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Evans has conjectured the vaIue of a certain character sum. The conjecture is 
confirmed using properties of Gaussian hypergeometric series which are well known 
for hypergeometric series. Several related questions are discussed. ,c I986 Academic 

Press, Inc. 

1. INTRODUCTION 

Given the finite field GF(p), let # be the usual quadratic residue charac- 
ter 

(b(x)= 5, 1 
0#x~GF(p) isasquare, 
O#xeGF(p) isnotasquare (1.1) 

0, x = 0. 

In [6, Eq, (20)] the following character sum evaluation was conjectured 

where p = c2 + Z& uniquely for p = 1 or 3 (mod 8). In this paper we verify 
(1.2) and generalize (1.2) for p = 1 (mod 4). 

Our basic idea is to recognize the left-hand side of ( 1.2) as a Gaussian 
analogue of a generalized hypergeometric series. It is well known [ 1 J 
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which generalized hypergeometric series are evaluable. The Gaussian 
analogues for evaluations and transformations of 1 F1’s and 3 F*'s are given 
in [8]. Thus we consider (1.2) as an exercise in generalized hypergeometric 
series. We believe this is a powerful technique for character sum 
evaluations. 

First, we recall some notation and conventions. Given a multiplicative 
character A of GF( p), we extend ,4 to all of GF( p) by deIining A(0) = 0. 
Let 6 be the function on GF(p) whose only non-zero value is 6(O) = 1. 
Then the multiplicative characters of GF( p) and 8 form a basis for com- 
plex-valued functions on GF(p). Let 6 be the trivial multiplicative charac- 
ter, s(x) = 1, x # 0. 

For multiplicative characters ,4 and B let G(A) [9, p. 901 denote the 
Gauss sum of ,4 and J[A, B] denote the Jacobi sum of ,4 and B. We shall 
frequently use the basic facts about these sums: the reflection formula [9, 
P. 921 

G(,4)G(A)=pA(-l), A #G (1.3) 

the Jacobi sum evaluation [9, p. 93, Theorem 11, 

(1.4) 

and the Hasse-Davenport formula [ 12, p. 477, Eq. (3)], 

G(A")G(q+-G(qY-l)=A"(n)G(A)-.G(Aqf-l), 

where CP is a multiplicative character of GF(p) of order n. 
In Section 2 we detine Gaussian hypergeometric series and give the 

“integral representation” for such series which are relevant to (1.2). By 
applying a 3 Fz evaluation, we verify (1.2) for p = 1 (mod 4) in Section 3. In 
that section, a simple proof of (1.2) for p = 5 or 7 (mod 8) from a 3 FI trans- 
formation is also given. For all values of p the conjecture is verilied in Sec- 
tion 4. For p = 1 (mod 4) (1.2) can be generalized. We state such a result in 
(5.3). 

2. THE GAUSSIAN ANALOGUE OF A JFz 

Recall that a s Fz generalized hypergeometric series is delined by 
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where (u)~ = QQ + k)/Z(a). This can be rewritten with binomial coefficients 
as 

where a is a constant independent of x. We shall see that the left-hand side 
of (1.2) is a Gaussian analogue of (2.2). First we need the Gaussian 
analogue of the binomial theorem. 

PROPOSITION 2.3 (Gaussian binomial theorem). Let A be o muf- 
tipiicative character of GF( p). For .x E GF( p), 

where the sum is over all multiplicative characters x of GF(p), and 

Prooj Since A( 1 +.x) is a complex function on GF( p), clearly there is 
an expansion 

A( 1 + x) = b(x) + x C-(X, A 1 x(.x) 
,t 

for some complex numbers c(x, A). By orthogonahty, 

so 

It is clear that Proposition 2.3 also holds for GF(q), where q = p”. 
Moreover, if x and Af # 8, we have 

which corresponds to 

n! 
= k!(n -k)!. 

(2.5) 
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More information on the analogy can be found in [8, Chap. 21. 
Three simple formulas we will find useful are 

and 

(2.7) 

(2.8) 

DEFINITION 2.9. For multiplicative characters A, B, C, D, and E of 
GF( p) and x e GF( p), let 

There are two minor differences with (2.2). The constant u has been 
replaced with p/( p - 1). The index set k in (2.2) has been replaced by mul- 
tiplicative characters 1. These characters form a tinite cyclic group, thus 
can be considered as points on a circle. Since ~(0) = 0 for all x; in 
Definition 2.9, 3 F2(0) = 0, while in (2.1), 3 F2(0) = 1. One might ask why 
(2.1) is not used to define a Gaussian 3 F2 as a sum of quotients of Gauss 
sums. These two detinitions of Gaussian 3Fz’s do not agree because of the 
exceptional cases in the Jacobi sum evaluation. Definition 2.9 leads to more 
compact results because the Gaussian binomial theorem (Proposition 2.3) 
is easier to state with Jacobi sums than with Gauss sums. 

Next we need a result which is an analogue of a double integral represen- 
tation of a terminating 3 F2. 

PROPOSITION 2.10. For multiplicative characters A, B, C, D, and E oj 
GF(p) andO#tEGF(p), 

I= 2 A(l+x)B(l+y)C(x+ty)D(.x)E(.~‘) 
.r,yEGFcp) 

= p2BCDE( - 1) 3 F2 (C+gf 4). 

Proof Because D(0) = 0 = E(O), we can assume x # 0 # -v. Expand 
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A( 1 + x), B( 1 + Y), and C(x + Q) = C(x) C( 1 + ~JJ/X) by the binomial 
theorem to obtain 

By orthogonality the x and y sums are zero unless jXDa = a and YE/? = E, 
so 

z=$ig;)(&y)(g)~(rJ 
The result follows from (2.7) and (23). 

3. THE CONJECTURE AS A 3F2 EVALUATION 

Certain generalized hypergeometric functions can be evaluated as 
quotients of gamma functions [ 11. The Gaussian analogous of these 
evaluations should have quotients of Gauss sums, or products of Gaussian 
binomial coefficients. From Proposition 2.10, any Gaussian 3 F2 evaluation 
gives a character sum evaluation. The conjecture (1.2) will be a special case 
in which the Gaussian binomial coeffkients themselves are evaluable. 

There are four major jF2 evaluations [4, Sect. 4.41. All of them have 
Gaussian analogues [8, p. 1261: 

Saalschtitz’s theorem, 

Dixon’s theorem, 

Watson’s theorem, 

and Whipple’s theorem, 
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Proposition 2.10 implies that (1.2) is equivalent to an evaluation of 

which is none of the above four J F2’s. 
However, Whipple has also evaluated [ 1, p. 97, Ex. 3(i)] 

F 
C 

$,4+x, i-x 
3 2 

I J 
-1 

1 - x, 1 + x 

=rc*x/&sin7cxI(~x+~)lJ+x+~)Q~-+x)~(~-$x). (3.1) 

We need the Gaussian analogue of this evaluation for x = 0. Note the 
eights in (3.1) and in (1.2). 

Onewaytoprove(3.l)istoputu=&b=++x,c=&-x,andx= -1in 
the quadratic 3F2 transformation [ 1, p. 97, Ex. 4(iv)] to obtain 

F 2 
;, ; + x, $ - x L3L 

42 4> 2 
3 

l-x, 1+x l-x,1+x (3.2) 

The right-hand side of (3.2) is evaluable by Whipple’s theorem [l, p. 161 
for a 3 F2( 1). We concentrate on the Gaussian analogue of this proof for the 
rest of the section. It will prove (1.2) if p = 1 (mod 4). 

The Gaussian analogue of the 3F2 quadratic transformation is known 
[S, p. 70, Theorem 5.231. We do not state it here, because the general case 
involves several extra terms for special values of the parameters. The 
Gaussian analogue of (3.2) for x = 0 that results is 

(3.3) 

The &sum is the Gaussian analogue of right-hand side of (3.2) for x = 0. In 
fact, if 4 = LX* is a square (p = 1 or 5 (mod 8)), the Hasse-Davenport for- 
mula implies that 

(3.4) 

and the o-sum is a 3F2. In this case &2) = CC( - 1) and & - 1) = 1 so that 
(3.3) becomes 
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It remains to evaluate the Gaussian sFz( 1) by WhippIe’s theorem. The 
special case that we need is [8, p. 83, Theorem 5.45(ii)], 

c$isnotasquare(P=5mod8) 

(3.6) 
cx$=t?2 (ps 1 mods). 

So, if P E 5 (mod 8), (3.5), (3.6) and Proposition 2.10 impiy that 1= P and 
the conjecture is veritied. For P = 1 (mod 8), we see that 

Clearly f3 = c%I and (2.6) imply 

so 

(3.7) 

(3.8) 

which, by Proposition 2.3, reduces to 

z= p +J[#, @y + %I[#, fl]? (3.9) 

It is easy to show that J[& @] = c + diqB, C, de Z. (In fact, /J[‘= p proves 
p = c2 + 2&P.) s ince $= 4, J[#, (‘?I = c - did. Thus (3.9) is 

I=p+(~-id$)~+(c+di$)~=4c~-p. (3.10) 

This verihes (1.2) for p = 1 (mod 8). 
There is an easy proof of (1.2) for p E 5 or 7 (mod 8). In this case we 

shall show that 

(3.11) 
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Then (3.11), (3.3), Proposition2.10, and &-2)= -1 show that (1.2) 
holds. 

The idea of our proof of (3.11) is to find an analogue of a 3 F* transfor- 
mation which maps the &sum to itself. Recall that the &sum corresponds 
to 

and that all Gaussian hy~rgeometric series correspond to terminating 
hypergeometric series. So if f( x) is the Gaussian analogue of 

Kummer’s linear transformation [ 1, p. 4, Eq. (1 )], should imply that 
‘y(x) = f( 1 - x),” up to correction terms. In fact, let 

(3.12) 

The Gaussian analogue of Kummet’s linear transformation is (,4 = 4, B = a 
in [8, p. 109, (7.7)]) 

.fC~~=44~-~~jl~ -xl-&l1 -Xl#C--2YP 

-4~-~hJ+qw~q5~~ --~l/P-t&XYP. (3.13) 

If we multiply (3.13) by #(x) #(l - x ) , sum on x, use the de~nition of the 
binomial coeflicient in Proposition 2.3, and rearrange the &sums, we have 

Thus, if#(-2)= --I, i.e.,p=5 or 7(mod8), we have (3.11). 
E. Lehmer also verified the p z 5 or 7 (mod 8) cases by a change of 

variables in (1.2). Because (3.13) follows from a change of variables in the 
“integral representation” for f(x), our proof is essentially the same. 

In the next section we give a proof of (1.2) for all p. The function f(x) 
defined by (3.12) will be important. 

4. A PROOF OF THE CONJECTURE 

In Section 3 we used Whipple’s 3Fz( 1) evaluation to verify the conjecture 
for p = 1 or 5 (mod 8). Our proof did not work for p = 3 or 7 (mod 8) 
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because we could not use the Hasse-Davenport formula to reduce the 
right-hand side of (3.3) to a Gaussian 3Fz( 1). In this section we give 
another proof of (3.1) for x = 0 whose Gaussian analogue does not depend 
upon p. 

A theorem of Clausen is [I, p. 86, (4)], 

If X=/I= + and X= -1, the zFI is evaluabIe by Kummer’s theorem [l, 
p. 91 to give (3.1) for x = 0. For Gaussian analogues, this proof will work 
as long as the analogue of 4, U, exists. So again it appears that we need 
p E 1 or 5 (mod 8). H owever, by applying a linear z Fi transformation [I, 
p. f 0, Eq. (2.4, (f )] our special case of (4.1) becomes 

Clearly 

(4.31 

so that a Gaussian anaIogue of this lF, can be given without referring to LY 

So there should be a Gaussian analogue of (4.2) with (4.4) reptacing the 
zF,. Moreover, (4.2) looks attractive because of the square which also 
occurs in (1.2) in e’. 

The appropriate Gaussian analogue of (4.2) with u = x/(x - I) is [8, 
p. 94, Proposition 6.141, 

Ifweputu=sand 
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then (4.5) becomes 

and we need only evaluate A in (4.6). It is an analogue of a 2F’1(l/2) 
evaluation. The next proposition gives the analogue of the integral 
representation for A. 

PROPOSITION 4.8. Z’ A is defined by (4.6), then 

ProojI In (4.6) use the Jacobi sum delmition of ( d$) = (?j) x( - 1) to 
lind 

or 

(4.9) 

Clearly (2.7) and the binomial theorem imply 

’ 
8.x(1 -x) ’ 

x#O, 1. (4.10) 

so 

(4.11) 

If x = (1 + ~)/2, since d2(x) = 1, x # 0, we have 

The y = -1 term contributes #(-2)/p to A. 1 
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~OPOSITI~N 4.13. 

p = 5 ur 7 (mod 8) 
~=1~3(mod8), 

where p = c’ + 2d2. 

Prooji Clearly 

which implies 

(4.l5) 

Also, similarly, 

x [l +#(l -y)] #(l-2YZ)= z #(1-2(l -KJ)*). (4.16) 
.vEGF(P) weGF(pl 

Since #(1-2(1-~~)~)=#(-2+4~~-~‘), w#O, 

=4(-l)-#(-2)+&-l) z #(~~-4~~+2). (4.17) 
>ve GF(p) 

The Brewer polynomial Vd( w, 1) [3, Sect. 51 is precisely w4 - 4~~ + 2, so 
[3, Sect. 5.21, (4.17), and (4.15) imply 

~~~~~~~(l-Y)~(l-2Y~)=~(-l)+~(-l)~4. (4.18) 

The value of Ad, in [ 3, Theorem .5.17] compietes the proof. fl 

To complete the proof of (1.2), use Propositions 4.13, 4.8, and 2.10 and 
(4.7). 
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5. CONCLUDING REMARKS 

There are other Gaussian jFz(-l) evaluations [8, Chap. 61. For 
example, if p = 1 (mod 4), then a Gaussian analogue of (3.1) is 

1 if ac$A is not square, 
Z 

fAD)(- I) (z)((f) + AD(- l)(T)(!D) +i if adA = D’. 

(5.1) 

Equation (5.1) follows from Whipple’s 3Fz( 1) evaluation as in Section 3. 
We have assumed in (5.1) that p = 1 (mod 4) and A # a, qS, or ~4. The 
binomial coehicients can be reduced to Gauss sums 

so that if aq4A = D2, (5.1) becomes (a( - I) = d(2) = A( - l)), 

This is the analogue of (3.1) since D corresponds to 3/8 + x/2, p 
corresponds to rc, and d(2) corresponds to $. These Gaussian binomial 
coehicients are not evaluable, for general A. In fact, many of the results of 
[2] and [3] can be interpreted as evaluating special Gaussian binomial 
coefficients. 

Any JF2 evaluation is a character sum evaluation. Dixon’s theorem for a 
jF2 is equivalent to the Gaussian analogue of the two-dimensional Selberg 
integral [5]. We mention the Gaussian analogue of a “strange” 3Fz 
evaluation [7, Eq. (1.1 )] 
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F 3 2 

p & 1 (mod 3) 

p= 1 (mod 3) 

where 4 and $ are the quadratic and cubic characters. Special choices of A 
and B could lead to evaluations such as (1.2). 

The analogy between Gauss sums and gamma functions has been made 
several times previously [5,9, 10, 121. A systematic study of the properties 
of the Gaussian hypergeometric function is [8]. The properties of these 
functions should have implications for representation theory [ 111 and the 
geometry of curves [lo]. 
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