2, 4, 1, 5] 

i = 3 [4, 5, 1, 4, 4, 2, 9, 1, 8, 5, 6] 

i = 4 [4, 5, 1, 4, 4, 2, 9, 1, 845, 5, 6] 

i = 5 [4, 5, 1, 4, 4, 2, 9, 1, 78686, 5, 6] 

i = 6 [4, 5, 1, 4, 4, 2, 9, 1,7317899, 5, 6] 

    Table 6 

 

Expression Expansion 

p/q = 73/458 [0, 6, 3, 1, 1, 1, 6] 
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i = 2 [0, 6, 3, 1, 1, 1, 7, 5, 1, 1, 1, 3, 6] 

i = 3 [0, 6, 3, 1, 1, 1, 7, 5, 1, 1, 5, 3, 3, 1, 2, 3, 1, 2, 6] 

i = 4 [0, 6, 3, 1, 1, 1, 7, 5, 1, 1, 5, 3, 1835, 1, 2, 3, 1, 2, 6] 

i = 5 [0, 6, 3, 1, 1, 1, 7, 5, 1, 1, 5, 3, 840891, 1, 2, 3, 1, 2, 6] 

i = 6 [0, 6, 3, 1, 1, 1, 7, 5, 1, 1, 5, 3, 385128539, 1, 2, 3, 1, 2, 6] 

                 Table 7 

From Tables 5, 6, and 7 we see that each expansion eventually becomes fixed apart from one 

partial quotient. If we cut off the continued fraction of each right before the non-fixed partial 

quotient, then the value of this rational number is what the series converges to. Now let’s observe 

the non-fixed partial quotients given in each table. In Table 5 they are 89, 8010, and 712979. 

Similar to Example 7 they can be written as: 

(16)    
2

3 2

89 1(89 1) 1

8010 1(89 89 1) 1

712979 1(89 89 89 1) 1.

  

   

    

 

In Tables 6 and 7 the non-fixed partial quotients given are 8, 845, 78686, 7317899 and 3, 1835, 

840891, 385128539 respectively. Once again observe that  

(17)    2

3 2

8 9(1) 1

9(93 1) 1

9(93 93 1)

845

78686

731789

1

9(93 93 93 1)9 1

 

  

 

  

 



 

and 

(18)            2

3 2

3 4(1) 1

4(458 1) 1

4(458 45

1835

840891

385128539 4(45

8 1) 1

458 458 .18 ) 1 

 

  

   

  

 

First, notice from (16), (17), and (18) that the non-fixed partial quotients have the form

1( ... 1) 1j jk q q q       for some j. In each case above, k can be found by finding

2[gcd( 1, )]p q . For instance, 2gcd(137,89) 1 , 2gcd(388,93) 9 and 2gcd(73,458) 4 . 
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Secondly, observe that the last set of fixed partial quotients is equal to 
'

1

n

n

q

q 

where '

1nq   is the 

denominator corresponding to the n-1th convergent of
1p

q


. In other words, it is the same as 

the expansion of 
1p

q


 in reverse order if we ignore the first partial quotient. In addition, we 

sometimes have to start with the form of the expansion that ends in a 1. For example, using the 

rational numbers from Tables 5, 6, and 7 we see that 136/89 = [1, 1, 1, 8, 2, 2] = [1 ,1, 1, 8, 2, 1, 

1], 387/93 = [4, 6, 5], and 72/458 = [0, 6, 2, 1, 3, 3] = [0 ,6, 2, 1, 3, 2, 1] respectively. Writing 

these in reverse order while ignoring the first partial quotient gives [1, 1, 2, 8, 1, 1] = [1, 1, 2, 8, 

2], [5, 6], and [1, 2, 3, 1, 2, 6] all of which appear in the tables above. We now give the following 

conjecture summarizing the information presented above. 

Conjecture Suppose p and q are rational numbers greater than 1 and the series 
2

i

i

p
q

q








converges to some rational number 0 1[ , ,..., ]n

u
a a a

v
  where 1na  . Further assume that the 

expansion of 
1p

q


is 0 1[ , ,..., ]kb b b . Then for some index, j , where j  is 3 or 4: 

3
2

0 1 2 1

2 0

[ , ,..., ,gcd( 1, ) 1,1, 1,... , ]
j j

i i

n k

i i

p
q a a a p q q b b b

q




 

 
     

 
   

or 

3
2

0 1 2 1

2 0

[ , ,..., 1,1,gcd( 1, ) 1, ,... , ]
j j

i i

n k

i i

p
q a a a p q q b b b

q




 

 
     

 
  . 

Also for each integer m j , we have: 

3
2

0 1 2 1

2 0

[ , ,..., ,gcd( 1, ) 1,1, 1,... , ]
m m

i i

n k

i i

p
q a a a p q q b b b

q




 

 
     

 
   

or 
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3
2

0 1 2 1

2 0

[ , ,..., 1,1,gcd( 1, ) 1, ,... , ]
m m

i i

n k

i i

p
q a a a p q q b b b

q




 

 
     

 
  . 

 Future work would involve determining if this conjecture is true, and if so, providing a proof. It 

would also involve exploring other patterns that arise in the expansions of partial sums of series. 

 

At the end of Chapter 4 we gave a result that given the irrational number

0 1 1 1[ , ,..., , , ,...]n n nx a a a a a  , then the sum of x and the rational number r has an expansion that 

preserves the first n partial quotients of x if r is small enough. Future work in this area would 

involve pushing the limits on how large a value of r we can find that still has this property.   
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