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Abstract

A paper by Maxwell Anselm and Steven Weintraub investigated a generalization of
classic continued fractions, where the “numerator” 1 is replaced by an arbitrary positive
integer. Here, we generalize further to the case of an arbitrary real number z ≥ 1. We
focus mostly on the case where z is rational but not an integer. Extensive attention
is given to periodic expansions and expansions for

√
n, where we note similarities and

differences between the case where z is an integer and when z is rational. When z is
not an integer, it need no longer be the case that

√
n has a periodic expansion. We

give several infinite families where periodic expansions of various types exist.

1 Introduction

Let z be a positive real number. In this paper, we consider continued fractions of the form

a0 +
z

a1 +
z

a2 +
z

a3 + · · ·

,

where a0 is a nonnegative integer and a1, a2, a3, . . . are positive integers. We denote such
a continued fraction by [a0, a1, a2, . . .]z, and following Anselm and Weintraub [1], we refer
to this as a cfz expansion. Such continued fraction expansions where z is a positive integer
have been investigated before. Edward Burger and his co-authors showed that there are
infinitely many positive integers z for which

√
n has a periodic expansion with period 1. A

similar result, but for quasi-periodic continued fractions was obtained by Komatsu [7]. A
more general, comprehensive study of cfz expansions with z a positive integer was conducted
Anselm and Weintraub [1]. One result of Anselm and Weintraub is that if z ≥ 2 is an integer,
then every real x has infinitely many cfz expansions [1, Theorem 1.8]. More recently, Dajani,
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Kraaikamp and Wekken [4] interpreted cfz expansions with positive integer z in terms of
dynamical systems to product an ergodic proof of [1, Theorem 1.8]. This work was extended
and further generalized by Dajani, Kraaikamp and Langeveld [4].

In this paper, we ask what happens if one drops the condition that z be an integer. We
mostly follow Anselm and Weintraub [1] as we investigate general cfz expansions where z is
only assumed to be a positive real number. We begin with a discussion of the general case
(usually satisfying z ≥ 1) in Sections 2 and 3. Our main focus, however, is the case where
z is a rational number, with some attention to the case where z is a quadratic irrational as
well.

When z is an integer, it is shown by Anselm and Weintraub [1] that many well-known
properties of simple continued fractions are preserved, most notably that every rational
number has a finite cfz expansion and every quadratic irrational has a periodic cfz expansion.
When z is rational, but not an integer, both of these properties can fail. Formula (3.1) gives
an example where the unique cfz expansion of 7

4
is periodic, and Conjecture 27 gives an

example of a rational x and rational z for which the cfz expansion of x appears to be
aperiodic. General properties of cfz expansions with rational z are given in Section 4.

The notion of a reduced quadratic surd is important in the theory of simple continued
fractions. Anselm and Weintraub modified the definition of a reduced quadratic surd [1,
Definition 2.12] so as to apply to integers z > 1. We must again modify this definition to
make it applicable to our more general setting. In Section 5, we introduce the notion of a
pseudo-conjugate for a number x with a periodic cfz expansion and use this to develop the
appropriate definition of a reduced surd. The properties of a reduced surd are developed in
Section 5 as well. Finally, these properties are applied to expansions for

√
n in Section 6,

and several infinite families of periodic expansions of
√
n are given.

2 Continued fractions as rational functions

If we view a0, . . . , an and z as being indeterminates, then the finite continued fraction
[a0, a1, . . . , an]z is a rational function in these variables. Many of the results from Anselm
and Weintraub [1] are special cases of formulas of Perron’s [10] and carry over with little or
no modification to this rational function setting. In this section, we give the most important
properties of [a0, a1, . . . , an]z as a rational function.

Lemma 1. As rational function identities, we have

[a0, a1, . . . , an]z = [a0, a1, . . . , ak−1, [ak, ak+1, . . . , an]z]z, (2.1)

[a0, a1, . . . , an]z = [a0, a1, . . . , an−2, an−1 + z/an]z (2.2)

[a0, ya1, a2, ya3, . . . , xan]yz = [a0, a1, . . . , an]z, (2.3)

where x = 1, if n is even, y if n is odd.
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Given a sequence a0, a1, a2, . . ., define polynomials pn and qn recursively by

p−1 = 1, p0 = a0, pn = anpn−1 + zpn−2, for n ≥ 1, (2.4)

q−1 = 0, q0 = 1, qn = anqn−1 + zqn−2, for n ≥ 1. (2.5)

As in [1], and more generally in [10] we have the following.

Theorem 2. For polynomials pn and qn so defined,

pnqn−1 − pn−1qn = (−1)n−1 zn, (2.6)

pnqn−2 − pn−2qn = (−1)nanz
n−1, (2.7)

pn
qn

= [a0, a1, . . . , an]z, (2.8)

[a0, a1, . . . , an, x]z =
pnx+ zpn−1
qnx+ zqn−1

. (2.9)

We will write Cn for pn
qn

, and following the usual conventions, as given, say, by Hardy and

Wright [5, Chapter X] or Olds [8, P. 231], we refer to the variables a0, a1, . . . as the partial
quotients of the cfz expansion and the Cn as the convergents of the expansion.

We view each pk as being a polynomial in a0, . . . , ak, and z. We find it useful to think
of qk as a polynomial in a0, . . . , ak and z even though it does not depend on a0. With this
perspective, we have certain symmetry properties of pn and qn with respect to their variables
and each other.

Theorem 3. The following relationships exist among pn and qn.

(a) qn(a0, a1, . . . , an) = pn−1(a1, . . . , an),

(b) pn(a0, a1, . . . , an) = a0qn(a0, a1, . . . , an) + zqn−1(a1, . . . , an),

(b) qn(a0, a1, . . . , an) = qn(an+1, an, . . . , a1),

(d) pn(a0, a1, . . . , an) = pn(an, an−1 . . . , a0).

Proof. Part (a) is a direct consequence of the recurrences for qn and pn. That is, qn satisfies
the same recurrence as pn−1, but with indices for the a’s augmented by 1. The other formulas
are straightforward inductions. We content ourselves with demonstrating part (d). Assuming
the rest of the formulas,

pn(a0, . . . , an) = a0qn(a0, a1, . . . , an) + zqn−1(a1, . . . , an)

= a0pn−1(a1, . . . , an) + zpn−2(a2, . . . , an)

= a0pn−1(an, . . . , a1) + zpn−2(an, . . . , a2)

= pn(an, an−1 . . . , a0).
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We end this section with some facts on the polynomial structure of pn and qn.

Theorem 4. Viewing pn and qn as polynomials in a0, . . . , an, z, we have

(a) every coefficient in each polynomial is 1.

(b) When viewed as polynomials in z, deg(pn) = dn
2
e, deg(qn) = bn

2
c.

(c) If m = dn
2
e, the coefficient of zm−k in pn is a homogeneous polynomial in a0, . . . , an

of degree 2k + 1 when n is even, and 2k when n is odd. This polynomial can be
explicitly described: if it has degree j, then it consists of the sum of all terms of the
form ai1ai2 · · · aij with i1 < i2 < · · · < ij, with i1 even, i2 odd, i3 even, and so on.

(d) If m = bn
2
c, the coefficient of zm−k in qn is a homogeneous polynomial in a1, . . . , an of

degree 2k when n is even, and 2k − 1 when n is odd. Such a polynomial of degree j is
of the sum of all terms of the form ai1ai2 · · · aij with i1 < i2 < · · · < ij, with i1 odd, i2
even, i3 odd, and so on.

For example,

p5 = z3 + (a0a1 + a0a3 + a0a5 + a2a3 + a2a5 + a4a5)z
2

+ (a0a1a2a3 + a0a1a2a5 + a0a1a4a5 + a0a3a4a5 + a2a3a4a5)z + a0a1a2a3a4a5,

q5 = (a1 + a3 + a5)z
2 + (a1a2a3 + a1a2a5 + a1a4a5 + a3a4a5)z + a1a2a3a4a5.

The proof of Theorem 4 is a straightforward induction. We note that as polynomials in
z, pn is monic if n is odd and qn is monic if n is even.

3 Representation, convergence and uniqueness issues

In this section we let z, a0, a1, . . . be real numbers. Usually, a0 will be a nonnegative integer
and ak will be a positive integer for k ≥ 1. We point out that for simple continued fractions,
and when z is an integer, pn and qn are integer sequences for all n ≥ 0 when the a’s are
all integers. In the case where z is not an integer, however, pn and qn will usually not be
integers.

The following is useful.

Lemma 5. Let a0 be a nonnegative real number and let a1, a2, a3, . . . , am be positive real
numbers. If a sequence {xk} with xk 6= ak for all k < m can be defined by x0 = x, xk =

z

xk−1 − ak−1
, then for each n ≤ m,

x = [a0, a1, . . . , an−1, xn]z.
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This lemma is a direct consequence of formula (2.2). Following [5, 8] we refer to the xn
in Lemma 5 as the n’th complete quotient for x.

We now investigate convergence issues. For general real sequences {an} we have the
following.

Theorem 6. If z > 0, a0 ≥ 0 and ak ≥ 1 for all k ≥ 1 then

[a0, a1, a2 . . .]z = lim
n→∞

[a0, a1, a2, . . . , an]z

exists.

Proof. We follow the usual proof that infinite simple continued fractions converge. Let

Cn = [a0, a1, a2, . . . , an]z =
pn
qn

. By (2.7),

Cn − Cn−2 =
(−1)nanz

n−1

qnqn−2
,

so Cn > Cn−2 whenever n is even, and Cn < Cn−2 when n is odd. Thus, the even C’s form an
increasing sequence and the odd C’s form a decreasing sequence. By (2.6), C2n < C2n+1 for
each n so C0 < C2n < C2n+1 < C1, meaning each subsequence is bounded, and so convergent.
By (2.6),

Cn − Cn−1 =
(−1)n−1zn

qnqn−1
.

Thus, it remains to show that qnqn−1 goes to infinity faster than zn. The slowest growth for
qn occurs when all the a’s are 1, in which case qn = qn−1 + zqn−2 for all n ≥ 2. An easy
induction shows that for all n ≥ 0, qn ≥ (1 + z)b

n
2
c, from which the result follows.

Thus, all finite and infinite continued fraction expansions represent real numbers. With
no restrictions on the ak, all reals can be represented as cfz expansions so from this point
on, we restrict a0 to be a nonnegative integer and ak to be a positive integer for all k ≥ 1.

Theorem 7. Every positive real number has at least one cfz expansion if and only if z ≥ 1.

Proof. First, if 0 < z < 1 then no real x with z < x < 1 can be represented as a cfz expansion.
This is because the convergents Cn of Theorem 6 are increasing for even n, and decreasing

for odd n. Thus any y = [a0, a1, a2, . . .]z must satisfy a0 ≤ y ≤ a0 +
z

a1
. Consequently, if

y < 1 then a0 must be 0, forcing y ≤ z

a1
≤ z.

Next, suppose that z ≥ 1 and let x be a positive real number. Following [1] we construct
a cfz expansion for x as follows: Let x0 = x and for n ≥ 0, given xn, let an be a positive

integer satisfying xn− z ≤ an ≤ xn. If xn− an = 0 stop. Otherwise, set xn+1 =
z

xn − an
and

continue. By construction, 0 ≤ xn − an < z so if xn − an 6= 0 then xn+1 > 1. Thus, for each
xn there will be a valid choice for an. This associates with x the cfz expansion [a0, a1, a2, . . .]z,
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where the length of this expansion is finite if any xn = an, and infinite otherwise. We claim
that

x = [a0, a1, a2, . . .]z.

To prove this, we first note that by Lemma 5 and the construction of the xn,

x = [a0, a1, a2, . . . , an−1, xn]z.

Consequently, by formula (2.9), x =
pn−1xn + zpn−2
qn−1xn + zqn−2

. Thus,

x− [a0, a1, a2, . . . , an−1]z =
pn−1xn + zpn−2
qn−1xn + zqn−2

− pn−1
qn−1

=
z(pn−2qn−1 − pn−1qn−2)
qn−1(qn−1xn + zqn−2)

.

That is,

|x− [a0, a1, a2, . . . , an−1]z| <
zn

q2n−1
,

and the left hand side of this expression goes to 0 as n goes to infinity (as in the proof of
Theorem 6), completing the proof.

As a consequence, we have the following.

Corollary 8. If x = [a0, a1, a2, a3, . . .]z then with the xk as defined in Lemma 5 we have

xn = [an, an+1, an+2, . . .]z.

In particular, if the cfz expansion of x has at least two terms, then

[a1, a2, a3, . . .]z =
z

x− a0
.

Moreover, if x = [a0, a1, a2, . . . , an−1, y]z for some real y ≥ 1 and y = [b0, b1, . . .]z, with b0 ≥ 1
then

x = [a0, a1, a2, . . . , an−1, b0, b1, . . .]z,

an infinite version of formula (2.1).

There are uniqueness considerations with such expansions since there may be several
possible choices for an satisfying xn − z ≤ an ≤ xn. One canonical choice is an = bxnc, the
largest possible choice for an. We call an the maximal choice if an = bxnc. The expansion
in which the maximal choice is always made is called the maximal expansion. We note
that when some an = bxnc, the resulting xn+1, should it exist, is as large as possible. In
particular, in this case, xn+1 > z. The other extreme is to select an = max(1, dxn − ze).
If we do this for all n, the resulting expansion is called the minimal expansion. There
are significant differences between the case where z is an integer and where it is not. For
example, Lemma 1.7 in the paper by Anselm and Weintraub [1] is problematic when z is not
an integer.
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Lemma 9. Let z > 1 and suppose that x is not an integer.

(a) The maximal cfz expansion of x will have the form x = [a0, a1, a2, . . .]z, where for
i ≥ 1, ai ≥ bzc, and if the expansion terminates with last term an, then an > z.

(b) Let x = [a0, a1, a2, . . .]z, and suppose that ai ≥ dze, for all i ≥ 1 and if the expansion
terminates with an, then an > z. Then this expansion coincides with the maximal
expansion.

Proof. For the first part, as mentioned above, if ak−1 = bxk−1c, then xk, should it exist,
satisfies xk > z, so ak = bxkc ≥ bzc. If the expansion terminates, then xn is an integer so
an = xn > z.

For the second part, if the expansion terminates with an > z then xn = an > z as well.

Thus, xn =
z

xn−1 − an−1
> z implies that an−1 = bxn−1c. Whenever ak is not the last term

in the expansion, xk > ak ≥ dze, and again xk > z, implying that ak−1 = bxk−1c. This
shows that for all i ≥ 0 for which xi exists, ai = bxic, and the expansion is given by the max
algorithm.

When z is an integer, the two conditions in Lemma 9 coincide and we have the character-
ization of the maximal expansion given by Anselm and Weintraub [1]. However, when z is
not an integer, these two conditions are different, so Lemma 9 fails to give a characterization
in this case. The following examples show that neither condition characterizes a maximal
expansion. Letting z = 3

2
, first take x = [1, 1, 3]z = 23

11
. Then the ai satisfy the conditions of

the first part of Lemma 9 but the maximal expansion of 23
11

is [2, 16, 3]z. Next, if x =
1 +
√

7

2
then the max algorithm gives x = [1, 1, 1, . . .]z, showing that the conditions in the second
part of the lemma are not necessary. Both of these examples can be generalized. If z is not
an integer, then consider x = [a, a, k]z, where a = bzc. We have

x = a+
z

a+ z
k

.

If we select k large enough that a+ z
k
< z then the maximal choice for a0 is a+ 1 instead of

a. If we select x = [a, a, a, . . .]z = a+
√
a2+4z
2

, then it is not hard to show that x = xn for all
n and that bxc = a. That is, [a, a, a, . . .]z will be the maximal expansion of x even though
this expansion does not satisfy part (b) of the lemma. Call the maximal expansion of x a
proper maximal expansion if the expansion satisfies part (b) of Lemma 3.5. That is, x
has a proper maximal expansion if ai ≥ dze for all i ≥ 1, and in the case where the expansion
terminates with an, that an > z.

We have the following weak condition.

Lemma 10. Given a sequence {an}, with associated numerators and denominators pn and
qn as in Theorem 2, then an > z for all n ≥ 1 if and only if for each n ≥ 0 the maximal
expansion of pn

qn
is [a0, a1, . . . , an]z.
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Proof. Lemma 3.5(a) gives the necessity of the condition. For sufficiency, we have

pn
qn

= [a0, a1, . . . , an]z

= [a0, a1, . . . , an−1 + z/an]z.

If an ≤ z then the maximal choice for the (n− 1)’st quotient will be larger than an−1. The
result now follows by induction.

We also have the following obvious result.

Lemma 11. Suppose the maximal expansion of x is [a0, a1, a2, . . .]z. Then for each n, the
maximal expansion of xn is [an, an+1, an+2, . . .]z.

We now address the uniqueness of cfz expansions.

Theorem 12. Let x be a positive real number.

(a) If 0 < z < 1 and x = [a0, a1, a2, . . .]z then this expression is unique.

(b) If z = 1 then x has a unique cfz expansion if it is irrational and exactly two expansions
if it is rational.

(c) If z ≥ 2 then every positive real number x has infinitely many cfz expansions.

Proof. Case (b) is well-known [5, 8, 9, 10]. For (a), let z < 1 and suppose that x =

[a0, a1, a2, . . .]z. We show that each ak is uniquely determined. Since a0 < x ≤ a0 +
z

a1
,

we have 0 ≤ x − a0 ≤
z

a1
< 1. Thus a0 = bxc, so a0 is unique. By Corollary 8,

z

x− a0
= [a1, a2, a3, . . .]z, and the argument just given inducts to show that all ak are uniquely

determined.
For (c), suppose that z ≥ 2 and x > 0. If x = m, an integer, we may write x = [m−1, z]z,

and find the cfz expansion of z with the max-algorithm. More generally, if the maximal
expansion of x is [a0, a1, . . . , an]z, then by Lemma 3.5, an > z ≥ 2. Thus, we may write
x = [a0, a1, . . . , an − 1, z]z, and again expand z. If the expansion of z terminates, we may
iterate on the last partial quotient, allowing for infinitely many expansions of x. Thus,
replacing x by some xk, if necessary, we are reduced to the case where the maximal expansion
for x does not terminate, x = [a0, a1, a2, . . .]z, and ak ≥ bzc ≥ 2 for all k ≥ 1. Consequently,
for any n ≥ 1, we may write x = [a0, a1, . . . , an−1, xn]z, with xn > 2. We can derive from this

that x = [a0, a1, . . . , an−1,m, xn+1]z, where xn+1 =
z

xn −m
, and m is any integer for which

xn+1 > 1. That is, we need m to satisfy 0 < xn −m < z. The obvious choice, m = bxnc
gave rise to an in the expansion for x but we may also use m = an − 1 owing to the fact

that z ≥ 2. Hence, x = [a0, a1, . . . , an−1, an − 1, y]z, with y =
z

xn − an + 1
> 1, and we may

obtain another expansion for x by expanding y. Since the choice of n was arbitrary, this
leads to infinitely many cfz expansions.
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The authors do not know what happens with 1 < z < 2. Perhaps the ergodic approaches
employed in [3, 4] can clarify the situation. It appears that most x (in some measure-theoretic
sense) have infinitely many expansions. Evidence for this is given in the following result.

Theorem 13. Let 1 < z < 2.

(a) Every x > 0 has an infinite cfz expansion.

(b) A real number x = [a0, a1, a2, . . .]z has a unique cfz expansion if and only if the ex-
pansion is infinite, x − bxc > z − 1 and xn <

z
z−1 for all complete quotients xn with

n ≥ 1.

Proof. Suppose that x has a finite maximal expansion [a0, a1, . . . , an]z. Since z > 1, an ≥ 2
so we may write x = [a0, a1, . . . , an− 1, z]z and expand z (by the max algorithm) to produce
a longer expression. If z has an infinite cfz expansion we are done. Otherwise, we iterate.

For the second part, suppose that the cfz expansion of x is unique. By part (a), this
expansion must be infinite. Moreover, if we write x = [a0, a1, . . . , an−1, xn]z, then we must
select an = bxnc. Since we are free to let an be any positive integer with xn − z ≤ an ≤ xn,
this means that bxnc−1 > xn−z, or xn−an > z−1. When n = 0, this says x−bxc < z−1.
Given xn − an > z − 1, we have xn+1 < z

z−1 . Conversely, if x has more than just the
max expansion then for some n, the n’th partial quotient need not be bxnc. In this case,
xn − z ≤ bxnc − 1, giving xn+1 ≥ x

z−1 .

Corollary 14. If 1 < z < 2 and x has a unique cfz expansion x = [a0, a1, . . .]z, then the
expansion is infinite and an ≤ z

z−1 for all n ≥ 1.

This gives a necessary, but not a sufficient condition. For example, 3 = [2, 1, 2, 1, . . .]z
when z = 3

2
. In this case, z

z−1 = 3, and an < 3 for all n.
We conclude this section by addressing the question of when a real number x has a

periodic cfz expansion. Using notation similar to that used by Anselm and Weintraub [1],
let

(a1, a2, . . . , an)k

denote a sequence in which a1, . . . , an are repeated k times. For example, (1, 2, 3)2 represents
the sequence 1, 2, 3, 1, 2, 3. If we let k be infinity, then the sequence is periodic. With this
notation we have

3

2
= [1, 3]z = [(1, 2)k, 3]z = [(1, 2)∞]z,
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when z = 3
2
. We also note the following maximal expansions.

7

4
= [(1)∞]21/16, (3.1)

√
2 = [1, (3, 2)∞]3/2, (3.2)

3

2
= [1, 2, 1, 2]√2, a finite expansion, (3.3)

7

6
= [1, 8, 2, 1, 2, 2, (3)∞]√2, (3.4)

2
√

2 = [2, 1, 2]√2, a finite expansion, (3.5)
√

2 = [1, (3)∞]√2, (3.6)
√

3 = [1, (1, 1, 2)∞]√2, (3.7)
√

2 = [1, 4, 9, 3, 8, 3, 14, . . .]√3, an aperiodic expansion? (3.8)
√
π + 4 = [2, (4)∞]π. (3.9)

With regard to formulas (3.3) and (3.4), when checking all rational numbers 1 < x <
2 with denominator less than 500, we found that most of them, about 75%, had finite
expansions when z =

√
2, and the rest had periodic expansions with period 1 or 6. Those

with period 1 always had some xk = 2 +
√

2, and associated periodic part (3)∞. When
z =

√
3, most rationals we checked had periodic expansions (about 81%) with periods of

length 2, 8, 12 or 72, and the rest had finite expansions. When z =
√

7, only 45
43

had a finite
expansion (of length 4) and there were no periodic expansions of length at most 500.

Formulas (3.5) and (3.6) show that x and 2x can have very different expansions, while
formulas (3.7) and (3.8) show that there is no relationship when x and z are interchanged.

By formula (2.9) every finite cfz expansion represents a number in Z(z), the ring of
rational expressions in z with integer coefficients. Thus, all reals not belonging to Z(z)
must have infinite cfz expansions. Reals with periodic expansions must satisfy a quadratic
equation.

Theorem 15. If x has the cfz expansion

[a0, a1, . . . , aj−1, (aj, . . . , aj+k−1)∞]z

then x satisfies the quadratic equation

qk−1x
2 + (zqk−2 − pk−1)x− zpk−2 = 0 (3.10)

when j = 0,
qk−1x

2 + (qk − a0qk−1 − pk−1)x− (pk − a0pk−1) = 0 (3.11)

when j = 1, and

x2(qj+k−1qj−2 − qj+k−2qj−1) (3.12)

− x(pj+k−1qj−2 + pj−2qj+k−1 − pj+k−2qj−1 − pj−1qj+k−2)
+ pj+k−1pj−2 − pj+k−2pj−1 = 0
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for j ≥ 2.

If we define p−2 = 0, q−2 = 1
z

then formulas (3.10) and (3.11) are special cases of (3.12)
but it is convenient to have all three forms.

Proof. We only show that formula (3.12) holds. If

x = [a0, a1, . . . , aj−1, (aj, . . . , aj+k−1)∞]z

then

x = [a0, a1, . . . , aj−1, xj]z

= [a0, a1, . . . , aj−1, aj, . . . , aj+k−1, xj]z.

By Theorem 2,

x =
pj−1xj + zpj−2
qj−1xj + zqj−2

, x =
pj+k−1xj + zpj+k−2
qj+k−1xj + zqj+k−2

,

or

xj = −z pj−2 − xqj−2
pj−1 − xqj−1

= −z pj+k−2 − xqj+k−2
pj+k−1 − xqj+k−1

,

from which the result follows.

The discriminant of the quadratic in (3.10) is (zqk−2 − pk−1)
2 + 4pk−2qk−1 = (zqk−2 +

pk−1)
2+4(−1)nzn, by formula (2.6). So if x has a purely periodic expansion [(a0, . . . , an−1)∞]z,

then

x =
pk−1 − zqk−2 +

√
(zqk−2 + pk−1)2 + 4(−1)nzn

2qk−1
. (3.13)

Theorem 15 has the following converse.

Theorem 16. If a0, . . . , aj+k−1 are positive integers and there is an x = [a0, . . . , aj+k−1, . . .]z
which satisfies formula (3.12) then x has the cfz expansion

[a0, a1, . . . , aj−1, (aj, . . . , aj+k−1)∞]z.

If am ≥ z for 1 ≤ m ≤ j + k − 1 then the expansion is a maximal cfz expansion.

Proof. By Theorem 2,

xj = −z pj−2 − xqj−2
pj−1 − xqj−1

and xj+k = −z pj+k−2 − xqj+k−2
pj+k−1 − xqj+k−1

.

Since x satisfies formula (3.12), xj − xj+k = 0, so x is periodic, with the given expansion.
If am ≥ z for all m ≥ 1 then by Lemma 3.5, the maximal expansion of x has the desired
form.

We have the following easy consequences of Theorem 15.
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Corollary 17. In order for a positive real number x to have a periodic cfz expansion, x
must be an element of Z(

√
f(z)), the set of rational expressions in

√
f(z), where f(z) is a

rational function of z with integer coefficients.

Corollary 18. If x is a positive real number then

(a) x has purely periodic expansion [(a)∞]z if and only if x =
a+
√
a2 + 4z

2
. This is the

maximal expansion for x provided z < a+ 1.

(b) x has purely periodic expansion [(a, b)∞]z if and only if x =
ab+

√
a2b2 + 4abz

2b
. This

is the maximal expansion for x provided z < min(a+ a
b
, b+ b

a
).

Proof. The first part follows from the second. If x = [(a, b)∞]z, then by (3.13), x =
ab+
√
a2b2+4abz
2b

. On the other hand, given such an x, we have x1 = z
x−a = ab+

√
a2b2+4abz
2a

and x2 = z
x1−b = x so x has the desired periodic expansion. Moreover, bxc = a if and only

if z < a + a
b
, and bx1c = b if and only if z < b + b

a
, demonstrating the maximal expansion

property.

For example, if a = 1 in part (a) and z = 10
9

then 1 + 4z = 49
9

so x = 5
3

will have maximal

expansion [(1)∞]z. If a = 2, b = 3, z = 3
2
, then x = 1 +

√
2 in part (b), essentially giving

expansion (3.2). Formulas (3.1), (3.6) and (3.9) are also essentially examples of Corollary 18.

4 Expansions with rational z

In this section, we focus on the case were z is rational, say z = u
v

where u and v are positive

relatively prime integers with u > v. With Cn =
pn
qn

, as noted in Section 3, pn and qn will

not, in general, be integers. When z is rational, we can scale pn and qn to obtain an integer
numerator and denominator for Cn, but at the cost of more complicated recurrences. In
place of Theorem 2 we have the following.

Theorem 19. Given a sequence of integers {an} with a0 ≥ 0 and ak ≥ 1 for k ≥ 1 define
sequences {Pn} and {Qn} inductively as follows:

P−1 = 1, P0 = a0, Pn =

{
anPn−1 + uPn−2, if n is even;

vanPn−1 + uPn−2, if n is odd,
(4.1)

Q−1 = 0, Q0 = 1, Qn =

{
anQn−1 + uQn−2, if n is even;

vanQn−1 + uQn−2, if n is odd.
(4.2)

If Cn =
Pn
Qn

then for each n ≥ 0,

Cn = [a0, a1, . . . , an]z.

12



Other relevant results from Section 2 translate as follows.

Theorem 20. With {an}, {Pn}, {Qn}, defined as in Theorem 19, we have

PnQn−1 − Pn−1Qn = (−1)n−1un, (4.3)

PnQn−2 − Pn−2Qn =

{
(−1)nun−1, if n is even;

v(−1)nun−1, if n is odd,
(4.4)

x =

{
Pn−1xn+uPn−2

Qn−1xn+uQn−2
, if n is even;

vPn−1xn+uPn−2

vQn−1xn+uQn−2
, if n is odd,

(4.5)

v | Q2n−1 for all n, (4.6)

gcd(Pn, Qn) | un for all n. (4.7)

An easy induction gives the following relationship between Pn, Qn and pn, qn.

Lemma 21. For all n ≥ 0,

Pn = vdn/2epn, Qn = vdn/2eqn.

With regard to periodic expansions, we may replace pn and qn with Pn and Qn as well.

Theorem 22. Let z = u
v

be a positive rational number in lowest terms. If positive real
number x has a purely periodic expansion

x = [(a0, . . . , an−1)∞]z

then x must satisfy the quadratic equation

Qn−1x
2 + (uQn−2 − Pn−1)x− uPn−2 = 0

if n is even and
vQn−1x

2 + (uQn−2 − vPn−1)x− uPn−2 = 0

when n is odd. If x is rational then (uQn−2 + Pn−1)
2 − 4un must be a perfect square in n is

even, (uQn−2 + vPn−1)
2 + 4vun must be a perfect square if n is odd.

Odd period lengths are rare in our calculations. Here is one reason for this.

Theorem 23. Let z = u
v

be a positive rational number in lowest terms. If x is a rational
number with a periodic cfz expansion of odd length, then v is a square.

Proof. If x is not purely periodic, we may replace x with a complete quotient xk, which is
purely periodic, so we may assume that x has a purely periodic expansion. As noted in
formula (4.6), all Qn of odd index are divisible by v. Since n is odd we may write Qn−2 = kv
for some integer k. By the previous theorem,

(uQn−2 + vPn−1)
2 + 4vun = v2(ku+ Pn−1)

2 + 4vun (4.8)
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is a square. Every positive integer can be written as a square times a square free part,
so suppose v = s2t for some integers s and t, where t is square free. Using (4.8) we have
s2(A2t2 + 4tun) = m2 for some integers A and m. If p is an odd prime dividing t then p2 will
divide m2/s2 forcing p2 to also divide 4tun. Since t is prime to u it must be that p2 divides
t, a contradiction. Thus, at worst, t = 2. In this case, m is even and we may divide by 4 to

obtain A2 + 2un =
(
m
2s

)2
. Thus, 2un is even and the difference of two squares, forcing it to

be divisible by 4. As a consequence, u is even, a contradiction since u is prime to v. Since t
is not divisible by any prime, v = s2, as desired.

Using Theorem 23 we may classify the x and z for which x has a purely periodic expansion
of period 1.

Theorem 24. If x and z are rational, then x = [(n)∞]z if and only if

x =
nw + k

w
, z =

k(nw + k)

w2
,

where w, k, n are positive integers and k is prime to w. The expansion is maximal when
1 ≤ k < w.

Proof. If x0 = x = nw+k
w

and z = k(nw+k)
w2 , then a simple calculation with a0 = n shows

x1 = x0, allowing for a periodic expansion. In order for the expansion to be maximal, we
need bxc = n, which requires 1 ≤ k < w.

Next, suppose that x = [(n)∞]z, where x and z are rational. By Theorem 23 we may
write z = u

w2 for some positive integers u and w. By Theorem 22 we have

x =
n+
√
n2 + 4z

2
=
nw +

√
n2w2 + 4u

2w
.

For x to be rational, it must be that
√
n2w2 + 4u is an integer. Since it is larger than nw

we may write
√
n2w2 + 4u = nw +m for some integer m. Squaring shows m must be even,

so let m = 2k. Again squaring and simplifying gives u = k(nw + k), giving x and z their
desired forms.

Formula (3.1), a special case of Theorem 24, shows that a rational number can have an
infinite maximal cfz expansion even when z is rational. This contrasts with a result from
Anselm and Weintraub [1, Lemma 1.9], that when z is an integer, the maximal cfz expansion
of any positive rational number is finite. However, we do have the following conjectures.

Conjecture 25. If z = 3
2

then every positive rational number has a finite cfz expansion.

Conjecture 26. If z = 5
3

then every positive rational number has either a finite cfz expansion
or a periodic cfz expansion.
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We have tested Conjecture 25 on all rational numbers with denominator less than 1000.
There are other z besides 3

2
that appear to have this property. In [11] a list of 146 rational z

are given for which it appears that all positive rationals have a finite maximal cfz expansion.
For Conjecture 26, again, there are other z besides 5

3
that appear to have the given

property. In contrast, we have the following.

Conjecture 27. For z = 11
8

the maximal cfz expansion of 4
5

is neither finite nor periodic.

Using Floyd’s cycle finding algorithm [6, p. 7, Exercise 6], we checked the expansion of
4
5

through 1,000,000 partial quotients without it terminating or becoming periodic. Here, 11
8

appears to be the smallest rational z-value having this property. That is, if 1 < z < 2, z = u
v

and u+v < 19 then all rational numbers appear to have either finite or periodic maximal cfz
expansions. Also, nearly half of the rational x we tried appeared to have aperiodic expansions
with z = 11

8
.

Acting against Conjecture 27 is that some rational numbers can have very long finite cfz
expansions. An example is x = 2369

907
, which has a maximal cfz expansion of length 37,132

when z = 11
7

.

5 Periodic expansions and reduced quadratic surds

In the theory of periodic continued fractions, both for simple continued fractions and in the
work of Anselm and Weintraub [1], the notion of a quadratic irrational being reduced is
important. The appropriate definition in [1] is the following: A quadratic irrational x is
N -reduced if x > N and −1 < x < 0, where x is the Galois conjugate of x. For simple
continued fractions, “quadratic irrational” is essentially synonymous with “periodic.” For
the more general setting in [1], being a quadratic irrational was a necessary condition for
periodicity. This is not the case for general z so to extend the idea of being reduced to
the general z-setting, one must modify the definition of a conjugate. Intuitively, if x has
a periodic expansion, then x must satisfy a quadratic equation derived from the periodic
expansion and we define its conjugate to be the other solution to that equation.

To be more rigorous, suppose that x is a positive real number with periodic maximal cfz
expansion of period length k and tail length j so

x = [a0, a1, . . . , aj−1, (aj, . . . , aj+k−1)∞]z.

Then x satisfies the quadratic equation in (3.12). The other solution to this equation is
called the pseudo-conjugate of x with respect to z and is denoted x. We note that the
this conjugate can be written in the form

x =
pj+k−1pj−2 − pj+k−2pj−1
x(qj+k−1qj−2 − qj+k−2qj−1)

, (5.1)

and this pseudo-conjugate must equal the usual conjugate of x when x is a quadratic irra-
tional and z is rational. The pseudo-conjugate map is not an involution, at least when z is
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not an integer. For example, if z = 7
4

and x = 79
30

= [2, 2, (2, 5, 1, 2, 9)∞]z, then x = 2287
1294

= y,
but y = 11818919047

6687223982
6= x. The following tool is needed.

Lemma 28. Suppose that x = x0 = [a0, a1, . . . , aj−1, (aj, . . . , aj+k−1)∞]z and x1 = z
x−a0 .

Then x1 is also periodic and x1 = z
x−a0 .

Proof. The proof is easier if there is no tail so we will assume that j ≥ 1. It is obvious that
x1 is periodic since (for j ≥ 1)

x1 = [a1, a2, . . . , aj−1, (aj, . . . , aj+k−1)∞]z.

We use formula (5.1) to show that x = a0 + z
x1

. Using primes to indicate the variables
involved are a1, a2, . . . rather than a0, a1, . . ., we have

a0 +
z

x1
= a0 +

zx1(q
′
j+k−2q

′
j−3 − q′j+k−3q′j−2)

p′j+k−2p
′
j−3 − p′j+k−3p′j−2

= a0 +
z2(q′j+k−2q

′
j−3 − q′j+k−3q′j−2)

(x− a0)(p′j+k−2p′j−3 − p′j+k−3p′j−2)
.

Using parts (a) and (b) of Theorem 3,

z2(q′j+k−2q
′
j−3 − q′j+k−3q′j−2)

(x− a0)(p′j+k−2p′j−3 − p′j+k−3p′j−2)

=
(pj+k−1 − a0qj+k−1)(pj−2 − a0qj−2)− (pj+k−2 − a0qj+k−2)(pj−1 − a0qj−1)

(x− a0)(qj+k−1qj−2 − qj+k−2qj−1)

=
a20

x− a0
+

pj+k−1pj−2 − pj+k−2pj−1
(x− a0)(qj+k−1qj−2 − qj+k−2qj−1)

− a0
x− a0

pj+k−1qj−2 + pj−2qj+k−1 − pj+k−2qj−1 − pj−1qj+k−2
qj+k−1qj−2 − qj+k−2qj−1

.

Now by formula (3.12),

pj+k−1qj−2 + pj−2qj+k−1 − pj+k−2qj−1 − pj−1qj+k−2

= x(qj+k−1qj−2 − qj+k−2qj−1) +
1

x
(pj+k−1pj−2 − pj+k−2pj−1).

Consequently,

a0 +
z

x1
= a0 +

a20
x− a0

+
pj+k−1pj−2 − pj+k−2pj−1

(x− a0)(qj+k−1qj−2 − qj+k−2qj−1)

− a0x

x− a0
− a0
x− a0

pj+k−1pj−2 − pj+k−2pj−1
x(qj+k−1qj−2 − qj+k−2qj−1)

= a0 +
a20

x− a0
+

x

x− a0
x− a0x

x− a0
− a0
x− a0

x

= x,

as desired.
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If x has a maximal cfz expansion which is periodic, we define x to be reduced if x > z
and −1 < x < 0. Unfortunately, being reduced does not have the power it has in the simple
continued fraction case. We say x is strongly reduced if, in addition to being reduced, the
maximal expansion of x satisfies ai ≥ z for all i ≥ 1. That is, all partial quotients except
possibly the first are at least as large as z. We have the following.

Lemma 29. If x is strongly reduced, then so is x1 = z
x−a0 .

Proof. To be strongly reduced, x must be periodic. Since the partial quotients of x1 are just
shifted partial quotients of x, x1 is also periodic. This also shows that the partial quotients
of x1 are all sufficiently large. Since a0 = bxc, it follows that x1 > z. By the previous lemma,
x1 = z

x−a0 . Since x is negative and a0 ≥ z, −1 < x1 < 0, showing that x1 is reduced.

As a consequence of the lemma, if x is strongly reduced, so is xk for every k. The
condition that x be strongly reduced is necessary. For example, x = 105

58
has maximal

expansion [(1, 2, 10)∞]z when z = 7
4
. In this case x satisfies the quadratic equation 348x2 −

572x+ 105 = (6x+ 1)(58x− 105). Thus, x = −1
6
, so x is reduced, but not strongly reduced.

In this case, x1 = 203
94

, which satisfies 188x2 − 124x − 609 = (2x + 3)(94x − 203). Since
x1 = −3

2
, x1 is not reduced. It is not important here that x be rational. For example,

x = [(1, 2, 5)∞]7/4 = 34
47

+ 11
94

√
79 has the same property: x is reduced but x1 is not reduced.

However, if x =
√

3 + 1 and z = 11
5

then x = [(2, 3, 418, 3)∞]z. Here x is reduced but not
strongly reduced. Nevertheless, all xk are reduced. Thus, when x is reduced but not strongly
reduced, x1 may or may not be reduced.

Theorem 30. If x is strongly reduced, then x is purely periodic. Moreover, − z
x

is also
strongly reduced.

Proof. We proceed by contradiction to show that x must be purely periodic. So suppose
that x is periodic with period k, but not purely periodic. Then for some j ≥ 1, x =
[a0, a1, . . . , aj−1, (aj, . . . , aj+k−1)∞]z, and aj−1 6= aj+k−1. By periodicity, xj = xj+k, so

z

xj−1 − aj−1
=

z

xj+k−1 − aj+k−1
.

Thus,
z

xj−1 − aj−1
=

z

xj+k−1 − aj+k−1
,

or xj−1 − aj−1 = xj+k−1 − aj+k−1. We write this in the form aj−1 − aj+k−1 = xj−1 − xj+k−1.
Being reduced, −1 < xj−1 − xj+k−1 < 1. Since aj−1 − aj+k−1 is an integer, it must be that
aj−1 = aj+k−1, a contradiction.

For the second part, we prove that if

x = [(a0, a1, . . . , ak−1)∞]z, then − z

x
= [(ak−1, ak−2, . . . , a0)∞]z.
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We have xj = z
xj−1−aj−1

, which we can rewrite − z
xj

= aj−1 − xj−1. Since xj is reduced, this

shows that for all j,
⌊
− z
xj

⌋
= aj−1, with the interpretation that when j = 0 the floor is ak−1.

Thus, the maximal expansion of − z
x

has partial quotients ak−1, ak−2, . . . , a0, ak−1, . . ..

The converse of Theorem 30 need not be true, as shown in a previous example. That is,
if x = 203

94
and z = 7

4
, then the maximal expansion of x is [(2, 10, 1)∞]z. Thus, x has a purely

periodic maximal expansion. However, x is neither strongly reduced nor even reduced since
x = −3

2
. Also, in this case, − z

x
= 7

6
= [(1, 10, 2)∞]z, but this is not the maximal expansion

of 7
6
. The maximal expansion is [1, 10, (3)∞]z. Similarly, if x = [(2, 5, 1)∞]7/4 = 13

27
+ 11

54

√
79

then x is purely periodic, x < −1, and in this case, − z
x

= 13
47

+ 11
94

√
79 does not even appear

to be periodic.
If x is reduced but not strongly reduced, one can ask whether the maximal expansion of

x still has to be purely periodic. This will be the case, by the same proof as in Theorem
30, if all xk are reduced. However, if any xk < −1 then x need not be purely periodic.
For every z > 1 which is not an integer, one can construct such x. If we set a = bzc and
let y = [(a+ 1, b, a)∞]z then for sufficiently large b and an appropriate k, x = y + k =

[a + 1 + k, (b, a, a+ 1)∞]z will be reduced but not purely periodic. To see this, from the
quadratic that y satisfies, one can easily calculate that y = − z

a
+ O(1

b
) < −1 for large b.

Thus, for sufficiently large b, adding k =
⌊
z
a

⌋
to y gives a reduced x which is not purely

periodic. One should also show that the maximal algorithm of x is as stated. Since a + 1
and b are larger than z, this follows if b = b[(b, a, a+ 1)∞]zc, or [0, a, a+ 1, b]z < 1. Now

[0, a, a+ 1, b]z =
z

a+ z
a+1+ z

b

=
(a+ 1)z + z2

b

a(a+ 1) + az
b

+ z
<

(a+ 1)z + z2

b

(a+ 1)z + z2

b
+ z

< 1,

as desired.

6 Periodic expansions for
√
n

As shown by Anselm and Weintraub [1, Theorem 2.2], every quadratic irrational has a
periodic cfz expansion when z is a positive integer. This follows from the well-known fact
that x has a periodic cf1 expansion if and only if x is a quadratic irrational, coupled with
formula (2.3) in the form

[a0, a1, a2, a3, . . .]1 = [a0, za1, a2, za3, . . .]z. (6.1)

However, right hand side of (6.1) is only a maximal expansion when the even terms satisfy
a2k ≥ z for all k.

When z is rational but not an integer, formula (6.1) only produces a proper cfz expansion
when za2k+1 is an integer for all k. For example,

√
2 = [1, 2, 2, 2, . . .]1 so with z = 3

2
we have√

2 = [1, 3, 2, 3, . . .]z = [1, (3, 2)∞]z. Formula (6.1) does not apply if, say, z = 4
3

instead. In
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this case,
√

2 has maximal expansion [1, (3, 6, 14, 1, 2, 2)∞]z. The algorithm for producing
partial quotients matters: The minimal expansion of

√
2 does not appear to have a periodic

expansion when z = 4
3
. It seems likely that

√
8 does not have a periodic expansion when

z = 3
2
, regardless of the algorithm used to generate the partial quotients. As Anselm and

Weintraub [1] mention, although all quadratic irrationals have periodic cfz expansion for
integral z, many (most?) do not appear to have periodic maximal cfz expansions. For
example,

√
2 with z = 8,

√
3 with z = 7, and

√
5 with z = 5 do not become periodic within

10,000 steps of the max algorithm.
When z is rational, and x =

√
n has a periodic cfz expansion, the formulas in Theorem

15 have additional structure.

Lemma 31. If z is rational and
√
n has a periodic cfz expansion of tail length j and period

length k then

n(qj+k−1qj−2 − qj+k−2qj−1) + pj+k−1pj−2 − pj+k−2pj−1 = 0, (6.2)

pj+k−1qj−2 + pj−2qj+k−1 − pj+k−2qj−1 − pj−1qj+k−2 = 0. (6.3)

In the case where j = 1, a0 = a, n = a2 + b, these are equivalent to

qk − aqk−1 − pk−1 = 0, (6.4)

bqk−1 + aqk − pk = 0. (6.5)

Proof. These are easy consequences of formulas (3.11) and (3.12).

Burger and his coauthors [2] show that quadratic irrationals have infinitely many positive
integers z for which the maximal cfz expansion has period 1. Nevertheless, as Anselm and
Weintraub mention [1], odd period lengths tend to be rare for

√
n. Several cases of odd

period length exist, including infinite families such as
√
a2 + b = [a, (2a)∞]b. However, these

only occur when z is an integer.

Theorem 32. If z is rational and
√
n has a cfz expansion with odd period length then z is

an integer.

Proof. Suppose that
√
n has a periodic cfz expansion with period 2k + 1,
√
n = [a0, a1, . . . , aj−1, (aj, . . . , aj+2k)∞]z.

For convenience, we assume that j ≥ 2, the proof being slightly easier if j = 0 or j = 1. We
view equation (6.2) as an equation in z. If j is even, then by Theorem (4), the terms in (6.2)
have degrees j + k − 1, j + k − 2, j + k − 1, and j + k, respectively. That is, the term of
highest degree is pj+2k−1pj−1. If j is odd, then the degrees are j + k − 3, j + k − 2, j + k,
and j + k − 1, with pj+2kpj−2 being the term of highest degree. In each case, the term of
highest degree is the product of two p’s of odd index. Again by Theorem (4), this means
that the left hand side of the equation in (6.2) is a polynomial with leading coefficient ±1
and integer coefficients. By the rational root theorem, any zero of this polynomial must be
an integer.
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With the general theory of the previous section, we can describe some of the patterns in
periodic expansions for

√
n, at least in the case where z is rational and the periodic part of

the expansion is strongly reduced. Again, these results closely parallel those of Anselm and
Weintraub [1].

Theorem 33. Suppose that z is rational and
√
n has a strongly reduced periodic maximal

expansion, with period length k. Let a = b
√
nc.

(a) If z < a+
√
n then

√
n = [a, (a1, · · · , ak−1, 2a)∞]z.

(b) If z > a+
√
n then

√
n = [a, a1, (a2, · · · , ak, a1 + h)∞]z where

h =
⌊

z
a+
√
n

⌋
.

Thus, if
√
n has a strongly reduced periodic expansion, then the tail in the maximal expansion

has length 1 or 2.

Proof. If z < a+
√
n and we set y = a+

√
n then y > z, and since z is rational, y = a−

√
n

satisfies −1 < y < 0. Thus, y is strongly reduced and periodic, so it must be purely periodic.
Since byc = 2a, the result follows.

Next, suppose that z > a +
√
n and set h =

⌊
z

a+
√
n

⌋
. We know

√
n has a maximal

expansion [a, a1, x2]z, where a1 is the floor of x1 = z√
n−a . Now x2 = z

x1−a1 > z and x2 = z
x1−a1 .

But x1 = z
−
√
n−a < −1 so z

−1−a1 < x2 < 0. Since a1 ≥ bzc, −1 < x2 < 0 so x2 is strongly
reduced, and consequently, purely periodic. It remains to show that ak+1 = a1 + h. By
the proof of Theorem 30 with j = 2 we have ak+1 − a1 = xk+1 − x1. Thus, ak+1 − a1 =
z

a+
√
n

+ xk+1 = h since ak+1 − a1 is an integer and −1 < xk+1 < 0.

In the first case of Theorem 33, as in the classical case (z = 1) and in [1], more structure
is present.

Theorem 34. Suppose that z is rational and
√
n has a strongly reduced periodic maximal

expansion, with period length k. Let a = b
√
nc and assume that z < a+

√
n. Then

√
n = [a, (a1, · · · , ak−1, 2a)∞]z,

where for each j with 1 ≤ j ≤ k − 1, aj = ak−j. That is, the sequence a1, a2, . . . , ak−1 is
palindromic.

Proof. Setting x = x0 = a +
√
n we have x1 = z

x0−2a = z√
n−a . This means that − z

x1
=

−(−
√
n − a) = x. By Theorem 30 the partial quotients of x1 are the reverse of the partial

quotients of x. That is,

(a1, a2, . . . , ak−1, 2a) = (ak−1, ak−2, . . . , a1, 2a),

and the result follows.
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If
√
n does not have a strongly reduced expansion, the results of Theorem 34 may or may

not hold. For example,

√
5 = [2, (4, 1, 6, 11180, 6, 1, 4, 4)∞]20/17

has palindromic behavior but as previously noted,

√
2 = [1, (3, 6, 14, 1, 2, 2)∞]4/3,

and the palindromic pattern is not present.
Case (a) of Theorem 33 can fail, as well. That is,

√
n might have a periodic expansion

with a tail of size 1 but the period might not end with 2a. For example, if z = 21
8

then

√
5 = [2, (11, 21, 2, 3)∞]z.

This example is part of an infinite family:

√
k2 + 1 = [k, (2k2 + k + 1, 4k2 + 2k + 1, k, 2k − 1)∞]z (6.6)

when z =
4k2 + 2k + 1

4k
. There are also examples with a tail longer than 2 when the tail is

not strongly reduced. Among them are

√
34 = [5, 2, 3, (12, 4, 117, 4)∞]z when z =

9

4
, (6.7)

√
29 = [5, 8, 3, 4, (12, 5, 688, 5)∞]z when z =

24

7
, (6.8)

√
178 = [13, 4, 3, 1, 1, (1, 2, 3, 2, 1, 2, 39, 2)∞]z when z =

3

2
. (6.9)

There is a simplification for general periodic expansions with tail length 1, if they have
the palindromic behavior of Theorem 34.

Lemma 35. As free variables, if aj = ak−j for 1 ≤ j ≤ k−1 and ak = 2a0 then qk−aqk−1−
pk−1 = 0. That is, formula (6.4) of Lemma 31 is a polynomial identity in this situation.

Proof. This is a simple consequence of the polynomial identities in Theorem 3.

Consequently, by Theorem 16,
√
n will have a cfz expansion as in Theorem 34 if and only

if formula (6.5) is satisfied. If aj ≥ z for all j ≥ 1 then this will be the maximal expansion
for
√
n. From the first several cases of formula (6.5) we have the following expansions.

Theorem 36. Let n = a2+b where 1 ≤ b ≤ 2a and let z be rational with 1 ≤ z ≤ 2a. Strongly
reduced expansions for

√
n satisfying formula (6.5) of period up to 6 have the following forms.

(a)
√
n = [a, (2a)∞]z, when z = b,
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(b)
√
n = [a, (c, 2a)∞]z, when z = bc

2a
, for some c ≥ 1,

(c)
√
n = [a, (c, c, 2a)∞]z, when z2 + (2ac− b)z − bc2 = 0 for some c ≥ z,

(d)
√
n = [a, (c, d, c, 2a)∞]z, when (2a+ d)z2 + 2c(ad− b)z − bc2d = 0 for some c, d ≥ z,

(e)
√
n = [a, (c, d, d, c, 2a)∞]z, when

z3 + (2ac+ 2ad+ d2 − b)z2 + c(2ad2 − bc− 2bd)z − bc2d2 = 0

for some c, d ≥ z,

(f)
√
n = [a, (c, d, e, d, c, 2a)∞]z, when

(2a+ 2d)z3 + (4acd+ 2ade+ d2e− 2bc− be)z2

+ 2c(2ad2e− bcd− 2bde)z − bc2d2e = 0

for some c, d, e ≥ z.

By Theorem (3) we may write formula (6.5) in the form

bqk−1(a, a1, . . . , ak−1)− zqk−1(a1, . . . , ak−1, 2a) = 0,

from which it follows that for fixed integers a1, . . . , ak−1 and fixed z we have a linear Dio-
phantine equation of the form bx − ay = c. This allows for the construction of families
of n for which

√
n has small period length. For example, in part (d) of Theorem 36 if

we let z = 5
3
, c = 2, d = 6, the resulting equation is 276b − 410a = 150, with solution

a = 3 + 138t, b = 5 + 205t. As a consequence, for all nonnegative integers t we have√
(3 + 138t)2 + 5 + 205t = [138t+ 3, (2, 6, 2, 276t+ 6)∞]5/3.

For a given z ≥ 1, if there is an n for which
√
n has a periodic expansion of length k as in

Theorem 34, then this construction shows that there are infinitely many n for which
√
n has

period length k.

Conjecture 37. For every rational z ≥ 1 and every k ≥ 1, where z is an integer when k
is odd, there are infinitely many integers n for which

√
n has a maximal cfz expansion with

palindromic behavior as in Theorem 34.

This conjecture is obviously true for periods of length 1 or 2, and not too hard to show
for period length 3.

For period length 4, if n is fixed, Pell’s equation comes into play. We have the following
theorem.

Theorem 38. Let n = a2 + b, where 1 ≤ b ≤ 2a. Then
√
n has maximal expansion of

the form [a, (c, d, c, 2a)∞]z if and only if (x, d) is a positive solution to the Pell equation
x2 − nd2 = b2 for some integer x. When d is such a solution, an expansion will exist for
z = c

2a+d
(x+ b− ad), and c is chosen so that 0 < z ≤ min(2a, d).
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Proof. The discriminant for (2a + d)z2 + 2c(ad − b)z − bc2d is nd2 + b2, leading to the Pell
equation. When the Pell equation has a solution, solving (2a+ d)z2 + 2c(ad− b)z− bc2d = 0
for z gives the form of z above. The condition on c is needed for the expansion to be strongly
reduced.

Corollary 39. For each n = a2 + b with 1 ≤ b ≤ 2a, there are infinitely many strongly
reduced maximal expansions

√
n = [a, (c, d, c, 2a)∞]z.

Proof. There are infinitely many solutions to the Pell equation x2 − nd2 = b2. As d goes to
infinity, x+b−ad

2a+d
approaches

√
n− a < 1 so there are infinitely many d with x+b−ad

2a+d
< 1. This

guarantees that for each such d there exist c and z fulfilling the conditions of Theorem 38.
In particular, c = 1 will work. There is also a smallest c making z ≥ 1, and for this c, z ≤ 2a
so there are infinitely many expansions with z ≥ 1 as well.

The condition on c in Theorem 38 is not best possible. For example, when a = b =
1, n = 2, the Pell equation is x2 − 2d2 = 1. One solution to this equation is d = 12, x = 17,
giving z = 3

7
c. We have strongly reduced expansions

√
2 = [1, (c, 12, c, 2)∞]z for 1 ≤ c ≤ 4.

When c = 5, we still have maximal expansion
√

2 = [1, (5, 12, 5, 2)∞]z, with z = 15
7
> 2a.

When c = 6, the floor of z is still 2 but the maximal expansion for
√

2 does not have period
4.

When z > 2a, strongly reduced periodic expansions have tail length 2. The formulas in
these cases are more complicated because Lemma 35 no longer applies. We give a short list
below, of the requirements for period lengths up to 3.

Theorem 40. Let n = a2 + b where 1 ≤ b ≤ 2a and let z be rational with z > 2a. Strongly
reduced expansions for

√
n with tail length 2 and period at most 3 have the following forms.

(a)
√
n = [a, c, (d)∞]z, when

(2a− 2c+ d)z − 2ac2 + 2acd = 0,

z2 − bz + bc2 − bcd = 0,

for some c, d ≥ z,

(b)
√
n = [a, c, (d, e)∞]z, when

(2ae− 2cd+ de)z − 2ac2d+ 2acde = 0,

dz2 − bez + bc2d− bcde = 0,

for some c, d, e ≥ z,

(c)
√
n = [a, c, (d, e, f)∞]z, when

(2a− 2c+ d− e+ f)z2 + (−2ac2 + 2acd− 2ace+ 2acf + 2aef − 2cde+ def)z

− 2ac2de+ 2acdef = 0,

z3 + (de− b)z2 + (bc2 − bcd+ bce− bcf − bef)z + bc2de− bcdef = 0,

for some c, d, e, f ≥ z.
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Proof. In each case, the top condition is equation (6.3), with the tail length j = 2. The
bottom equation is the result of a times equation (6.3) subtracted from equation (6.2), after
replacing n by a2 + b.

For small period, these formulas allow for the construction of infinite families of expan-
sions. We mention the following.

√
9m2 − 2m = [3m− 1, 24m− 6, (24m− 4)∞]16m−4, (6.10)

√
9m2 − 3m+ 1 = [3m− 1, 8m2 − 2m, (24m2 − 6m)∞]12m2 , (6.11)
√

9m2 −m = [3m− 1, 9m− 2, (30m− 6, 9m− 1)∞] 15
2
m− 3

2
, (6.12)

√
4m2 −m = [2m− 1, 8m− 3, (12m− 4, 8m− 2)∞]6m−2. (6.13)

The first two of these fit into a doubly infinite family:
√
n = [a, c, (d)∞]z, for all positive

integers m and k with n = a2 + b where a = m(4k − 1)− k, b = m(4k − 1), c = 2m(4m−
1)(4k − 1), d = 2m(4m − 1)(4k − 1) + 2m, z = 4m2(4k − 1). There appear to be a large
number of formulas similar to (6.12) and (6.13).

In Theorem 40 parts (a) and (b), Pell’s equation again plays a role when n is fixed.

Theorem 41. If n = a2 + b then
√
n = [a, c, (d)∞]z provided that nd2 + b2 is a square and

c =
nd+ ab+ a

√
nd2 + b2

2n
and z =

b2 + b
√
nd2 + b2

2n

are both integers. If 2a < z ≤ min(c, d), then this is a maximal expansion.

Proof. Adding b times the top equation to 2a times the bottom equation in Theorem 6.12
(a) gives the condition z = b

2a
(2c− d). This coupled with (2a− 2c+ d)z − 2ac2 + 2acd = 0

gives a quadratic equation in c with positive solution c =
nd+ ab+ a

√
nd2 + b2

2n
, implying

that z =
b2 + b

√
nd2 + b2

2n
. Thus, in order for

√
n to be [a, c, (d)∞]z, both c and z must be

integers, which also requires nd2 + b2 to be a square. If c and z are integers in the given
form, it follows that the equations in Theorem 40 (a) are satisfied.

We conjecture that there are integers c and z satisfying the requirements of Theorem 41
for any non square n, though we do not have a proof. However, with part (b) of Theorem
40, we have more freedom.

Theorem 42. For each positive integer, n, not a square, there are infinitely many c, d, e for
which

√
n = [a, c, (d, e)∞]z. In particular, with n = a2 + b, 1 ≤ b ≤ 2a, if m2n+ 1 = k2 then√

n has maximal expansion [a, c, (d, e)∞]z with c = k−1+am, d = bm, e = 2(k−1), z = bm,
for all solutions with bm > 2a.
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Proof. Letting d = mb, then nd2 + b2 = b2(nm2 +1), and nm2 +1 is a square infinitely often.
Suppose that nm2 + 1 = k2 for positive integer k. If we write

z =
be(b+

√
nd2 + b2)

2nd
=
eb(k + 1)

2mn
and c =

e

2
+
ae(k + 1)

2mn

then a, b, c, d, e, z formally satisfy the equations in Theorem 40 (b). Note that c = 1
2
(e+ 2az

b
).

Since b ≤ 2a, c ≥ 1
2
(e + z). Thus, if e can be selected so that e ≥ z, 2a < z ≤ d and c

is an integer, then the maximal expansion of
√
n will be [a, c, (d, e)∞]z. Let (m, k) to be a

positive integer solution to the Pell equation x2 − ny2 = 1 with k > 1. If e = 2(k − 1) then

z =
2b(k2 − 1)

2mn
=

2bm2n

2mn
= bm = d and c = am + k − 1 > am − 1 + m

√
n > 2am − 1 so

c ≥ bm = z.

Cases of expansions with longer tails or longer periodic part become more complicated
but presumably they could be investigated with similar techniques.
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