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Traces of Matrix Products

Abstract

A formula for the number of trace equivalent classes for a matrix string of
2x2 matrices which is comprised of two different matrices Aand B with k
A'sand n-k B'sis derived. Simulations for traces of matrix products with
2 A'sand n B'sfor n varying from 2to 10are carried out. A comparison
between traces of ABAB and AABB and their connection to the eigenvalues
of individual matrix is discussed. A formula for a special case is given and a
potential application in Statistical Physics is provided.
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1. Introduction

The trace of a product of matrices has been given extensive study and it is
well known that the trace of a product of matrices is invariant under cyclic
permutations of the string of matrices [1, P.76]. For example,
Tr(ABC)=Tr(BCA) =Tr(CAB)where BCAand CABare cyclic permutations of

ABC . Therefore, the three permutations are equivalent when we are
interested in their traces, and we define permutations have the same trace
as a trace equivalent class. Thus, for a string of matrices of lengthn, the
actual number of trace equivalent class is much less thann!.

In this paper, we investigate the relative size of traces of matrix products.
That s, if M and N are both products of n A'sand B's, and the only
difference is the order of the factors, i.e., M = ABABB, N = AABBB, what can
be said about Tr(M)vs. Tr(N)? Furthermore, in this paper, we prove for a
string of 2x2 matrices which is comprised of two different matrices Aand
B, the trace of the product of those matrices is invariant under reversal
operations. If M =M,M,..M_ is a product of matrices, then the reversal of

this product is defined asM® =M _M_ ..M, . For example, the reversal of
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ABCDis DCBA; the reversal of AABBABA is ABABBAA. Note the reversal of a
matrix string generally cannot be obtained by a cyclic permutation of the
original string. Therefore, for a 2x2 matrix string of length n which
contains k A'sandn-k B's, the number of trace equivalent class would be
cut down further.

For example, for matrix strings contain 4A's and 4B's, there are in total 8
trace equivalent classes, rather than 8! which is about 40 thousand, or

|
even 8 which is 70.
414

Consider the following table:

Product Trace 1 Trace 2 Trace 3
A'B* 203 463 13721
A’B*A’B? 207 479 7889
A’BA’B® 211 495 6593
A’B*AB? 219 559 6593
A’BAB?® 235 655 5009
A’BAB°AB 243 687 2057
A’B?ABAB 255 767 1769
ABABABAB 343 1471 257
Where in Trace 1, A:[1 1), B :(1 L ,
30 10

. 11 1 1) . 0 1 3 2
in Trace 2, A= ,B= ,inTrace 3, A= ,B= .
50 10 2 3 10

We might think there is an intrinsic rank for those trace equivalent classes,
where A*B* and ABABABAB would either be in the trace equivalent class
with greatest trace or smallest trace. However, this is not the case.
Simulations show there are more than 2 types of orderings, namely other
trace equivalent classes might have the largest trace for other values of A
and B. However, although every trace equivalent class has the chance to
have the greatest trace, the probabilities for different trace equivalent
classes are quite different. If the entries of A and B obey normal or
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uniform distributions, the trace equivalent classes containing ABABAB...
appears to have a much higher probability to have the greatest trace than
the trace equivalent classes containing AA...BB... , which seem most likely to
have the smallest trace.

In Section 2, the theoretical background for this paper is presented. We
prove in Theorem 1 that the trace of a product of 2x2matrices comprised
of two different matrices Aand B equals to the trace of its reversal. Then
we obtain a formula in Theorem 2 for the number of possible trace
equivalent classes given k A's and n—k B's. Then we prove when the
entries of A'sand B'sare random, the probability that

Tr(ABAB) >Tr ( AABB)is the same as the probability that Det( AB—-BA)<0.

And if we restrict the distribution of the entries of A'sand B'sto be
uniform on[-11], Tr(ABAB) is more likely to be greater than Tr(AABB).

In Section 3, data from simulations for traces of matrix products is
presented and the analysis is given accordingly. We give the results for
traces of matrix products with 2 A'sand n B'sfor nvarying from 2to 10

Also we present the simulation results of the probability that
Tr(ABAB)>Tr(AABB)and show it is in a good agreement to the theoretical

prediction in Section 2. A special case for the traces of matrix products is
solved analytically and verified with simulations.

The applications of the traces of matrix products are mainly to Physics and
Statistics. Jackson and Lautrup [5] studied the infinite product of 2x2
matrices with all entries drawn at random from a distribution of zero mean
and unit variance. Due to the infinity product property, the law of large
number is applicable and they obtained the fact that the determinant of
the product matrix is log-normally distributed. They also pointed out a
potential application in statistical imagine analysis.

Also, in Statistical Physics, products of random transfer matrices [3]
describe both the physics of disordered magnetic systems and localization
of electronic wave functions in random potentials. The Lyapunov exponent
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is an important parameter for the predictablility of a dynamical system [7],
and if the system has a positive maximum Lyapunov exponent, then the
system is chaotic. The trace of the product of matrices has an application in
the calculation of Lyapunov exponents[8].

We expect our results could be used in the study of disordered one
dimensional systems. P.S. Davis[4] showed that the random binary alloy can
be expressed as a product of 2x2 random matrices. The asymmetry of the
probability of different trace equivalent classes obtained in our paper might
serve as a prediction of the configuration of the alloy, since thermodynamic
systems always move from a state of low probability to a state of high
probability.

2. Theoretical Background

In this chapter, the theoretical part of the thesis is presented. This includes
some theorems on the trace of a product of matrices and a formula for the
number of possible trace equivalent classes given k A's and n—-k B's.

Powers of a 2x2 matrix A can always be written as a linear combination of
Aand the identity matrix. This follows inductively from the following
lemma.

2.1.1lemmal

For any 2x2 matrix A, A> =Tr(A)A—Det(A)l, where I is the2x2 identity

matrix.

Proof: Assume A= [2

ZJ, then Tr(A)Az(zlg:I:; g((Z:i))Jand

Det(A)| :(ad—bc 0

0 ad —bc

J. Thus Tr(A) A—Det(A)1 = [C?lb;) bd(f:bdc)J _ A



2.1.2 Lemma 2

If Aand B are square matrices of the same size then Tr(AB)=Tr(BA).

Proof: This follows directly from the definition of matrix multiplication.

Tr AB ZZA‘J JI_ZZBJIAU ZZBJIAU TI’ BA

i=1 j=1 i=1 j=1 j=1 i=1

The invariance of trace under cyclic permutations is a consequence of this
lemma. For example, by replacing B above by BC we will obtain
Tr(ABC)=Tr(BCA)immediately and by replacing Aabove by CA we will get

Tr(CAB)=Tr(BCA). By induction, we can prove this is true for any finite

matrix string.

Next, we show that the trace of a matrix product is invariant under reversal.

2.1.3 Theorem 1

If M,M,..M, is a product of 2x2 matrices and each M, is either A or B,
then Tr(M,M,..M_)=Tr(M M _,..M,).
Proof: We prove this theorem by induction on n.

The cases n=1,2,3,4are oblivious due to the cyclic property of trace. For
example, Tr(AAB)=Tr(BAA) and Tr(ABAB)=Tr(BABA) because BAA is a

cyclic permutation of AAB and BABA is a cyclic permutation of ABAB.

Assume the relation hold for all products of k A'sand B's. If M is a product
of k+1 A'sandB's, then either it is a product of matrices without
consecutive A's( B's) or a product that contains an A*> or a B®.

For the first case, the A'sand B's must alternate. If k+1is even, then this
. k+1 k+1
product is of exactly (—2) of A'sand % of B's, and the reversal of the

product is a cyclic permutation of original product. If k+1 is odd, then there
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are either ; A's org B's, and the reversal is the same as the original

product. For example, (ABABA)" = ABABA.

For the case where there are consecutive A's orB's, without losing
generality, we assume there are consecutive A's at i"and (i+1)'st positions.
Then the original product can be written asM,M,..M._ AAM, ,..M _M_, and
the reversalisM M ..M, ,AAM, ,..M,M,.

Then by the Lemma 1, the trace of the original product is

Tr(M;M,..M, ,AAM, ;.. M\M, ) =Tr {M;M,..M, [ Tr(A) A-Det(A) I [M, ,.. MM, , |
=Tr(A)Tr(M,M,..M,,AM, ,..M, M, ,)—Det(A)Tr(M,M,..M M, ,..MM,,)

i+2° i+2°

The trace of the reversal is

T (MMM AAM MM, ) =T M, M, .M
=Tr(A)Tr(M;M,..M

o[ Tr(A)A-Det(A)I M, ,..M,M,}
AM, ,..M,M, )— Det(A)Tr(M,,,;M,..M, ,M, ,..M,M, )

i+2 i+2

Since M\M,..M, ,AM, ,..M, M, , is a product of lengthk, by assumption,
Tr(M,M,.. M, AM, ..MM, ) =Tr (M, ;M, ..M ,AM, ,..M,M,).

Similarly, Tr(MM,..M_M,,.MM,)=Tr(M, ;M,..M; ,M_..M,M,).

i+2
Therefore, the relation is true forn=k +1.

By the principle of induction, the trace of a product of 2x2 matrices of A's
and B's always equals the trace of its reversal. [

Next we figure out the number of trace equivalence classes given k A's and

n—k B's. Barry Dayton [5] gives a formula for the number of equivalent

classes of nbeads with ¢ colors, which is given by EZ¢(§}" , Where gzﬁ(gj
djn

is the Euler phi function[6, P.80]. However, this is not exactly what we want,

since it gives the total for all possible values of k.



To calculate the number of trace equivalent classes, we use Burnside’s
theorem[6, P.490], which states, if Gis a finite group of permutations on a

, Where

set S, then the number of orbits of Gon S is %Z‘ fix(¢)
¢eG

fix(¢)={i e S|#(i)=i,4 € G}, namely the elements of S that are invariant

under certain group actions.

The group G in the theorem is the collection of symmetries on matrix
products that leave the trace invariant. These are the cyclic permutations
and string reversal, which generate a dihedral group.

The number of fix(¢)comes from two parts, the contribution of cyclic

permutations and that of reflections. Note that any reversal operation
could be obtained by cyclic permutations and reflections, for example,
(ABBAAAB)R = BAAABBA, it can also be obtained by reflecting with respect

to the dashed line of ABB:AAAB, but BAAABBA cannot be obtained by only
taking cyclic permutations to ABBAAAB . Considering the contribution of
cyclic permutations and that of reflections, if the length of the matrix string
is n and there are k A's, the formula for the number of trace equivalent
classes is given below:

If nis even and k is even, then the number of trace equivalent classes is

1 n/2 n/d ) . .
—I|n d) |, where ¢(d) is the Euler phi function.
Zn{ (klzjﬂg;(n,k)(k/dy( )} #(d) P

If nis even and k is odd, then the number is given by
1] ((n-2)/2 n/d

— d)]|.
2n{n((k—l)/z}dg%k)(k/d]‘”( )}

If nis odd and k is even, then the number is given by
1), (n-1)/2 . (n/d}ﬂ(d) .

2n k/2 d‘gcd(n,k) k/d

If nis odd and k is odd, then the number is
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2.1.4 Theorem 2

If A and B are 2x2 matrices and M is a product of A'sand B's, then
M -MF® =c(AB-BA) where c is ascalar.

Proof: We will prove this theorem by induction.

If the length of M is 2, namely M is AA, AB | BAor BB, the relation is

obviously true with ¢ being 0, 1, -1, or 0 respectively.

Assuming the result is true for products of k A'sand B's, then when M is a
product of k+1 A'sand B's, there are two possibilities.

First, if there is no repetition of Aand B in the string, whenk +1 is even,
k+1 k+1

either M =(AB)2 orM =(BA) 2 , and

k+1 k+l
2—BA
k-3 k-1

_ +[Tr(AB)(AB) > _Det(AB)(AB)Z Tr(BA)(BA) 7 + Det(BA)(BA)ZS}

% _(BA) } Det(AB)[(AB)“ (BA);}}

= J_r{Tr AB

-1

Since 2x k and 2x k-3 are both less thank, then by assumption, both

k-3

K—
(AB) 2 —(BA) 2 and (AB) 2 —(BA)Tscan be written in the form c(AB-BA),
and therefore, M -M® =c(AB-BA).

When k+1is odd, then either M = ABAB...ABAor M = BABA...BAB, and in this
case, M =MR® and therefore, M -M®? =0.



If there are consecutive A'sor B'sin the string, without losing generality,
letM = M,M,..M_ AAM, ,..M M, , =M _AAM, , then

M -MF =M, AAM, - M, AAM/

=M, [Tr(A)A-Det(A)l M, —M;[Tr(A)A—Det(A)l|M]

=Tr(A)M,AM, — Det(A)M,M, —~Tr (A)M;AM_ + Det(A)MM
=Tr(A)(M,AM, —M;AM ) Det(A)(M,M, —M;M])
=Tr(A)-c,(AB-BA)-Det(A)-c,(AB-BA)

=c(AB-BA)

wherec,, ¢, and care scalars.

Thus, by the principle of induction, the relation is true for any matrix
product of A'sand B's. Note the scalar chere depends on A, Band the
order of the matrices. For example, if M = AABB, then M® = BBAA and

M -M® =Tr(A)Tr(B)(AB-BA), so here c=Tr(A)Tr(B). However, if

M = ABAB, then M® =BABA and M —M® =Tr(AB)(AB—-BA) which indicates

c=Tr(AB).

The following theorem was suggested by the data in the table 2 in the
Section 3.

2.1.5 Theorem 3

If A and B are 2x2 matrices and A orB has complex eigenvalues, then
Det(AB-BA)<0.

To prove this theorem, we first need the following lemma.
2.1.6 Lemma 3
If Aisa 2x2 matrix and has two complex eigenvalues a+bi anda-bi b=0,

. . a b
then there exists a real matrix P such that P*AP :[ 0 ]
-b a

~ 10 ~



Proof: Assume A=a+bi and 1=a-bi are the two eigenvalues of Aand u
and u are the corresponding eigenvectors. Then Au=Auand Au=Au. Let

1 - 1 - . - .
vlzg(u+u) and v, :E(u—u),then u=v,+iv, and u=v, —iv,.
We claim P=(v; v,) works.

First, Pexists, since A = 4, the corresponding eigenvectors uand uare
independent, which implies v,and v,are independent.

1 0
Since Py, :[Oj andPy, = [J, then we have

P'AP=PA(v, v,)=P*(Ay, Av,)

N W

For example, if A= (

Gz(i‘/_J In this case, P = (O Jand PlAP=( 2 \/5}
1 1 3 2

j, then the eigenvectors of Aare u= {_'fj and

0

Proof of Theorem 3: Assume A has complex eigenvalues a+bi anda-bi,

. . : a b
then by Lemma 3, there exists a real matrix P such that A =P'AP :[ 0 a]'

. WX
Let B =P'BP :( j, then
y 2
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Det (AB - BA) = Det(P*APP'BP - P 'BPP 'AP)

b(x+y) b(z_w)]

b(z—w) -b(x+y)
=-b? [(x+ y) +(z—w)z}§0

= Det(A'B' ~-BA)= Det[

0

Next, we relate the relative sizes of matrix traces to a determinant.
2.1.7 Theorem 4

The probability that Tr( ABAB) >Tr(AABB) is the same as the probability
that Det (AB—BA)<0.

Proof: Since Tr(AB)=Tr(BA), Tr(AB—-BA)=0. Using this and Lemma 1, we

have

(AB—BA)* =Tr(AB—BA)-(AB - BA)~ Det(AB - BA)- |
— —Det(AB—BA)|

Taking the trace of each side, Tr| (AB-BA)" |~ -2Det(AB-BA)

Also, since (AB - BA)2 = ABAB — ABBA—- BAAB + BABA

’

we haveTr [(AB— BA)Z} = 2Tr (ABAB)-2Tr (AABB). Here we have used the

fact that Tr(ABAB)=Tr(BABA) and Tr(ABBA)=Tr(BAAB).
Therefore, 2Tr(ABAB)—2Tr( AABB) =—-2Det( AB—-BA) or
Tr(ABAB)—Tr(AABB) = —Det (AB - BA).[

This theorem provides us an alternative way to calculate the probability
thatTr(ABAB)>Tr(AABB) which plays an important role in the following
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chapter when we derive the formula for the probability that

. . . 1 x
Tr(ABAB)>Tr(AABB) with B is restricted to have the form (0 OJ'

2.1.8 Theorem 5

If M is a product of 2x2matrices Aand BandM = MF, then the probability
that Tr(M?)>Tr(MM*)is the same as the probability that

Tr(ABAB)>Tr(A’B?).
Proof: First, we show that Tr(M 2) =Tr((M R)Z).

Since Tr(M —MR):Tr(M)—Tr(MR):O, by Lemma 1,
Tr(M?)=Tr(Tr(M)M —Det(M)1)=(Tr(M))’ -2Det(M),
Tr((MR)Z):Tr(Tr(MR)MR—Det(MR)I):(Tr(MR))Z—ZDet(MR).

By Theorem 1,(Tr(M))’ =(Tr(M R))z, and Det(M)=Det(M") by the

definition of determinant. Thus Tr(M 2) =Tr((M R)Z).

Since (M -M R)2 +(M R)Z—MM R_MPRM, and combined with the fact
"M

=M?
that Tr(MM®)=Tr(M"M), we have Tr((M M R)2)=2Tr(|v|2)—2Tr(|v||v| ).
By Lemma 1,
Tr((M -M R)2)=Tr(Tr(|v| ~M?)(M =M®)-Det(M —MR)I)
=(Tr(M —M*)) ~2Det(M ~M* )= -2Det(M ~M*) ,

where we have used the fact that Tr(M -M®)=Tr(M)-Tr(M")=0.

Thus 2Tr(M?)-2Tr(MM®)=-2Det(M —M*) or the probability that
Tr(M?)>Tr(MM*)is the same as the probability that Det(M -M*®)<0.
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By Theorem 2, Det(M —M")=c’Det(AB-BA) for some scalarc. And by
Theorem 4, the probability that Tr(ABAB)>Tr(AABB) is the same as the
probability that Det( AB—BA)<0.

Therefore, the probability that Tr(M?)>Tr(MM*")is the same as the
probability that Tr (ABAB) > Tr(A’B?). [
2.1.9 Theorem 6

If the entriesin a 2x2matrix A are uniformly random on[-11], then A has

real eigenvalues with a probability of 3—2.

Proof: Assume A=(W XJ, then
y z
A-W =X

Det(Al —A)= Det[ j= A% —(w+z)A+wz—-xy. The discriminant of this

-y A-z
quadratic is (w+2)" —4(wz-xy)=(w-2)" +4xy . Sincew,x,y,zeU[-11], by

symmetry, (w—2z)" +4xy > 0is equivalent to(w+z)" > 4xy.

Since there are four unknowns and thus it is a four dimensional problem,
the support set is a subset of a four dimensional unit cube. We can divide
the hypercube of side 2 to 2* =16 unit cubes. In these 16 small cubes, 8of
them are entirely contained in the solution set of the inequality, since when
the right hand side is negative, the inequality is automatically true. That is,
whenxy <0, either x<0and y>0or x>0and y<0, and simultaneously w
and z can either be positive or negative, so in total there are 2x2x2 =8 of
them.

When x>0and y >0, the contribution of the volumes is given by
(W+z)2

min| 1, 2
J.,llj‘,ll,[:L [ Y ]dxdydwdz . The reason we use min(l,(wiyz) Jfor the upper

limit of x is because might be greater than 1and that volume is

(w+ z)2
4y
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2 2
outside of our hypercube. When min{l,—(w;rz) le, or 0< y<—(WJ;Z) )
y

j _[ JI [ }dxdydwdz reduces toJ' _[ _[ 4) 1dydwdz . When

(w+z)?

min[l,(w+z) J:(W+z) or (w;z) cy<l, J._llJ__ll.[:jomm[v 2y

4y 4y

o [ Juar

By symmetry, when x<0and y <0, the volume would be the same.

]dxdydwdz reduces

dydwdz

In total, the effective volume is

(w+z) 2

8+2J j J..[ [ 4y dedydwdz_8+2(j j IWH y)2 dydwdz+.[lljll.[:wt12) 1dydwdz
_s+2[” (w+2) { WZ)Jd waz+ [ [ W”)d dJ 8+ % %:%8

And thus the probability that the discriminant is positive is %—16 _4—9 0

72

2.1.10 Theorem 7

If the entries in 2x2matrices A and B are uniformly random on[-11], then

Tr(ABAB) >Tr ( AABB) with a probability of P >0.5.
Proof: By Theorem 3 and Theorem 6, the probability that Det(AB—-BA)<0is

at least1- (32) ~53.68%, by Theorem 4, this is the same as the probability

that Tr(ABAB)>Tr(AABB) , therefore Tr( ABAB)>Tr(AABB) with a
probability of P>05. O

This theorem gives us a lower bound of the probability that
Det(AB—BA)<0or Tr(ABAB)>Tr(AABB).
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3. Data and analysis of data

In this chapter we investigate traces for products of matrix strings with a
fixed number of A's.

Having obtained a formula for the number of trace equivalent classes, we
now are interested in their relationship. For example, for a matrix string of
length 6 with 2 A's, there are three possible trace equivalent classes,
denoted by «, B, 7, and to all of these distinct traces we obtained, one
might think if we vary the entries of Aand B, the rank of those traces
would achieve all orderings :a < <y, f<y<a, y<a<p, a<y<p,
B<a<y, y<p<a with equal likelihood. However, in the data obtained
from our simulations, there is one ordering that never appeared, and
among the orderings that occurred, not all of them have the same
frequency.

Analyzing data, we noticed several patterns for the ordering of trace
equivalent classes and their frequency.

Let 2AnB denote strings of matrices with 2 A'sand n B'sin any order. if nis
odd, then each ordering appears to have the same frequency as its reversal
ordering, i.e., the frequency of a < <y isthesame as y < B <a. If nis even,

then this symmetry is broken.

In the table below, we list our simulation results for 2A2B to 2A10B. We
used numbers to represent those different orderings. For example, in the
2A4B case, we denote the trace equivalent class of AABBBB with 1, ABABBB
with 2, and ABBABB with 3. The ordering 132means the ordering of
Tr(ABABBB) <Tr(ABBABB) <Tr(AABBBB) and the frequency of ordering 132

is 2193means the ordering Tr( ABABBB) < Tr ( ABBABB) < Tr ( AABBBB)
happens 2193 times out of 10,000 trials.
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Table 1a

2A2B 2A3B 2A4B
Ordering | Frequency | Ordering Frequency Ordering Frequency
21 0.2761 21 0. 4987 132 0.2135
12 0.7239 12 0.5013 231 0. 2845
312 0. 1089
321 0. 3329
123 0. 0601
1=AABB 1=AABBB 1=AABBBB
2=ABAB 2=ABABB 2=ABABBB
3=ABBABB
|
2A5B 2A68B 2A7B
Ordering | Frequency | Ordering | Frequency Ordering Frequency
123 0. 1588 1234 0.0618 1234 0. 1206
321 0. 1569 1342 0.2153 4312 0.0133
213 0. 0394 4123 0. 0493 1342 0.2762
312 0. 0382 2431 0. 2806 2431 0.2871
132 0. 2992 4321 0. 2088 4132 0. 0237
231 0. 3073 4213 0. 0646 3142 0. 0233
4312 0. 0432 2413 0. 0243
4132 0.074 3241 0. 0368
4321 0. 1201
2314 0.0234
2134 0.0121
1423 0.0377
1=AABBBBB 1=AABBBBBB 1=AABBBBBBB
2=ABABBBB 2=ABABBBBB 2=ABABBBBBB
3=ABBABBB 3=ABBABBBB 3=ABBABBBBB
‘ 4=ABBBABBB 4=ABBBABBBB

The ordering 213cannot occur in the 2A4B case. This will be proven in the

appendix.
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Table 1b

2A8B 2A9B 2A10B
Ordering Frei?enc Ordering Frei?enc Ordering Frei?enc

52143 0. 0399 24531 0. 2682 123456 0. 058
24531 0.2799 32415 0.0126 651423 0.0171
51423 0. 0426 54321 0. 1039 654321 0. 1409
13542 0.2119 41352 0.021 641235 0. 0099
54321 0.1611 13542 0. 2679 135642 0.1916
54132 0. 0259 54132 0.0073 246531 0. 2586
12345 0. 0663 35214 0.0153 631452 0. 0298
53124 0. 049 12345 0.1104 612534 0.0196
53214 0.0178 51423 0.0121 632541 0. 0369
52341 0. 0436 25134 0.0176 614325 0. 0207
51243 0. 031 41253 0.0147 642135 0. 0249
54312 0.0167 34251 0. 0237 654132 0.0103

15243 0.0233 621534 0.0237

23145 0. 0079 613452 0.0177

25314 0.0019 615243 0.0229

21345 0. 0048 623514 0. 0305

42153 0. 0089 654312 0. 0051

35124 0.0076

31542 0. 008

24513 0.0094

43152 0.0152

54312 0.0044

1=AABBBBBBB

1=AABBBBBBBB

1=AABBBBBBBBB

B B B
2=ABABBBBBB 2=ABABBBBBBB 2=ABABBBBBBBB
B B B
3=ABBABBBBB 3=ABBABBBBBB 3=ABBABBBBBBB
B B B
4=ABBBABBBB 4=ABBBABBBBB 4=ABBBABBBBBB
B B B
5=ABBBBABBB 5=ABBBBABBBB 5=ABBBBABBBBB
B B B
6=ABBBBBABBBB
B
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Note that, although 2A4Band 2A5B both have 3trace equivalent classes,
the number of possible orderings given by 2A4B s less than the number of
2A5B Where 2A4B has 5possible orderings, 2A5B has 6 possible orderings.

This is also true for 2A6Bvs 2A7B, and for 2A8B vs 2A9B.

Based on our simulations, we conjecture that for a matrix string whose
length is even, if it contains an even number of B's, then each ordering
does not necessary have the same frequency as the reversal ordering, and
more likely, the frequencies are different. By the result of simulations, this
conjecture is true for the matrix strings of length up to15. The data are
attached in the appendix of this paper.

Another pattern in the data in the table is that the trace equivalent classes
of form AA..BB...appear to be most likely the trace equivalent classes with
the smallest trace. For example, with 2 A'sand 6 B's, A’B° has the smallest
trace in 4829 of 10,000 trials. This also appears to be true when we change
to the distribution of the entries of the A's and B'sto a normal distribution
with mean equal to 0.

If we have a matrix string of length 4, and with 2 A's and 2 B's, then there
are only two trace equivalent classes, AABB and ABAB, and a direct
simulation shows if the entries of Aand B are uniformly distributed
between -1 and 1, ABAB has a chance of 72.1% to be the larger trace
equivalent class. This probability is strongly related to the eigenvalues of A
and B.

The table below shows the simulation result that Tr( ABAB) >Tr( AABB) in
720660 of 1,000,000 trials.
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Table 2

Eigenvalues of A | Eigenvalues of B | Tr(ABAB)>Tr(AABB) | Frequency
Real Real No 279340
Real Real Yes 183701
Real Complex No 0
Real Complex Yes 217715
Complex Real No 0
Complex Real Yes 217542
Complex Complex No 0
Complex Complex Yes 101702

By Theorem 4 and Theorem 5 in Chapter 2, we can see the simulation result
agrees with the theoretical prediction. Namely, If A and B are 2x2
matrices and A orB have complex eigenvalues, then Det(AB-BA)<0, and

the probability that Tr( ABAB)>Tr(AABB) is the same as the probability that
Det (AB-BA)<0.

By Theorem 7, we know that the probability that Tr( ABAB)>Tr( AABB)

2
should be no less than 1—(3—2) =53.68%. But this is still different from the

result we obtained from the simulation. We do not have a theorem
corresponding to Theorem 3 when the eigenvalues are real and Aand Bare
general random matrices but we have worked out general special cases.

b
Let A=£Zl OIjand B:()z( m By Theorem 4, the probability that

Tr(ABAB)>Tr(AABB) is equivalent to find the probability that
Det(AB—-BA) <0with the given Aand B. However, this gives rise to an
inequality with 8 random variables and an exact solution would be hard to
obtain. In this paper, we solve the problem completely when zand wequal

y

X . . . 1 x
to 0, namely B =(0 Oj' For the efficiency of calculation, we let B :(0 Oj
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i : L , X
where xis an arbitrary real number. This is equivalent to B :(0 g] for x

and y are uniformly random variables on [-1,1].

IfA:(a

) gland B has the form of ((1) g],then Det(AB—BA)<0is

equivalent to c¢?x* >c[b+x(d —a)] (*).Below we give the formula of the
probability that c¢*x* < c[b+x(d —a)] and (*) is the complementary event, so
the probability is just 1 minus the probability we obtained.

Here we will only list the results with the details of the proof given in the

appendix. For various range of xthere are probability function describing
when Det(AB—-BA)>0.

Table 3
Range for x P(x)
3 —
xs-(l+\/§) or P(X):BZXQgX%x 1
x>1++/2
~(1+V2) < x< V2 or b ()= X BX #2018 ~26x° ~56x° + 20 -8x+3
T 4
J2 <x<1442 192x
V2<x<-Lor P(X)__X8—8X7+20X6—8X5—26X4—56x3+20x2—24x+8
2 192x"
%<xs\/§
1 o<1 Jror P(X)_x8+8x7—28x°+8f4:nm4—8x3+20x?—8x+1
2 192%°
\/5—1<x£%
2
1-v2<x<0or P(x):l_x_
0<x<+2-1 2 4

Table 4 is a comparison of the probability that Det( AB—BA) >0 predicted by

the formula and simulation results. For each value of x, we performed
100,000 trials.
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Table 4

Different x Probability given by Probability given by
formula simulation
x=3 P(3)~0.114 11,444
100,000
x=10 P (10) ~0.033 3304
100,000
x=15 P(1.5)~0.235 23,763
100,000
X=2 P(lO)zO.l?G 17,621
100,000
x=1 P(1)~0.323 32,346
100,000
x=0.8 P (0.8) ~0.366 36,678
100,000
x=0.43 P (0.46) ~0.447 45,224
100,000
x =0.46 P(0.46) ~ 0.447 44,757
100,000
x=0.2 P(0.2)~0.49 46,953
100,000
x=0.3 P(0.3)~0.478 47,796
100,000

Thus, from the table above, we can see the there is a good agreement
between the prediction from formula and the numerical results.

4. Conclusion:

By using Burnside’s theorem we derived a formula for the number of trace
equivalent classes for a matrix string of 2x2 matrices which is comprised of
two different matrices Aand Bwith k A'sand n-k B's.We carried out
the simulations for traces of matrix product with 2 A'sand n B'sfor n
varying from 2to 10. Data show when nis odd, then each ordering of trace
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equivalent classes by trace appears to have the same frequency as its
reversal ordering. If nis even, then this symmetry is broken.

The relationship between the probability that Tr( ABAB) >Tr(AABB) and the
probability that Det( AB—BA) < 0 was analyzed theoretically and was verified

numerically. Data from simulations show there is a probability about 72%
thatTr(ABAB) >Tr (AABB) if the entries of Aand B are uniformly distributed

on [-1,1] We could not derive the 72% but we could prove the probability

was greater than 50% by a combination of Theorem 3, 4 and 5. Namely, we
first examined the influence of eigenvalues of Aand B on this inequality.
We found out if A orB has complex eigenvalues, then
Tr(ABAB)>Tr(AABB). Furthermore, we proved if the entries in 2x2matrix

A are uniformly random on[-11], then A has real eigenvalues with a
probability of %, which immediately implies Tr( ABAB) >Tr( AABB)at least
with a probability of 53.68%.

We have also given the formula for the probability that

1 X
Tr(ABAB)>Tr(AABB) when Biis restricted to the form (0 0] for different x

and verified the formula by simulation and showed there is a good
agreement between the prediction from the formula and the numerical
result.

Missing from our analysis is the gap between 72% and 53.68%, which should
be contributed by cases when Aand B have real eigenvalues.

It would be interesting to see these ideas applied to Statistical Physics.

5. Appendix

Here we present the details of the deduction of the formula in Section 3
and the proof for the contradiction of missing ordering 213.
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5.1 We first deduce the general formula for the PDF of the linear
combination of two random variables obeying uniform distribution.

Assume X,Y eU[-11], where X and Y are independent. Then letU = X,
V =mX +m,Y, where the m, and m, are constant. Then the marginal

distribution [2] of V can be obtained by integrating the joint PDF of U and
V over the support set ofV .

X XK 11
SinceX =U, Y _vV-my , the Jacobian J = ouovi_ m 1 :i, and the
m, oy oy| m—— —| m,
A A m, m,
ou ov
joint PDF of U and V is fuv(u,v)zl-l- S
2 2 |m,| |4m,

When0<m, <m,, then

my+v

M du, —m—-m,<v<m,—-m

a1 4m2 1 2 2 1
m,+v 1

fV(V)=Ifw(u,v)du: my—du, m,-m <v<m —m,
Q m; 4 2

1 1
I,mzw—du, m-m,<v<m,+m

—m 4m,
1 (m,+v
+1], —-m-m,Sv<m,—-m
4m, | m,
1
=9 —, m,—-m <v<m -m,
2m,
1 v—-m
1- 2, m-—m,<v<m,+m
4m, m,

~ 24 ~



1 (m,+v
2 +1], —-m-m,<v<m—m,
4m, m

1
When0<m, <m,, then f (V)= 1

m —m, <v<m,—m

1 v—m,
— 1- , M,—m Svm,+m
4m, m,

Whenm, >0,m <0,|m,|<|m,|, then
1 v+m,
1- , M -m,Sv<m +m,
4m, m,
1
f, (V)= o m +m, <v<-m,—m,
1

1 v—m,
1+ , —m,—m <v<m,-m
4m, m,

Whenm, >0,m, <0,[m|<|m,

, then
1 v+m,
1- , M -m,Sv<-m -m,
4m, m,
1
f, (V)= Pt —m —m,<v<m,+m
2

1 v—m,
1+ , Mmy4+m <v<m,-m
4m, m,

Whenm, <0,m, >0,|m|>|m,|, then
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Whenm, <0,m, >0,|m,|>|m,

v—m,
+ , —m+m,<v<-m —m,

-m—m,<v<m,+m

- 4m,

v+m,
1- , M+m <vsm —m,

m,

, then

L v-m, m +m, <v<m +m
4m, m ) Tt
f L <
(V)= o m +m, <v<-m,—m
2
1 v+m2] m, —m <v<m —m
- - U
4m m,
1 v—m,
~2 1- , Mm4+m,<v<m —-m,
m2 ml
Wh 0, then f,(V)=1{-— <
enm, <m, <0, thenf, (V)= "o m —m, <v<m,—m
1
1 v+m,
~2 1+ , M—m<sv<m -m,
m2 ml

Whenm, <m, <0, then f,(V)=1-

1 v—m,
- 1- , M +m,<v<-m+m,
2

dm m,
! m+m,<v<m —m
J — L 2 = 1
2m,
1 vV+m,
- 1+ , Mm-m,<v<-m —-m,
4m, m,

Now we carry out the calculation for the probability that

Tr(ABAB) > Tr ( AABB) with B=[(1) g]

~ 26 ~



If ¢>0, (*) in Section 3 reduces to cx* <b+x(d—-a)or cx*-b<x(d-a).

If we look back to (*), we will see the probability that
f (x)=c?* —c[b+x(d-a)]<0 for afixed xis the same as when we replace x

with —x, since simultaneously we can change (d-a) to (a—d) Thatis

f (-x)=c’x*~c[b+x(a-d)], and when a and d are uniformly distributed

between -1 and 1, (d —a)has the same distribution as (a—d) Thus
P(f(x)< 0) =P(f(-x)<0). Therefore, without lost of generality, we assume

x>0. With this assumption, we can further reduce (*) to xc—lb <d-a or
X

1
mc+mb<d-a where m =x,m,=-=.
X

Since ceU[0,1], e=2 -t eU[-11] with c=841 Let m =" m, =",
2 2 2 2 2

Then (*) becomes me+mb+m <d-a (#) where m, =%=§,

By our assumption, m, >0,m, <0, and there are two cases.

First suppose |m,|>|m,|. This happens when x>+/2.Let v=me+mb+m,,

u=d-a. The marginal Probability Density Functions(PDF) are

1( 1) 1 1
—Zlv+=], —=<v<Z
2 X X X

f(v)= i 13v<x—1
X X X
1[ 1) 1 1
Zlv+= ], X—=<v<x+=
2 X X X
1

Z(u+2), -2<u<0

f(u)=

%(—u+2), 0O<u<?

’

The probability of v<u is jQ f (u,v)dudv where Q is the region with v<u.
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Whenx>1+2, Q=A +A,+A +A,, and

P, (x)= j)' :[%(u +2)x%(v+%jdudv,

1
X 2
P, (x) :”%(—u +2)x%(v+%)dudv,
0v
221 1
P, (x)zﬂz(—u +2)x;dudv.
lv

3
Therefore, P(x)=P, (x)+P, (x)+P, (x)+P, (X)=%
X

When V2 <x<1+2, Q=A+A +A + A, +A, and

P, (x)= ]1 j%(u +2)x%(v+ljdudv,

X

P, (x)= j' E%(—u +2)x%(v+§jdudvl

1
X 2
ppg(x):H%(—u+2)x%(v+%jdudv,
w1
x 2 1 1
P, (x)= J'J'Z(—u+2)><;dudv,

P, (X)= _2[ j%(—u+2)x%(x+£—vjdudv.

X
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Therefore,

P(x)=P, (x)+P, (X)+P, (x)+P, (x)+Py ()
~ x® —8x" +20x°® —8x° —26x* —56%° + 20x* —8x +3
192x*

In the second case |m;| <|m,|. This happens when0<x<+2. Then

Hurd) dovexd

2 X X X
f(v)= 5, x—1£v<l
2 X X
1( 1 j 1 1
| X+==v|, =<v<X+=—
X X X
1

—(u+2), -2<u<0

4
f(u)=1
Z(—u+2), 0<u<2

’

When 0<x<+2-1, Q=A+A +A +A,, and

P, (X)= __[:j;l(u + Z)X%(V+;jdudv,
P, (X)= Xfi%(_u + 2)x%(v+%}dudv )

P, (x)= _[ I %(u+2)x§dvdu,

2 u
P&(X):_f I %(—u+2)x§dvdu.
0
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2
Therefore, P(x)=P, (x)+P, (x)+P, (x)+P, (X)Z%_XT

When \/§—1<x§%, Q=A+A+A+A+A and

u +2 x—(v+ jdvdu

-J>|H

w-] 3

0 0

P,, (x)= J- (u+2)x=dudv
1y
2 u 1
IJ.— u+2 x—dvdu
0 7;4

Therefore,

P(x) =Py (X)+ Py, (X)+ Py (X)+ Py (x)+ Py (x)
_ x®+8x7 —28x° +8x° + 70x" —8x® +20x* —8x +1
- 192x*

When %<x§\/§, Q=A+A+A+A+A,and

A(x):j'j%(u+2)x%(v+ ]dudv
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2
J.% u+2 x—(x+1—vjdudv

Therefore,

P(x)=P, (X)+ P, (X)+Py (x)+ P, (X)+Py ()
x® —8x" +20x°® —8x°> —26x* —56x° + 20x> — 24X +8
192x*

5.2 We show here that in the 2A4B case, the ordering 213 corresponding
to Tr(ABABBB)>Tr( AABBBB) > Tr( ABBABB) cannot occur. We show this by

contradiction.

Proof: By Lemma 1, BB=Tr(B)B—Det(B)I . Thus, the three traces can be

reduced as follows.

Tr(ABABBB) = ((Tr(B))2 - Det(B))Tr(ABAB)—Tr(B) Det(B)Tr(ABA),
Tr(AABBBB) =((Tr (B))' - Det(B)|Tr (AABB) - Tr (B) Det(B)Tr (AAB), and

Tr(ABBABB) = (Tr(B))’ Tr(ABAB)- Det(B)Tr ( ABBA)—Tr(B)Det(B)Tr(AAB)

respectively.
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Therefore, Tr( ABABBB) >Tr(AABBBB) when

((Tr(B))’ - Det(B))(Tr(ABAB)~Tr (AABE)) > 0 and Tr(AABBBB) > Tr (ABBABB)
when Tr(ABAB)-Tr(AABB) <0. By Theorem 4, Tr(ABAB)—Tr(AABB) <0
implies Det(AB-BA)>0.

Thus, Tr(ABABBB)>Tr( AABBBB) > Tr( ABBABB)implies Det(AB-BA)>0and

(Tr(B))2 —Det(B)<0. By Theorem 3, Amust have real eigenvalues, u,v. Let

. .. . . u 0
P be a diagonalizing matrix such that A =P*AP :(0 ]and
v

B =P 'BP :(a b).
c d

Therefore,

Det ( AB - BA) = Det(PPAPP'BPP ' — PP'BPP'APP™)

= Det(PABP™ —PB'AP™) = Det(P)Det(AB —B'A ) Det(P*)

= Det(AB -B'A)=bc(u-v)* >0o0rbc>0

The trace is invariant under similarity transformation, so Tr(B)=Tr(B').
Also by Det(B)=Det(PBP)=Det(B), (Tr(B)) - Det(B)<0 implies
(Tr(B'))z—Det(B')<0 or (a+d)” <ad —bc. Since bc>0,

(a+d) —ad =a®+ad +d? <-bc <0. However, a*+d? =|a|* +|d[* > 2Ja||d|for all
a,d, a?+ad +d? <0 cannot be true. This contradiction is due to the
assumption that Tr( ABABBB) > Tr( AABBBB)>Tr( ABBABB) and thus
Tr(ABABBB)>Tr( AABBBB)and Tr( AABBBB)>Tr( ABBABB) cannot be true

simultaneously.
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