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Combinatorial proofs of the identities
Z qlnv(w)= [nl + n2+ o +ilk] - 2 qz(w)
weM Ryy Rgyev oy B weM

are given and bijections are constructed between the sets
{we|Inv(w)=m}, {weM|Majw)=m)}, {weM|Z(w)=m)},

where M is the collection of all multiset permutations witk n. 1’s, n,2’s, ..., k’s, Inv(w) is
the inversion number of w, Maj(w) is its major index and Z(w) is the z-index of w.

1. Introduction

Let M= M(n,, n,, . . ., n;) be the collection of all multiset permutations with
n1’s,n,2’s,...,n. k’s. If weM, write w=a,a,---a,, where n=n, +n,+
-+~ + ;. The inversion number, Inv(w), is the number of ordered pairs (i, j)
such that 1<<i<j=<n and q;>a;. The major index, Maj(w), is the sum of all j
such that ¢; > aq;,,.

In [9], MacMahon showed that

2 qlnv(w) = Z qMﬁj(W}‘j (1.1)
the summation ranging over all w € M. As a consequence he derived that for fixed
m,

l{w e M | Inv(w) =m}| = |{w € M | Maj(w) = m}|, {1.2)

MacMahon’s proof of (1.1) was indirect, he showed that each side of (1.1) was in
fact equal io the g-muitinomial coefficient

Ry, Moy oo, iy

To do this he used an ind-ctive argument for Inv(w) in {9] and a clever
combinatorial argument for /Aaj(w) in [8]. Foata gave a direct combinatorial
proof of (1.2) in [3].

In their proof of Andrews’ g-Dyson conjecture, Zeilberger and Rressoud 12
introduced a new statistic on M, Z(w), which satisfies the same generating
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function relation as Maj and Inv,

S Lz | n 1 1.3
~ 1 n, nz,...,nk.lq ( )
They proved (1.3) by induction and asked for a combinatorial proof similar to
Foata’s for (1.2).
In this paper we give a combinatorial proof of (1.3) and use it to construct
bijections between the three sets

(weM|Zw)=m}, {weM|Inv(w)=m},
{w e M | Maj(w) = m}.
In particular, our bijection between the last two of these will differ from Foata’s
bijection.
This paper is organized as follows: Notation and combinatorial preliminaries

are discussed in Section 2. In Section 3 we prove (1.3) and give a combinatorial
proof that

2 qlnv(w) = [

Bijections between the sets in (1.4) are given in Section 4 and we conclude with
some remarks in Section 5.

(1.4)

(1.5)

n ]
1,82, . .., By q

2. Notation and combinatorial preliminaries

If A is a statement, define N(A) b

N ={ i @
With this notation,

Inv(w)= 2, N(g;<a), (2.2)
and lj_ljjsn

Maj(w) = X jN(g;., <a)). (2.3)

j=1

Pairs (a;, a;), where i <j but g; <a; are called inversions. Pairs (a;, a;.,), where
a; .1 < a; are called descents.

Given w € M, let w; be the subword of w formed by deleting all letters a,, such
that a,, #i or j. If w= 1312432314,

Wyy = 1221,
w3 = 31331, wyy = 32323,
Wig = 1414, Why = 2424, Wiy == 34334,
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The Z-index of w is defined to be the sum of the major indices of all 2-letter
subwords, w;, of w. That is,
Zw)= 2 Maj(w). (2.4)

1=si<j=k

For our example, Inv(w) = 13, Maj(w) =17 and Z(w) = 18.

In this paper we will follow notational conventions contained in [5] and [6] and
suggested in [10]. For completeness, we include the description of these
conventions here.

A partition, A, with m parts is a nonincreasing sequence of m nonnegative
integers, called parts, A=:(A(1), A(2), ..., A(m)), A()=1(Q2)=---=A(m)=0.
In particular we will allow parts of size 0. Given a set T of partitions and an
interval /, T will denote the set of all partitions with exactly k parts, each part
size in interval 1. The lack of a postscript or subscript will imply no restriction on
part size or number of parts. We will use P to denole the set of aii partitions and
PD to denote partitions with distinct parts. Given a partition A, define ||Al| to be
the sum of the parts of A and |A| to be the number of parts in A. Let § denote the
partition with no parts and set ||8]| = 0.

Define the weight of a partition A by wt(A)=¢"" and the sign of i by
sgn(A) = (—1)™. If T is a set of partitions, define wt(T) by

wi(T) = 2, wt(d)= 3, g", 2.5)
AeT AeT
and wt(T'(~1)) by
wt (T(-1))= >, wt(A)sgn A= g"I(-1)".
AeT AeT

For sets S, T of partitions, wt(S X T) = wt(S)wt(T), etc. We will make use of the
facts

wt(PI>) = Y = wt(PI*"), (2.6)
and
wt(PD"(—1)) = (q)n, 2.7)

whers {g). = (1~ q)(1—¢%) - (1—¢").

A composition, @, with m parts is a sequence of m nonnegative integers,
a=:(al), a(2), ..., a(m)), a(i)=0.

If :A— B is a bijection of sets, we say @ is weight-preserving (WP) if for
each aeAd, wt(a)=wt(p(a)). If @:A(—-1)—>A(-1) is a weight-preserving
involution such that for all 2 € A, @(a) = a, or sgn(g(e)) = —sgn(a), we say @ is a
sign-reversing weight-preserving involution (SKRWP). A WP-signed bijection
(8, y'; @) between signed sets A{—1) and B(—1) consists of SRWr-involutions 8
and y on A and B with fixed setz A’ and B', and a WP-bijection ¢ from A’ to B'.
If such a bijection exists, it follows that wt(A(—1)) = wt(B(-1)).
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3. Properties on Inv, Maj and Z

The goal of this section is to give a combinatorial proof that

(.1)

= ’
(Q)n weM (‘1):—:1\‘1).-:2 ._ o (Q)-'!k

where S(w) is any of the three statistics Inv, Maj or Z. To do this, we define a
weight function on words w e M by wt(w) = qs"") and produce a WP-bijection
between the sets P% x M and P x PI% x - .. x pl®=). The result in (3.1)
will thea follow in view of (2.6).

From (3.1) it follows that

w) _ n _ (9)n
Seo={, 0 nk]q ~ DD @ 3:2)

In Section 4 we will combinatorially derive (3.2) froin (3.1) and use the involution
principle of Garsia and Milne [4] to derive bijections between the sets in (1.4).

Given A€ PI®™ and we M, construct partitions A}, A}, ..., A, where A/ e
P[> by using w to sort A. The procedure for sorting A according to w is to place
A below w in a two-line nctation,

(a, a, a - a,’
A1) A2) A3) --- A(n))’

and then to define A,, to be the parition consisting of all those parts of A below
letters a; with a; = m. Thus if A = 443222100 and w = 312432314, we have

(3 12432314
443222100
Clearly, A; € PI*™ as desired, and ||A|| = £, I1A]]].

For each of the statistics S, we now associate a k-tuple of partitions based on
w. For Inv, define (7,, 7, . .., 7,) by

) = (40, 32, 421, 20).

7;(j) = the number of letters g, to the right (3.3)
of the jth { in w for which, q, < i '

for example, 312432314=> (00, 11, 421, 40). For Maj, let (k,, . . . , u.) be defined
by

u:(j) = the number of descents that cccur

in w to the right of the jth i. (3-4)

For 312437314, the descerts to the right of the second 3 are {32) and (31) so
2y =2 and  {uy, py, p3, pay = (30, 31, 421, 30).  Finally, for Z, let
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(vi, V2, - . ., ¥;) be defined by

(@)  vi(n;) = the number of distinct letters to
the right of the n;th i in w which
are smaller than i.

(b) vi(j) — vi(j + 1) = the number of distinct letters
in w between the jth i and
the (j+1)sti, 1sj<n,~1.

In this case, for w = 312432314, v,(1) - vi(2) =3, v,(2) =0 s0 v; =30; v,(1) —
v2(2) =2, v»(2) =1 so v, =31, etc. and (v,, v,, v3, v4) = (30, 31, 521, 30).

(3.5)

Lemma 3.6. With &, u and v described as above,
(a) Inv(w) = ||zl + - - - + [[7ll..

(b) Maj(w) = llgall + - - - + el
©) Zw)=ivall + - - - + [ veli-

Proof. Parts (a) and (b) follow from a straightforward calculation.
In case (b) for example,

Zuvu—Ezu.o)

i=] j=

Z number of descents tc the right of the jth i in w)

i iM»

1
(nur:ber of descents *o the right of ;)

A o~
...n-

n-1
N(a’ > a,-+1) = 2:1 jN(a] > aj+1)
l:

-1 j=I
=Maj(w) as desired.

Part (a) is similar but less complicatec. For part (c),

Zw)= 2, Maj(w;).
I=si<jsk
With the binary word wj, associate a pair of partitions (w;, ;) as in the
discussion preceding the lemma. By part (b), llp;ll + llu;ll = Maj(w,}. The
partition u; may also be defined by the conditions

f 1, if the last i in w; is followed by at least one j and j </,
{0, otherwise

@ um)=
(3.7)
1, if there is at least one j between
(b) w;(D-p;I+1)= the /th i and the ({ + 1)st i in wy;,
0, otherwise.
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The condition (3.7) holds because in a binary word, these are precisely the
conditions needed to give rise to descents.
Now,

Zwy= 2 Majw)= X (gl +lleil) = g,:l"“""”'

i=mi<jsk I=si<j=<k

o~
-

From (3.7) it follows that

K
21 (w(D — w1+ 1)) =v(D) —v(I + 1),
i
forisi=<n;—1, and
k

gl i) = vi(vi).

Consequently,

k
> ui{)=v{(l) foralliandl
<

j*F
Hence,

M=
M?r

Z(w) =

kK k n
‘“q = g z gl M‘z](l)

i

=3 2 B=3 vl

as desired. This completes the proof of the lemma. O

[l
—
T,
U
~ -
u.\-
-

Coroliary 3.8. Define maps @,, @, and @5 from P> x M to P> x PI=) x
Cea X PL(::"’) by

() @A wy=@G+m, ..., +m),
(i) @A w)y=@Ai+uy, ..., A+ m),
(i)  Ps(A, w)=@A1+ vy, ..., A+ W),

where the addition of partitions is done componentwise. Then wt(A, w)=
wt(®@,(A, w)) for i =1, 2 or 3. That is, each ®, is a weight preserving map.

To establish the result in (3.1), we must show that each &, is in fact a bijectien.
We will do this by constructing inverse maps ¥,, ¥, and ¥, from P> x - .- x
PR to PIC*)x M. Our proof of (3.1) for the case S(w)= Ma](w) is due to
MacMahon He gave a map equivalent to our @, and its inverse ¥, in [8]. See [1]

for an account in notation similar to this paper. We will restrict our attention to
Inv and Z in what follows.
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Lemma 3.9. Given (A, 43, ..., A4,)€P2® x - X P2, there is a unique word
W on the alphabet {0, 1, . . ., k} such that
(i) w contains n, 1’s, ..., n. Kk’s,
(ii) W begins witk a nonzero letier,
(iii) A,(j) = the number of letters to the righi of the jith i in W which are smaller
than i.

Proof. For the uniqueness of w, suppose W, and W, are two different words
satisfying properties (i)-(iii). Find the first place reading from right to left at
which w, and w, disagree—say this occurs in the (i + 1)st letter from the end. We
can Wwrite W, =a,8;° " Qpy-iBm,—i+1° " " @n, and w=bb,---b, b, ..,

--b,,,, where ap,_;s1=bp,—ir1, ..., @n,=b,, but a,, _;#b,, . We may take
@i =1>b,,, ;. Suppose r I’s have occurred among the letters a,,_;+1, . . . , @p,.
Then A/(rn,—r) is the number of letters in W, to the right of a,, ; which are
smatler than /. But in W, b,,,, is the right of the (n, — r)th [/ so the number of
letters in W, to tie right of the (n, — r)th / which are smaller than / is greaier for w,
than for w,. Consequently, (iii) fails for W, and we have a contradiction.

The existence of w is guaranteed by the following algorithm for constructing it.

(i) Put down place holders for the letters in w. (it is easy to see that
max; (A,{1) +n; + - - - + 1) place holders are needed.)

(ii) Place a k in the position such that there are A,(n;) empty spaces between
it and the right nand end.

(iii) Continue placing k’s, then (k — 1)’s, . . ., I’s so that n; i’s are contained in
w. Place the jth i, so that it comes A;(n; — j + 1) empty spaces from the right hand
end of w.

(iv) Fill all remaining empty spaces with 0’s.

Clearly the word w found in this way satisfies properties (i)-(iii). O

As an example, let (4, 1,, 43, A,)=(31, 531, 95,42). For this case,
max; (A;(1) + n; + - - - + n,) = 13 so w will contain 13 letters. We place 4’s first:

leaving two empty spaces to the right of the first 4 and four to the right of the
second 4. Next, we place 3’s:

then 2’s:

then the 1’s:
3 21 324 142

and finally 0’s to obtain w = 30210324{}1420.
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Define a map W.:P%9x-..xPOAD-pOIxM as follows: given
(A1, ..., A), form W as in Lemma 3.9. Let w=u,4a, - - - a,, wheze g; is the ith
positive letter in w and define A by A(i) = the number of zeros in W to the right of
e.. for example, given (31, 531, 95, 42), w = 3021032401420 so w = 321324142 and
A =433222111.

Lemma 3.10. With ¥, defined as above, ¥, ®,=id on PI**) x M and ®,° ¥, =
id on P> x - - - x P>®). Thus @, is a bijection.

Proof. Given (A, w) e PI*) x M, we must show that
V(DA wjj= (4, w).

Construct a word w as follows: place A(r) zeros to the right of a,,, A(n — 1) — A(n)
zeros between a,_; and a,, ..., A(1) — A(2) zeros between a, and a,. Then w'
contains »; i’s for 1 <i <k and W' begins with a positive letter.

Now suppoe the jth i in w is a,,. By construction, the number of zero to the
right of a,,, in W’ is A(m). Consequently, the number of letters to the right of a,, in
w' which are smaller than i is A(m)— 7)) = A/() + m,(j) = A,(j), where
@A, w)=(A1,...,4A;). Thus by uniqueness, w'=w and W(A,,..., A )=
(A, w) as desired. The proof that @, ¥, =id is similar. [J

As a coroliary to Lemma 3.10, we have established (3.1) for the case
S(w) = Inv(w). Finally, we must produce an inverse, ¥5, for @;. We proceed as
we did for Inv.

Lemma 3.11. Given a k-tuple cf compositions, (ay, ..., &), where a; has n;
parts, there is a unique integer t =0 and a unique multiset permutation w on the
alphabet {—t, —(t—1),...,—-1,1,2,..., k} such that:
(i) w begins with a positive letter,
(ii) for each i >0, i occurs in W n; times,
(iii) the letters —t, —(¢t —1), ..., —1 each occur once in w and in increasing
order,
(iv) for 1<j<n;—1, the number of distinct leiters between the jth i and the
(+Dstiis ai(j),
(V) the number of distinct letters between the n;th i and the end of W which are
smaller than i is a(n;).

Proof. As was the case with Lemma 3.9, we show that two different words
cannot satisfy (i)—(v) and then produce an algorithm for constructing w. Suppose
w and w' are two different words which satisfy (i)-(v). The iast positive letter in
w and w’ is uniquely determined. In fact, if » is the smallest of the numbers
&), let | be the largest number such that a(n;) =r. Then w and #' must both
end with the string I, —r, —(r — 1), ..., —1 by condition (v). As in Lemma 3.9,
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SUPPOSe W =) " * Qpy—ilim—i+1" * Gy AN W =bye by by i by,
where a,,_;>b,,, ;buta,, ;.1 =bp, i1y, .., @, =b,,,. We have three cases to
consider.

Case 1. a,, _; and b,,,_, are both negative letters
Clearly condition (iii) cannot be satisfied for both w and w'.

Case 2. a,,,_; is positive but b,,,,_, is negative

Let a,,,_,=1 and say j I’s have occured to the right of a,,,_,. Since each negative
letter occurs only once in w, the number of distinct letters between the (n, — j)th /
and the (n, —j + 1)st [ will be different in w and W' violating condition (iv) or
condition (v).

Case 3. Both a,,,_; and b,,,; are positive

If a,,,-i=1, and b,,,_;= 1, find the closest I, or [, to this position which is to
the right of a,, ;. If this letter is an /,, then between the (n, —j)th !/, and
(n;, —j + 1)st 1, there will not be an /, in w but there will be in W' contradicting
condition (iv). Similarly, there is a contradiction if this letter is an /,. Finally, if
there is no /, or [, to the right of a,, _,, condition (v) will fail for w or w'. This
exhausts the cases.

To establish the existence of w, we give the following algorithm for construct-
ing it. Given (a,, a5, . . ., &%),
(i) Put down place holders for the letters of w.
(it) (Initialization) For i=1, ..., k, place an i underneath the (a;(n;) + 1)st
position counting from right to left.
(iii) (Initial placement) Place in the right most position of w:

{(—1), if there is no letter below this position,
i, if i is the largest letter listed below this position.

(iv) {Adjustments) After placing a letter, i, in a position, shift one space to
the left

(a) every other letter below this position,

(b) every letter j <i which has not occurred previously in w,

(c) any letter j which has appeared in W such that more than one i has been

placed since the last .

If the /th i has just been placed, put another i (if /<#;) under the position
a;(n; — 1) + 1 spaces to the leit of the given one.

(v) (Next placement) Flace a latter in the next empty spot according to the
rules:

(a) If there are no letters below the given spot, place —(m + 1), where —m
was the last negative letter placed in w.

(b Of the entries below the spot, place the one which was most recently placed
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earlier. If none of the entries has previously been placed, the largest available
letter should be placed.

If all positive letters have been used, stop. Otherwise, go to step (iv). 0O

For example, if (a;, a3, a3, a,) = (23, 31, 620, 63), we put down place holders

In step (iii), the 3 is placed in the last position. After making the adjustment from
step (iv) we have:

There is nothing below the second spot so its gets filled by (—1). No adjustments
are necessary so 2 fills the next spot and after adjustments,

_________ 32-13

3 2 4 ?

i

e_____432-153

43 12 ’
______2-2432-13
43 1 ’
____1-32-2432-13
43 ?

and finally,
413-41-32-2432~ 1’

We can now define ¥s: P> ™ x - - - x PR plO=) x M Given (A,, ..., 4),
form a k-tuple of compositions, (a,, ..., af,,) by setting ai(n;) = A,(n,), () =
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A(G)—A(j+1; for 1<j<m,—1. Construct the word w associated with
(a1, ..., a;) in Lemma 3.11. Let w =a, - - - a,, where q; is the ith positive ctter
in w. Define W5(4,, . .., &) to be (4, w), with A = A(1)A(2) - - - A(n), where A(i)
is the absolute value of the first negative letter to the right of 4; in w. Thus, if
(A1, ..., 4)=(53, 41, 820,93), (ay,..., ax)=(23,31,620,63). By the pre-
vious example, w =413-41-32-2432-13, w =413124323, and 1 =444321110. So
W5(53, 41, 820, 93) = (444321110, 413124323).

Lemma 3.12. With ¥, as above, Wso ®;=id on P%® x M and ®s° W, =id on
PR x - X P ™). Thus, @, is a bijection.

The proof of Lemma 3.12 is simiiar to that of Lemma 3.10.

4. Bijections between words with a fixed statistic

Having verified (3.1) for § = Maj, Inv and Z, we now give a signed bijection to
show that

S<")=[ ; ] . 4.1
zq n n; --’nkq ( )

weM
For @ = ®,, ®, or s, extend &: P X f— PED X - - - X P 1o
id x @:PD[L"](—I) % PLO,::) X M— PD[l,n](_l) % PL(:.W) X oo X PLi:.oo)_
By (2.7) and (2.6),

‘ )n no ]
WHEDI (1) X P x -+ x Pla) =D | |
( * (q)nl =t (q)'lk "1’ ’ n’k q

Lemma 4.2. There is a signed bijection PD!""}(-1) x Pl {(9, §)}.

Proof. We inust construct a SRWP-involution, ¢, with only (8, 8) as a fixed point.
We define ¢ as foliows: given {4, u) € PDU"(—1) X Pt select the smallest part
from among the parts of A and u. If this part belongs to A, move it to u. If it does
not belong to A, move it to A. Clearly this map has the desired properties. O

Now let ¢t be the WP-bijection between P> and P!"" defined as follows:
Given A€ PI%), let A’ be the partition obtained by deleting all parts of size 0
from A. Then £(A) is the partition corresponding to the transpose of the Ferrer’s
diagram for A'. For the inverse, given pe Pl Jet A’ be the partition
corresponding to the transposition of the Ferrer’s diagram for p. Then ¢7'(u) is
the partition obtai2 by adjoining enough parts of size 0 to A’ to make a total of n
parts.
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Since by Lemma 4.2,
¢o(id X £) : PDIM"(—1) X P & {(@, B)},
it follows that
eo(id X ¢ X id)e (id X @™ 1) :PD"}(—1) x Pl x PO 5 - . . x PI>)
oSPXIxXMeM,

as desired.

Theorem 4.3. There are bijections, denoted IM, 1Z, Ml, MZ, ZI and ZM from
M(n,, ..., n) to itself with the property that if S;(w)=m, then S,(5:5:(w)) =m,
where S; is any of Inv, Maj or Z.

Proof. The map

T,:PD(—1) x P2 x - -« x PO PDI"(—1) x P - x PIO)
defined by

T; = (id X @,)o(id x ¢ X id) o (¢ X id)o(id X # X id)o (id X ®]")
is a SRWP-involution with fixed set (id X @;1)(@ x @ X M) for i =1, 2, 3, where

g™ fori=1,
wt(w) =19 ¢MI™), fori=2,
q*™, fori=3.

Since the elements in the fixed sets of 7}, T, and T; are all positive, by the
involution principle of Garsia and Milne [4], there exist WP-bijections between
them. These bijections extend by way of @,, @, and &; to the desired
WP-bijections from M to M. []

In practice, the bijections of Theorem 4.3 can be given explicitly. Fer example,
suppose we wish to censtruct the bijection IZ. In this case, given a word, w, with
Inv(w)=m, we want a word w'=I1Z(w) such that Z{w')=m. We have
idx @,(@,8, w)=(9, 4, ..., A,) for some partitions A,, ..., A, with Inv(w)=
HAL + - -+ AN £ (@, Ay, . .., A,) is a fixed point of T; (where T3 corresponds
to the @; of Section 3), then IZ(w)=w', where (@, 8, w')=(id X
DD, Ay, ..., A). (@, Ay, ..., A) is not a fixed point of T;, sccording to the
involution principle, there is a smallest positive number, /, such that (7;e
LY®, Ay, ..., A) is a fixed point of T;. In this case, IZ(w)=w’, where
@, 0, w)=(>1dx 3)(T° T)'(®, Ay, - .., 4)).

For example,let w=2311e M(2, 1, 1). We have Inv(2311)=4. Also, (id X
@,)(2311)=(8:00,2,2), T:(8;00, 2,2)=:(2;00, 1, 1) so {6;00,2,2) was not a
fixed point of 7;. Now T,75(@; 00, 2, 2) = (8; 10, 2, 1) and (7, T3)%(8;00, 2, 2) =
(#;20,1,1). Since (#:20,1,1) is a fixed point of 75, we have (idx
P31 - (8;20,1,1) = (8, 8, 1231), and thus 1Z(2311) = 1231.
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5. Remarks
It is well known that

wiPle~l)= | 5.1)

m+n]

n _lq'
The techniques of the previous section allow for a quick combinatorial proof of
this fact. There is a well known WP-bijection @:P%"1— M(m, n), where
wt(w) = Inv(w), defined as follows: Form the Ferrer’s diagram of A € PI%"1. This
diagram fits inside an m X n rectangle. for example,

2

4+1+0—>

Now trace the path from the lower left hand corner to the upper right hand
corner of this rectangle which follows the boundary of A. For our example the
path is:

7 7

“Z

<

Convert this path to a binary word by the rule that a vertical edge corresponds to
a 0 and a horizontal edge to a 1. Thus, 4+ 1+ 0« 0101110. Consequently, by
composing this bijection with the appropriate signed bijecticn from Section 4 we
have

P17 &5 M(m, n) < PDI"™*71(—1) x PI&=) x plo-=)

and (5.1) follows. The bijection ¢ can be found in [1]. An alternate combinatorial
proof, due to Franklin can be found in [11, p. 2691,

Thc essential idea in the algorithm of Lemma 3.9 can be found in [7, p. 12],
aith. ugh in this case, w is restricted to being a permutation.

The maps ¢ and t have occurred in the literature several- times, see [10]
for example. It may be pointed out that the map ¢ can be replaced by the map
¢’, in which the largest part rather than the smallest part is moved in (A, u).
This ieads to a different set of six bijections in Theorem 4.3. For ex-,
ample using ¢, 1Z(31214231421) = 43312214211 whereas if ¢’ is used instead,
1Z(31214231421) = 34123242111.

In [4], Foata gave a bijection between words with inversion number m, and
words with major index m. His bi_>ction did not use the involution principal and
is different from both of the waps IM using ¢ and IM using ¢'. It would be
interesting to find bijections similar to Foata’s bijection or ic find aiicrnative
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descriptions of our bijections similar to Foata’s bijection. One characteristic of
Foata’s bijection is that if w—w' where w=a,¢,...a, and w' =b:b,...b,,
then a,, = b,. This resuli also holds for the bijections of Theorem 4.3 regardiess of
= 1ether they are built up using ¢ or ¢'. This is an easy corollary of the following
result.

Theorem 5.2. Let we M(n,, . .., n), A€ P> and let B,, @, and P, be the
bijections of Section 3. Then if @7 (D;(A, w)) = (A", w"), the last letter in w' is the
same as the last letter in w.

Proof. The result of Theorem 5.2 will follow if we can show that given
(A« oo s A) € P2 oo x P2 and (A, w)= ®;'(Ay, ..., A), the last letter
in w is independent of i. In fact, if / =min; ,(n;), then a, =m, where m is the
largest value such that A4,(n,)=1[ This is an immediate consequence of the
algorithms for coiistructing w in Lemma 3.9 and Lemma 3.11, in the cases of ¥,
and @;. For @,, this fact follows from MacMahon’s algorithm. Since we have not
given MacMahoir’s algorithm, we present an alternative proof for this case.
Given that there exists (A, w) such that @,(4, w)=(4,,...,4,), recall that
Ay, oo A=A+, ..., A+ ), where (A4, ..., A;) is A sorted by w and
(i1, . . . , ;) satisfies u;(j) = the number of descents in w to the right of the jth i.
If a,=m, then u,.(n,) =0 since there are nc descents to the right of a,. Since
Am(itm) = A(n) is the smallest part in 4, A,,(n,,) is certainly minimal. If / >m and
I = a, for some r <n, then A,(:y;) > A,,(n,,) since A;(n;) = A(r) = A(a) and p,(n;) >
0= g,,(n,,) due to the fact that at least one descent must occur between a, and a,,
if a, <a,. thus m is maximal with respect to the minimality of A,(n,). O
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