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Abstract.  In this paper, we investigate periodic integer solutions {an} to

an  =  
 !

"

#
##
#
$

r(an%1 + an%2), if r(an%1 + an%2) is an integer,

an-1 + an-2,  otherwise,

where r is a rational number.  We show that solutions can only exist if %1 ! r ! 1
2

, and we 

give several infinite families of r’s for which the above recurrence has periodic solutions in 

the integers. 
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Periodic solutions to some

difference equations over the integers.

1. Introduction and main theorems

It is known [1], that the difference equation

(1) an  =  

 !

"

#
#
#
#
#
#
$

an-1 + an-2

2
, if 2|an-1 + an-2,

an-1 + an-2,  otherwise,

with a0 and a1 positive integers has the property that either an is stationary or it is 

unbounded.  It is conjectured [8] that all solutions to

(2) an  =  

 !

"

#
#
#
#
#
#
$

an-1 + an-2

3
, if 3|an-1 + an-2,

an-1 + an-2,  otherwise,

are unbounded except for certain obvious periodic solutions, such as the solutions 1, 1, 2, 

1, 1, 2, …  or  7, 14, 7, 7, 14, 7, ….  Certainly for such difference equations, any solution 

which is not eventually periodic must be unbounded, so the real problem is to classify the 

periodic solutions to such an equation.  This appears to be very difficult.  

Systems such as (1) or (2) can be generalized in many ways.  In [3], periodic 

solutions to an = can%1  % an%2 are studied for various real c.  See [7] and [8] for other 

generalizations.  Here, we consider another generalization of (2), and study the system

(3) an  =  
 !

"

#
##
#
$

r(an%1 + an%2), if r(an%1 + an%2) is an integer,

an-1 + an-2,  otherwise,

where r is some fixed rational number.  Again, it is very difficult to characterize those 

solutions to (3) which are periodic.  Instead, we address a different, easier question:

Can we find other values of r which allow periodic solutions?

For example, if r = 1
5

, the initial conditions a0 = 1, a1 = 1 lead to the periodic solution

1, 1, 2, 3, 1, 4, 1, 1, ….  In fact, the only positive r for which periodic solutions are 

known to exist are 1
2

, 1
3

, and 1
5

.  Although we found no other positive values of r, we do 

have the following result.
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Theorem 1.1  If r > 0 and the difference equation

an  =  
 !

"

#
##
#
$

r(an%1 + an%2), if r(an%1 + an%2) is an integer,

an-1 + an-2,  otherwise,

has a periodic solution, then r = 1
N

 for some integer N " 2.  In particular, 0 < r ! 1
2

.

At present over all r > 0, only finitely many periodic orbits (r, a0, a1) with (a0, a1) 

relatively prime positive integers are known.

Next, we consider cases with r ! 0.  The case r = 0 in (3) is uninteresting so we 

suppose r < 0.  We have the following complement to Theorem 1.1.

Theorem 1.2  If r < 0 and the difference equation

an  =  
 !

"

#
##
#
$

r(an%1 + an%2), if r(an%1 + an%2) is an integer,

an-1 + an-2,  otherwise,

has a periodic solution, then %1 ! r < 0.

The lower bound r = %1 is sharp.  In this case, the equation (3) becomes a linear 

equation, and all nontrivial solutions to (3) are periodic with period 3.  In particular, there 

are infinitely many (%1, a0, a1) with (a0, a1) relatively prime giving a periodic orbit.  

Combining this observation with Theorem 1.1 and Theorem 1.2, the only allowable values 

of r satisfy %1 ! r ! 1
2

 and these bounds are sharp.

The main results of this paper concern constructions of periodic orbits that 

establish the following result.

Theorem 1.3  There are infinitely many %1 < r < 0 for which the difference equation

an  =  
 !

"

#
##
#
$

r(an%1 + an%2), if r(an%1 + an%2) is an integer,

an-1 + an-2,  otherwise,

has a periodic solution.

Our constructions are of two kinds:  A number of isolated cases and several 

infinite families.  A summary of the infinite families is given in Table 5.8.  In our search, 

the smallest value of r > %1 we have found which leads to periodic solutions is r = % 3
4

, 

with a0 = a1 = 1, and period length 16.  The negative value of r we found closest to 0 
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which allows a periodic solution is r = % 1
17

, with initial conditions a0 = a1 = 1, and period 

24.  We do not know if either % 3
4

 or % 1
17

 are best possible for nonlinear equations (3).

One feature of our constructions is that for each fixed r we construct only finitely 

many different orbits (r, a0, a1) with (a0, a1) being relatively prime.  We make the 

following conjecture.

Conjecture 1.4  For any specific value of r, with %1 < r ! 1
2

, the difference equation

an  =  
 !

"

#
##
#
$

r(an%1 + an%2), if r(an%1 + an%2) is an integer,

an-1 + an-2,  otherwise,

has only finitely many relatively prime initial conditions giving purely periodic solutions.

In this regard, the difference equation (3) is reminiscent of the Colatz problem, 

which is given by a first order non%homogeneous difference equation

an  =  

 !

"

#
#
#
#
#
$

an%1

2
, if 1

2
an%1 is an integer,

3an-1 + 1,  otherwise.

This equation is conjectured to have only one periodic orbit for positive integer a0, and 

more generally to have only finitely many periodic orbits over all integers.  See [9] for this 

conjecture and for a general survey on this problem and related problems.

Our approach to finding periodic solutions to (3) is to convert the problem from a 

second order equation to a first order system.  If a periodic solution to (3) exists, then 

there is a matrix, depending on the period, which has 1 as an eigenvalue.  We performed a 

brute force search for such matrices.  Many patterns became obvious in that search.  

Theorem 1.3 is verified by justifying these patterns.  The theoretical details of our 

approach are discussed in detail in Section 2.

In Section 3 we prove Theorem 1.1 and Theorem 1.2.  In Section 4 we give a 

sufficient eigenvector condition on a first order system to give a periodic orbit.  This 

condition is applied in later sections in our constructions.  In Section 5 we give explicit 

constructions, delaying until Section 6 details of the construction of some infinite families.  

Theorem 1.3 follows as a direct consequence of the constructions in Section 5, or by 

Theorem 6.2.  In Section 7 we make concluding remarks on finding more periodic orbits.
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All the infinite families we find are describable in terms of Fibonacci and Lucas 

numbers.  We use Fn to refer to the Fibonacci numbers (with initial conditions F0 = 0,

F1 = 1), and Ln to refer to the Lucas numbers:  L0 = 2, L1 = 1, Ln= Ln%1 + Ln%2 for n " 2.  

Our results lead to some new Fibonacci number identities given in Section 7.

2. Difference equations and matrix products.

As is well%known, second order difference equations can be converted into first 

order systems of difference equations.  For the general second order system (3), an 

associated first order system is the following:

For vectors vn = 
 &

'

(
(
(  )

*

+
+
+

xn

yn

, with integer entries, 

(4) vn  =  
 !

"

#
##
#
$

Bvn%1, if r(xn%1 + yn%1) is an integer,

Avn%1,  otherwise,

where  A = 
 &

'
((
(  )

*
++
+

1 1

1 0
, and B = 

 &

'
((
(  )

*
++
+

r r

1 0
.  We may replace the condition that r(xn%1 + yn%1) is 

an integer by the equivalent matrix product condition that ((1, 1) vn%%%%1) r  be an integer.

For example, using r = 1
5

, the periodic solution given in Section 1 corresponds to 

the following periodic solution to (4):  
 &

'
((
(  )

*
++
+

1

1
, 

 &

'
((
(  )

*
++
+

2

1
, 

 &

'
((
(  )

*
++
+

3

2
, 

 &

'
((
(  )

*
++
+

1

3
, 

 &

'
((
(  )

*
++
+

4

1
, 

 &

'
((
(  )

*
++
+

1

4
, 

 &

'
((
(  )

*
++
+

1

1
, 

 &

'
((
(  )

*
++
+

2

1
, ….  In this 

formulation, vn = 
 &

'

(
(
(  )

*

+
+
+

an+1

an

, where the a’s are in terms of (3).

Given an initial vector v0, every subsequent vn can be obtained from v0 via a 

formula  vn = Mnv0, where Mn is an appropriate product of n A’s and B’s.  Thus, for the 

example above, if v0 = 
 &

'
((
(  )

*
++
+

1

1
, then v1 = Av0, v2 = Av1 = A2v0, v3 = BA2v0,  v4 = ABA2v0, 

and so on.  Note that the matrices multiply v0 from right to left.  That is, to obtain v4,  v0 

is multiplied by A, then A, then B, then A.  Note also that v6 = v0, so B2ABA2v0 = v0.  

As a consequence, we have the following:

Theorem 2.1.  If (4) has a periodic solution of period k, and v0 is a vector in that periodic 

solution, then there is a corresponding matrix M, which is a product of k A’s and B’s, and 

v0 is an eigenvector of M with eigenvalue 1.
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While the proof of Theorem 2.1 is obvious, we mention that the converse is not 

true.  The obstruction is that the sum of the entries in some vj might be divisible by the 

denominator of r at a time when multiplication by A is called for.  For example, if r = % 1
5

, 

then M = A11BA2BA5BA2B has v = 
 &

'
((
(  )

*
++
+

34

21
 as an eigenvector with eigenvalue 1, but the 

sequence which starts 21, 34 continues %11, 23, 12, %7, %1, %8, %9, %17, ..., with the 

terms decreasing monotonically to %,.  Here, BA2B v = 
 &

'
((
(  )

*
++
+

%7

12
 has a sum of entries 

divisible by 5, so (4) calls for a multiplication by B, but the form of M indicates a 

multiplication by A.

When the form of M does not conform to the rules in (4), there are three 

possibilities:  First, as above, the sequence might be aperiodic.  Second, it is possible that 

the initial vector v0 might belong to a preperiod.  For example, if r = % 1
3

 and M = 

A8BA4BA3B, then M has 
 &

'
((
(  )

*
++
+

11

7
 as an eigenvector with eigenvalue 1 and the sequence 

beginning 7, 11 eventually enters the cycle 0, %1, %1, %2, 1, %1.  Finally, it is possible that 

v0 might belong to a periodic solution, but with a different M.  For example, if r = % 1
3

, 

then M = A5B has 
 &

'
((
(  )

*
++
+

2

1
 as an eigenvector with eigenvalue 1.  Here, the sequence which 

starts 1, 2  continues %1, 1, 0, 1, 1, 2, …,  which is periodic, but corresponds to the 

matrix A3BAB rather than A5B.  This can happen if a vector vj has the form 
 &

'
((
(  )

*
++
+

%a

a
, in 

which case Avj = Bvj.

As a consequence of Theorem 2.1 and the remarks above, to find values of r for 

which system (3) will admit a periodic solution, one approach is as follows:

1. Search for a product of matrices A and B that has 1 as an eigenvalue,

2. Find a resulting eigenvector, scaled so as to have relatively prime integer

entries, with bottom component nonnegative,

3. Check that this eigenvector actually corresponds to a periodic solution.

We list the following linear algebra facts (see, for example, [11, Chap.7]), followed 

by the form most useful to us.

Theorem 2.2.

a. If v is an eigenvector with eigenvalue - for a matrix M, then v is an
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eigenvector with eigenvalue -k for Mk.

b. The characteristic polynomial for a 2×2 matrix M has the form

.M(z)  =  det(zI % M)  =  z2 % tr(M) z + det(M),

where tr(M) is the trace of M, the sum of the diagonal entries of M.

c. The characteristic polynomials for MN and NM are the same for any

n×n matrices M and N.  In particular, tr(MN) = tr(NM).

d. The trace is linear.  That is, tr(cM + dN) = c tr(M) + d tr(N), for any

n×n matrices M, N and scalars c, d.

e. Every matrix satisfies its characteristic polynomial.  In particular, for

2×2 matrices M,  M2 % tr(M) M + det(M)I = 0.

Corollary 2.3

a. If v is an eigenvector with eigenvalue 1 for a matrix M, then v is an

eigenvector with eigenvalue 1 for Mk.

b. If v is an eigenvector with eigenvalue %1 for a matrix M, then v is an

eigenvector with eigenvalue 1 for M2k.

c. A 2×2 matrix M has 1 as an eigenvalue if and only if

det(I % M)  =  1 % tr(M) + det(M)  =  0.

d. If M1M2
…Mk has 1 as an eigenvalue, then so does a cyclic permutation,

MkM1M2
…Mk%1.

Also of use to us is the following theorem:

Theorem 2.4  If M is a product of some number of 2×2 matrices A and B, say

M = N1N2…Nk, where each Ni is either A or B, then M has 1 as an eigenvalue

if and only if  M/ = NkNk%1
…N1 has 1 as an eigenvalue.

We call  M/ the reversal of M.

Sketch of Proof.  We need only show one direction of the proof, so suppose M has 1 as 

an eigenvalue.  Then 1 % tr(M) + det(M) = 0.  Since det(M) = det(M/), it is enough to 

show that tr(M) = tr(M/).  For this, we induct on k, the result being trivial when k = 1, 

and the k = 2 case follows from Theorem 2.2(c).

Suppose the result of the theorem is true for products of fewer than k matrices.  

Then given M = N1N2…Nk, if Ni = Ni+1 for any i then one may use Theorem 2.2 (d) 
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and (e) to write M as a linear combination of fewer products and invoke the induction 

hypothesis.  If M does not contain two consecutive A’s or B’s, then the A’s and B’s 

alternate.  Products ABAB…BA or BABA…AB are their own reversals so they have the 

same trace.  Finally, for ABAB…AB or BABA…BA, the reversal is also a cyclic 

permutation so by Corollary 2.3 (d), M and M/ have the same trace.  

Corollary 2.3(d) can be interpreted as analogous to the fact that if a sequence, say 

1, 2, 3, 4, 5  is a periodic solution to (3), then any cyclic shift such as 3, 4, 5, 1, 2 is also a 

periodic solution.  Theorem 2.4 does not appear to have such an interpretation.  For 

example, by Theorem 2.4, given that A2BAB2 has 1 as an eigenvalue when r = 1/5, we 

know that B2ABA2 also has one as an eigenvalue.  For the first matrix, an eigenvector is 

 &

'
((
(  )

*
++
+

11

9
, corresponding to the periodic solution 9, 11, 4, 3, 7, 2, … for (3), but for the second 

matrix, an eigenvector is 
 &

'
((
(  )

*
++
+

1

1
, corresponding to the periodic solution 1, 1, 2, 3, 1, 4.

We make use of the following facts about Ak.

Theorem 2.5.  Let  A = 
 &

'
((
(  )

*
++
+

1 1

1 0
.  Then for all integers n and k,

a. Ak = 
 &

'

(
(
(  )

*

+
+
+

Fk+1 Fk

Fk Fk%1

, 

b. Ak

 &

'

(
(
(  )

*

+
+
+

Fn+1

Fn

 = 
 &

'

(
(
(  )

*

+
+
+

Fn+k+1

Fn+k

,                      Ak

 &

'

(
(
(  )

*

+
+
+

Ln+1

Ln

 = 
 &

'

(
(
(  )

*

+
+
+

Ln+k+1

Ln+k

,

c. Ak

 &

'

(
(
(  )

*

+
+
+

% Fn

Fn+1

 = (%1)k

 &

'

(
(
(  )

*

+
+
+

% Fn%k

Fn+1%k

,         Ak

 &

'

(
(
(  )

*

+
+
+

% Ln

Ln+1

 = (%1)k

 &

'

(
(
(  )

*

+
+
+

% Ln%k

Ln+1%k

,

where F%m is defined to be (%1)m+1Fm and L%m = (%1)mLm.

Proof.  These results are all easy inductions.  The first parts of (b) and (c) also follow by 

considering the first column in the product AkAn and the last column in AkA%n.

Fibonacci identities come up frequently in this paper.  Long lists of such identities 

can be found in many places, including on the web, say in [2] or [5].  We mention two 

approaches to proving such identities other than induction:  First one may always use 

formulas such as

Fn = 
0n % 1n

5
,  Ln = 0n + 1n.
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Alternatively, any combination of products of Fibonacci numbers (or Lucas numbers) will 

satisfy a d%th order linear recurrence for some d.  Given a proposed identity of the form 

Expressionn = 0,

find the order, d, of Expressionn, and check that Expressionn = 0 for n = 0, 1, 2, …, d%1.

Thus, for a rigorous proof of Cassini’s identity:

(5) Fn+1Fn%1 % Fn
2 = (%1)n,

one legitimate approach would be to show that the order, d, is 3 and check that the 

formula holds for the cases n = 0, 1, 2.  See [12] for a discussion on how to prove many 

algebraic identities simply by verifying that they hold for specific, well chosen values of 

the parameters.  We will predominantly use this second method here so as to avoid 

proving or looking up identities that we require.

One more result on sequences which obey the Fibonacci relation is needed.

Theorem 2.6.  Suppose {an} satisfies the Fibonacci relation, ak = ak%1 + ak%2, for all k.

a. If aj > 0 and aj+1 > 0, then aj+k is a monotonically increasing sequence for

k " 1.

b. If (%1)jaj > 0 for k ! j ! k+N, then 2aj+k2 is a monotonically decreasing

sequence for 0 ! k ! N % 1.

c. If aj = 0 for some j, then for some constant c,  ak = cFk%j for all k.

Proof.  The result in (a) is trivial.  For (b), without loss of generality, we may take k to be 

0.  Let bj = (%1)N%jaN%j for all j.  Then for 0 ! j ! N, the b’s are positive, and satisfy the 

recurrence bj = %bj+1 + bj+2, or bj+2 = bj+1 + bj.  Thus, the b’s are increasing from j = 1, 

meaning the a’s are decreasing in absolute value to N%1.  Finally, given that aj = 0, let

aj+1 = c # 0.  If bk = 1
c

ak%j, then b0 = 0, b1 = 1, and the b’s satisfy the Fibonacci relation.  

Hence, bk = Fk for all k, and the result follows.

We now proceed as follows:  Let B = 
 &

'
((
(  )

*
++
+

x x

1 0
.  Given M = N1N2…Nk, where each 

Ni is either A or B, we form the polynomial

(6) fM(x) = % det(I % M) = %1 + tr(M) % det(M),
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and seek M for which fM(x) has rational zeros.  With the negative sign, most of the 

coefficients of fM(x) are positive integers.  Using Corollary 2.3 (d), we need only look at 

equivalence classes of products corresponding to cyclic permutations of the matrices 

whose product is M.  These equivalence classes are often called necklaces.  For example, 

A2BAB2, BA2BAB, B2A2BA, AB2A2B, and BAB2A2 all belong to the same necklace, 

all generate the same polynomial fM(x), and for x = 1
5

, all generate essentially the same 

periodic solution to (3).  We standardize our necklaces to have the longest run of A’s on 

the left hand side.  Thus in the example above, we only consider A2BAB2.  In general, 

when performing a brute force search of all products of n A’s and B’s, restricting to 

necklaces cuts the number of cases by roughly a factor of n.

3.  Existence properties for system (3)

In this section, we derive properties of fM(x), defined in (6).  These properties of 

fM(x) are used to derive restrictions on values of x that allow periodic solutions to (3).  In 

particular, the proofs of Theorem 1.1 and Theorem 1.2 will follow from facts about fM(x).

Lemma 3.1.  If fM(r) = 0 then for every k > 0, fMk(r) = 0.

Proof.  We have  fMk(x) = % det(I % Mk) = % det(I % M) det(Mk%1 + Mk%2 + … + I).  

Thus,  fMk(x) = fM(x) q(x) for some polynomial q(x), and the result follows.

Of particular use in the proof of Theorem 1.2 and in Section 5 will be the case  

fM2(x) = fM(x) det(I + M).  Three additional lemmas are required in the proofs of Theorem 

1.1 and Theorem 1.2.

Lemma 3.2.  If A = 
 &

'
((
(  )

*
++
+

1 1

1 0
 and B = 

 &

'
((
(  )

*
++
+

x x

1 0
, then for ni " 0, tr(An 1BAn 2B…An kB) is a 

polynomial in x of degree k with nonnegative integer coefficients, with constant term 

F
n 1

F
n 2

… F
n k

  and leading coefficient F
n1+2

 F
n 2+2

 … F
n k+2

.

Proof.  By Theorem 2.5 (a), we have

AnB =  
 &

'

(
(
(  )

*

+
+
+

Fn+1x+Fn Fn+1x

Fnx+Fn%1 Fnx
 = x

 &

'

(
(
(  )

*

+
+
+

Fn+1 Fn+1

Fn Fn

 + 
 &

'

(
((
(

 )

*

+
++
+

Fn 0

Fn%1 0
.

Thus,
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  An 1BAn 2B…An kB

= xk

 &

'

(
((
(

 )

*

+
++
+

Fn1+1 Fn1+1

Fn1
Fn1

…

 &

'

(
((
(

 )

*

+
++
+

Fnk+1 Fnk+1

Fnk
Fnk

 + … + 
 &

'

(
((
(

 )

*

+
++
+

Fn1
0

Fn1%1 0
…

 &

'

(
((
(

 )

*

+
++
+

Fnk
0

Fnk%1 0
.

Since 
 &

'
((
(  )

*
++
+

a 0

b 0  &

'
((
(  )

*
++
+

c 0

d 0
 = 

 &

'
((
(  )

*
++
+

ac 0

bc 0
, the constant term will be  F

n 1
F

n 2

… F
n k

.

Similarly, for the leading coefficient, we may induct on the simple calculation

 &

'
((
(  )

*
++
+

a a

b b  &

'
((
(  )

*
++
+

c c

d d
  =  (c + d)

 &

'
((
(  )

*
++
+

a a

b b
 to show that the trace of the product is the product of the 

traces.  By the Fibonacci relation, the trace of each individual matrix is F
ni+2

.

Lemma 3.3.  Let A = 
 &

'
((
(  )

*
++
+

1 1

1 0
 and B = 

 &

'
((
(  )

*
++
+

x x

1 0
.  If m " 1, n " 1 and x ! %1, then

AmBAnB = P + x2 Q,

where P is a matrix with nonnegative entries and Q is either I or 
 &

'
((
(  )

*
++
+

0 0

0 2
.

Proof.  This result follows by induction on m + n.  To start the induction, we note that

      ABAB = 
 &

'

(
(
(  )

*

+
+
+

x2 + 2x + 1 2x2 + x

2x2 + x x2
 + x2I,         A2BAB = 

 &

'

(
(
(  )

*

+
+
+

3x2 + 3x + 1 4x2 + x

2x2 + 2x + 1 x2 + x
 + x2I,

   A2BA2B = 
 &

'

(
(
(  )

*

+
+
+

5x2 + 6x + 1 6x2 + 2x

3x2 + 4x + 1 2x2 + 2x
 + x2I,   ABA2B = 

 &

'

(
(
(  )

*

+
+
+

3x2 + 4x + 1 3x2 + x

3x2 + x x2
 + x2

 &

'
((
(  )

*
++
+

0 0

0 2
.

The 16 polynomials in the above matrices are all nonnegative for x ! %1.  For the 

inductive step, we assume the result is true if m + n < N, and use Ak = Ak%1 + Ak%2 if 

either m or n is greater than 3 to reduce to that case.

Lemma 3.4.  If M = An 1BAn 2B…An kB, where there are n = k + n1 + n2 + … + nk 

matrices in the product, then

    fM(x)  =  (F
n 1+2

 F
n 2+2

 … F
n k+2

 % (%1)n)xk + (terms with nonnegative coefficients)

+ F
n 1

F
n 2

… F
n k

 % 1.

Proof.  This follows from Lemma 3.2 since det(A) = %1 and det(B) = %x, so

 det(M) = (%1)# of A’s×(%x)# of B’s = (%1)n xk.

Proof of Theorem 1.1.  Let M = An 1BAn 2B…An kB, where there are n = k + n1 + n2 + 
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… + nk matrices in the product.  If all the n’s are zero then M = Bk.  The only x%values 

for Bk which allow 1 as an eigenvalue are x = %1 and x = 1
2

 because the characteristic 

polynomial for B has no roots on the unit circle in the complex plane except for these 

values of x.

If any of the n’s is positive, F
n 1+2

 F
n 2+2

 … F
n k+2

 % (%1)n > 0.  Since the 

coefficients of x, x2, …, xk%1 are all nonnegative, fm(x) can only have a positive zero if the 

constant term is negative.  By Lemma 3.4, the smallest the constant term can be is %1, 

occurring if some n is zero.  By the Rational Root Theorem [10, Theorem 4%9, p. 148], 

any rational solution must then be of the form  1
b

, where b is a divisor of

F
n 1+2

 F
n 2+2

…F
n k+2

 % (%1)n.

Proof of Theorem 1.2.  Again let M = An 1BAn 2B…An kB, where there are n = k + n1 + 

n2 + … + nk matrices in the product.  Let r be a zero of fM(x) with r < 0.  By Lemma 3.1, 

r is also a zero of fM2(x).  As a consequence, we may assume that both n and k are even. 

As in the proof of Theorem 1.1, if any of the n’s is zero, then the constant term in 

fM(x) is %1, and the only rational zeros are reciprocals of integers.  Thus, %1 ! r < 0 in 

this case.  Suppose next that all the n’s are positive and by way of contradiction, suppose 

that r < %1.  Since k is even we may partition M into products of the form AmBAnB.  

Letting k = 2j, by Lemma 3.3, 

M = (An 1BAn 2B)…(An 2j%1BAn 2jB)

=  (P1 + r2Q1)(P2 + r2Q2)…(Pj + r2Qj),

where the P’s have nonnegative entries, and each Q is either I or 
 &

'
((
(  )

*
++
+

0 0

0 2
.  Hence,

M = U + r2j Q/,

where U has nonnegative entries and Q/ has a trace of 2.  Thus,

fM(r)  =  %1 + tr(M) % det(M)

=  tr(U) + 2r2j % 1 % r2j  =  tr(U) + r2j % 1.

Since tr(U) " 0, and r2 > 1,  fM(r) > 0, contradicting  fM(r) = 0. 

We give an additional theoretical result.  Our numerical data suggested that more 

products M of A’s and B’s gave polynomials fM(x) having rational zeros r when the 

number of matrices was divisible by 3 than otherwise.  The following theorem supplies 
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an explanation.

Theorem 3.5.  If r = p
q

 in (3), where p and q are both odd, then any periodic solution 

must have period length divisible by 3.

Proof.  Given a periodic solution, we may divide by common factors of 2 to produce a 

sequence with initial values x0, x1, with at least one of them odd.  Consequently, there is a 

matrix M so that M
 &

'

(
(
(  )

*

+
+
+

x1

x0

  =  
 &

'

(
(
(  )

*

+
+
+

x1

x0

, and M is the product of n A’s and B’s, where n is the 

length of the period.  We consider this equation modulo 2.  Since r 3 1 (mod 2), B 3 A, so

M 3 An (mod 2).  Thus, An must have an eigenvector modulo 2, but this only occurs 

when n is divisible by 3.

4. A Sufficient Condition for a Periodic Orbit

The following theorem is the main tool we used to prove that various infinite 

families of r produce periodic solutions to (3).

Theorem 4.1.  Let r = p
q

, where the fraction is in lowest terms, with q > 0.  Suppose that 

M = An1BAn2B…AnkB and v is a nontrivial integer%valued eigenvector with eigenvalue 1 

or %1 for M.  Let v0 = v,  v1 = AnkB v,  v2 = Ank%1BAnkB v, …, vk%%%%1 = An2B…AnkB v.  If

(a) (1, 1) v is a multiple of q,

(b) for each i " 1, (1, 1) vi = 0 or ± q,

(c) for each i " 1, 2(1, 1) Bvi2 < q,

and

(d) (1, 1)AmBvk%%%%1 is not divisible by q for 0 ! m < n1,

then v corresponds to a periodic solution to (3).  The length of the period is n = k + n1 + 

n2 + … + nk if v has eigenvalue 1, and 2n if v has eigenvalue %1.

In most of the cases where we invoke Theorem 4.1, (1, 1) v = q in condition (a), which 

renders condition (d) trivial.  It is also often the case that both coordinates of each vi have 

the same sign.  In this case, if r < 0, condition (c) follows from condition (b).  That is, if

vi = 
 &

'
((
(  )

*
++
+

a

b
 where, say a and b are positive and a + b = q, then (1, 1)Bvi = a + p.  Thus 

2a + p2 < q since p < 0, and 2p2 < q.
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Proof.  To show that v corresponds to a periodic solution to (3), we show that steps 

involving multiplication by r only occur “at the right times.”  That is, only at the 

beginning, after nk+1 steps, and so on.  We will allow one exception to this as explained 

below.  For a fixed i, let uj = (1, 1)AjBvi.  That is, we assign a sequence of u’s to each vi.  

We show that uj is not divisible by q unless j = nk%i. (For this j, AjBvi = vi++++1.)  Condition 

(d) handles the case where i = k%1.  We assume i < k%1 in the remainder.  Since

Aj = Aj%1 + Aj%2, {uj} satisfies the Fibonacci relation.  By condition (c), 2u02 < q.  If p 

is positive, then all the u’s are positive, increasing.  Thus, unk%i
 = q and 0 < uj < q for

0 ! j ! nk%i % 1.  If p is negative, it is possible that the u’s alternate in sign for a time 

before becoming monotonic.  By Theorem 2.6, while alternating in sign, the absolute value 

of uj decreases.  If unk%i
 = 0, then 0 < 2uj2 < q for 0 ! j ! nk%i % 1.  Otherwise, once the 

terms become monotonic, the absolute value increases, but 2unk%i
2 = q.  Thus, 2uj2 < q 

for 0 ! j ! nk%i % 1.  If uj # 0 for 0 ! j ! nk%i % 1, we are done.  The only possible 

obstruction is that uj = 0 for some j.  Then one should multiply by B rather than by A at 

this stage.  However, if uj = 0, then AjBvi = 
 &

'
((
(  )

*
++
+

%c

c
 for some c.  Since B

 &

'
((
(  )

*
++
+

%c

c
 = A

 &

'
((
(  )

*
++
+

%c

c
, the 

original vector v is also an eigenvector for the matrix M/ formed by changing the 

appropriate A to a B.  Since the u’s decrease in absolute value until they become 

monotone, and increase in absolute value from there, there can be at most one j between 0 

and nk%i with uj = 0.  Thus, after replacing at most k A’s with B’s, we never have a uj = 0 

except at j = nk%i.  This completes the proof in the case where v has eigenvalue 1.  If v has 

eigenvalue %1, then since Mv = %v, it is clear that v will be part of a periodic solution 

with period 2n.

As an example of the proof above, consider M = A9B, r = % 3
8

.  The matrix M has 

 &

'
((
(  )

*
++
+

5

3
 as an eigenvector.  The sequence of u’s is 2, %1, 1, 0, 1, 1, 2, 3, 5, 8.  Since u3 = 0, a 

multiplication by B was called for at some point rather than A.  Changing the appropriate 

A to a B gives M/ = A5BA3B, which has the same eigenvector.

5. Infinite families of periodic solutions

Using MATHEMATICA, we checked all products of up to 24 matrices, finding 

all rational zeros of fM(x) for these cases.  We used MAPLE to find the eigenvectors for 

each such M, and then checked to see if the eigenvectors corresponded to periodic 
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solutions to (3).  Based on these calculations, we found many patterns, which we proved 

to hold in general.  We organize our results below by the number of B’s in the product (or 

equivalently, by the degree of fM(x)).  We also categorize results based on the shortest 

period.  That is, given, say, that A2BAB2 allows r = 1
5

, we ignore r = 1
5

 for (A2BAB2)2.

We observed the following:  For a given fixed number of B’s, there appear to be a 

finite number of “sporadic” cases along with some (possibly 0) infinite families where 

fM(x) has rational zeros.  We now proceed by cases, starting with a single B.

5.1 One B

With one B, there is always an r%value since M = AnB has

fM(x) =  (Fn+2 % (%1)n+1)x + Fn % 1.

The zero of fM(x) is  % 
Fn % 1

Fn+2 + (%1)n
, with corresponding eigenvector v = 

 &

'

(
((
(

 )

*

+
++
+

Fn+1

Fn + (%1)n
.  

Noting that (1, 1)v = Fn+1 + Fn + (%1)n  is the denominator of r, by Theorem 4.1, this 

always corresponds to a periodic solution to (3) provided v is an eigenvector.  To show v 

is an eigenvector, we show AnBv = v.  To this end, Bv = 
 &

'

(
(
(  )

*

+
+
+

1 % Fn

Fn+1

, so

AnBv = An

 &

'

(
((
( &

'
((
(  )

*
++
+

1

0
 + 

 &

'

(
(
(  )

*

+
+
+

% Fn

Fn+1  )

*

+
++
+
  =  

 &

'

(
(
(  )

*

+
+
+

Fn+1

Fn

 + (%1)n

 &

'

(
(
(  )

*

+
+
+

% F0

F1

  =  
 &

'

(
((
(

 )

*

+
++
+

Fn+1

Fn + (%1)n
  =  v,

as desired.  Here, we have used Theorem 2.5 (c) as part of the calculation.

By Theorem 4.1, we know that the periodic solution to (3) here will involve one, 

or maybe two multiplications by r, depending on whether any uj of Theorem 4.1 is 0.  It 

turns out that there is one multiplication by r unless n has the form 4m+1.  To see this, 

we calculate

uj = (1, 1)AjBv = (1, 1)Aj

 &

'

(
((
( &

'
((
(  )

*
++
+

1

0
 + 

 &

'

(
(
(  )

*

+
+
+

% Fn

Fn+1  )

*

+
++
+
 = (1, 1)

 &

'

(
((
( &

'

(
(
(  )

*

+
+
+

Fj+1

Fj

 + (%1)j

 &

'

(
(
(  )

*

+
+
+

% Fn%j

Fn+1%j  )

*

+
++
+

=  Fj+2 + (%1)jFn%1%j.

For uj to be 0,  j must be odd, and j+2 = n%j%1, so n = 2j+3 = 2(2m%1) + 3 = 4m + 1.  In 

this case, where n = 4m + 1, uj = 0 when  j = 2m%1, we have proven that 
 &

'

(
(
(  )

*

+
+
+

F4m+2

F4m+1 % 1
 is an 

eigenvector, with eigenvalue 1 for A2m+1BA2m%1B, when r = % 
F4m+1 % 1

F4m+3 % 1
, and this 
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corresponds to a periodic solution to (3) in this case.  A simplification is possible here:  

F4m+2 = F2m+1L2m+1,  F4m+1 % 1 = F2mL2m+1,  F4m+3 % 1 = F2m+2L2m+1, which means 

that 
 &

'

(
(
(  )

*

+
+
+

F2m+1

F2m

 is an eigenvector for A2m+1BA2m%1B, when r = % 
F2m

F2m+2
.  

If n has the form 4m+3, although there is only one multiplication by B, the form 

of r and the eigenvector can be simplified to r = % 
L2n%1

L2n+1
, v = 

 &

'

(
(
(  )

*

+
+
+

L2n

L2n%1

.  No further 

simplification is possible in these cases because any two Fibonacci  or Lucas numbers 

with index differing by 1 or 2 are relatively prime [6, Theorem A, page 80].  We point out 

that based on these cases, we have established the proof of Theorem 1.3.  That is, we 

have given periodic solutions to (3) for all r of the form % 
F2m

F2m+2
 or % 

L2n%1

L2n+1
.

5.2 Two B’s

In our search for periodic solutions with two B’s, we found one isolated case and 

two infinite families, as shown in the table below.

Table 5.1  

M r eigenvector

A2BAB % 
4
7  &

'
((
(  )

*
++
+

9

5

AnBAnB % 
Fn+1

Fn+2%(%1)n
 &

'

(
((
(

 )

*

+
++
+

Fn+1

Fn%(%1)n

A2n+1BA2n%1B % 
F2n

F2n+2  &

'

(
(
(  )

*

+
+
+

F2n+1

F2n

The first line is, of course, just a simple calculation.  We did not list two cases, one where 

r = 0, and another where r = %1 since these do not correspond to nonlinear systems (3).

The third line of the table comes from our previous work.  The middle line of the 

table corresponds to finding an eigenvector with eigenvalue %1 for AnB.  The proof that 

the given eigenvector works is nearly identical to the proof when the eigenvalue was 1.  

When n = 4m+3, the uj of Theorem 4.1 will be 0 for an appropriate j, yielding a line in a 

table for four B’s (specifically, the family (A2n+2BA2nB)2).  Also, as in the case of one B, 
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when n is odd, the value of r and the eigenvector can be simplified by canceling common 

factors.  The simplifications give r = % 
F2n+1

F2n+3
, v = 

 &

'

(
(
(  )

*

+
+
+

F2n+2

F2n+1

, and r = % 
L2n

L2n+2
, v = 

 &

'

(
(
(  )

*

+
+
+

L2n+1

L2n

.  

Combining these with the results for a single B, we have that for all n, r = % 
Fn

Fn+2
,

v = 
 &

'

(
(
(  )

*

+
+
+

Fn+1

Fn

  and  r = %  
Ln

Ln+2
, v = 

 &

'

(
(
(  )

*

+
+
+

Ln+1

Ln

 give periodic solutions.

With more than two B’s, we use the short hand (n1, n2, …, nk) to refer to M = 

An 1BAn 2B…An kB.  For example, we denote A2BAB2 by (2, 1, 0).  In this scheme, the 

number of terms in the sequence is the number of B’s, and the sum of the terms is the 

number of A’s.  With products containing only one or two B’s, reversals are part of the 

same necklace, so they do not lead to different periodic solutions.  Beginning with k = 3, 

reversals matter.  The reversal of (a, b, c) can be put in the form (a, c, b).  In our standard 

format, a " b, a " c, so we need only consider reversals when b # c.  More generally, the 

reversal of (a1, a2, a3, …, ak) is equivalent to (a1, ak, ak%1, …, a2).

5.3 Three B’s

As the number of B’s grows, the number of sporadic cases appears to increase.  

With three B’s, we found 6 such sporadic cases (ignoring r = 0 and r = %1), but only two 

of them gave purely periodic solutions to (3).  The two were A7BA4BA4B, which had

r = % 
4

15
 and eigenvector 

 &

'
((
(  )

*
++
+

47

28
, and A9BA2BA2B, which had r = % 

3

4
 and eigenvector 

 &

'
((
(  )

*
++
+

5

3
.  

In this second case, one of the u’s was zero, so the sequence more properly corresponds 

to the matrix A5BA3BA2BA2B.  In contrast, one of the cases that did not produce a 

purely periodic solution was A8BA4BA3B, which has 
 &

'
((
(  )

*
++
+

11

7
 as an eigenvector with 

eigenvalue 1 when r = % 1
3

, but the sequence that begins 7, 11 is not purely periodic, but 

is in the preperiod of an eventually periodic sequence.

The infinite families with k = 3 are:
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Table 5.2    

M r eigenvector solution to (3)

(2n+1, n+1, n%1) % 
Fn

Fn+2  &

'

(
(
(  )

*

+
+
+

Fn+1

Fn

no

(2n+1, n%1, n+1) % 
Fn

Fn+2
vn no?

(4n+4, 4n+2, 4n+3) % 
an

bn  &

'

(
(
(  )

*

+
+
+

F4n+3F2n+3

F4n+4F2n+1

yes

(4n+4, 4n+3, 4n+2) % 
an

bn
? yes?

(4n+2, 4n, 4n+1) % 
cn

dn  &

'

(
(
(  )

*

+
+
+

F4n+1L2n+2

F4n+2L2n

yes

(4n+2, 4n+1, 4n) % 
cn

dn
? yes?

In the table above,  vn = 1
2

 &

'

(
((
(

 )

*

+
++
+

Fn+2
3  + Fn

3 + (%1)nFn%1

Fn+2
3  % Fn

3 % (%1)nFn%1

,

an = F4n+4F2n + F4n+2F2n+1,         bn = F4n+4F2n+1 + F4n+3F2n+3,

cn = F4n+1L2n%1 + F4nL2n+1,         dn = F4n+2L2n + F4n+1L2n+2.

We comment that we have not proven that vn is actually an eigenvector for 

A2n+1BAn%1BAn+1B though it fits the pattern for all n from 1 to 10.  Also, we have not 

demonstrated that vn never leads to a solution to (3), though it did not for those same 

values of n.  We do not know of a general formula for the eigenvectors in the fourth and 

sixth rows.  For small values of n, the eigenvectors found always corresponded to 

solutions to (3).  We postpone the proof that rows three and five give infinite families of 

solutions to (3) to the Section 6.

5.4 Four B’s

The number of sporadic cases is 12 here, but only four of them gave purely 

periodic solutions to (3).  These were
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Table 5.3

M r eigenvector

(5, 3, 2, 2) % 
3
4  &

'
((
(  )

*
++
+

5

3

(7, 4, 5, 4) % 2
7  &

'
((
(  )

*
++
+

57

34

(9, 6, 5, 2) % 151
370  &

'
((
(  )

*
++
+

19849

11971
 (!)

(9, 2, 5, 6) % 151
370  &

'
((
(  )

*
++
+

20343

12587
 (!)

We note that (5, 2, 2, 3)  and (5, 3, 2, 2) are reversals of each other but only one of 

them yields a periodic solution.  This was the only instance we found where a sequence 

leads to a solution to (3) but its reversal does not.  The infinite families with 4 B’s are:

Table 5.4 

M r eigenvector

(2n+2, 2n, 2n+2, 2n) % 
F2n+1

F2n+3  &

'

(
(
(  )

*

+
+
+

F2n+2

F2n+1

(2n+4, 2n, 2n+4, 2n) %  
 &

'

(
(
(

Fn+1

Fn+2  )

*

+
+
+

2

(%1)n+1

 &

'
((
(  )

*
++
+

1

1
 + 2Fn+1

 &

'

(
(
(  )

*

+
+
+

Fn+2

Fn+1

(2n+4, 2n, 2n+4, 2n) %  

 &

'

(
((
(

Ln+1

Ln+2  )

*

+
++
+

2

5(%1)n

 &

'
((
(  )

*
++
+

1

1
 + 2Ln+1

 &

'

(
(
(  )

*

+
+
+

Ln+2

Ln+1

These infinite families all have the form M = N2 for an appropriate N.  The 

eigenvector for M is an eigenvector for N with an eigenvalue of %1.  The first line is based 

on the note about (AnB)2 from Table 5.1.  For the second line,

(1, 1)v = 2((%1)n+1 + Fn+1Fn+3) = 2Fn+2
 2 ,

or twice the denominator of r.  To verify condition (c) of Theorem 4.1, we have

Bv = (%1)n+1

 &

'
((
(  )

*
++
+

2x

1
 + 2Fn+1

 &

'

(
(
(  )

*

+
+
+

xFn+3

Fn+2

  = 
 &

'

(
((
(

 )

*

+
++
+

2x(Fn+3Fn+1 + (%1)n+1)

(%1)n+1 + 2Fn+2Fn+1

 = 
 &

'

(
((
(

 )

*

+
++
+

% 2Fn+1
2

(%1)n+1 + 2Fn+2Fn+1

,

so u0 = (%1)n+1 + 2Fn+2Fn+1 % 2Fn+1
 2  = (%1)n+1 + 2Fn+1Fn.  Since

page 19



q = Fn+2
 2  = (Fn+1 + Fn)2 = Fn+1

 2  + Fn
 2 + 2Fn+1Fn,  0 < u0 < q.

If we write Bv ====  (%1)n+1

 &

'
((
(  )

*
++
+

0

1
 + 2Fn+1

 &

'

(
(
(  )

*

+
+
+

% Fn+1

Fn+2

,

then by Theorem 2.5 (c)

A2nBv = (%1)n+1

 &

'

(
(
(  )

*

+
+
+

F2n

F2n%1

 + 2Fn+1
 &

'

(
(
(  )

*

+
+
+

% F1%n

F2%n

.

The sum of the entries in this vector is

(%1)n+1F2n+1 + 2Fn+1F%n = (%1)n+1F2n+1 + 2Fn+1(%1)n+1Fn

=  (%1)n+1(F2n+1 + 2FnFn+1).

Using  F2n+1 = Fn+1
2  + Fn

2, this expression becomes (%1)n+1(Fn+1
2  + 2FnFn+1 + Fn

2),

or (%1)n+1Fn+2
2  = ± q.  A trick to show that v is an eigenvector for A2n+4BA2nB is to 

show that BA2nBv = A%2n%4v.  Using the calculations above,

BA2nBv =  
 &

'

(
((
(

 )

*

+
++
+

(%1)nFn+1
2

(%1)n+1F2n + 2(%1)n%1Fn+1Fn%2

 =  (%1)n+1

 &

'

(
((
(

 )

*

+
++
+

% Fn+1
2

F2n + 2Fn+1Fn%1

.

Now  
 &

'
((
(  )

*
++
+

1

1
 = 

 &

'

(
(
(  )

*

+
+
+

F2

F1

, so by Theorem 2.5 (b),  A%kv = (%1)n+1

 &

'

(
(
(  )

*

+
+
+

F2%k

F1%k

 + 2Fn+1
 &

'

(
(
(  )

*

+
+
+

Fn+2%k

Fn+1%k

.

We have

A%2n%4v = (%1)n+1

 &

'

(
(
(  )

*

+
+
+

F%2n%2

F%2n%3

 + 2Fn+1
 &

'

(
(
(  )

*

+
+
+

F%n%2

F%n%3

= (%1)n+1

 &

'

(
(
(  )

*

+
+
+

%F2n+2

F2n+3

 + (%1)n+12Fn+1
 &

'

(
(
(  )

*

+
+
+

Fn+2

%Fn+3

=  (%1)n

 &

'

(
(
(  )

*

+
+
+

F2n+2 % 2Fn+2Fn+1

2Fn+3Fn+1 % F2n+3

  =  (%1)n

 &

'

(
((
(

 )

*

+
++
+

% Fn+1
2

F2n + 2Fn+1Fn%1

,

as desired.  To justify the last equality, we simply checked 10 consecutive cases (but 

three cases would have sufficed).  Finally, for condition (d) of Theorem 4.1, we let

uk = (1, 1)AkBA2nB.  We must show that uk is not divisible by Fn+2
 2  if 0 < k < 2n+4.  By 

Theorem 2.6, the u’s decrease in absolute value while they alternate, and increase in 

absolute value while they are monotone.  Also, u2n+4 = % 2Fn+2
 2 .  Thus, we must show 

that uk is never % Fn+2
 2 .  It is only the large values of k that cause a problem, and we can 

investigate them using % u2n+4%k = (1, 1)A%kv = 2Fn+1Fn+3%k + (%1)n+1F3%k.  Since  Fn+2
 2  

= (Fn+1 + Fn)2 > 2Fn+1Fn, we need only worry about k = 1, 2.  We have

% u2n+3  =  2Fn+1Fn+2 + (%1)n+1,

% u2n+2  =  2 Fn+1
 2 + (%1)n+1  =  2Fn+2Fn % (%1)n+1.
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Clearly, neither of these is divisible by Fn+2, so they are not Fn+2
 2 .  In the second line, we 

applied Cassini’s identity in the form Fn+1
 2  = Fn+2Fn % (%1)n.

Though not needed in the proof, we note that with a little more care, we could 

have shown that no uk is 0, so the number of applications of B are as advertised.  The 

justification for the third row of Table 5.4 is entirely analogous to the proof above, but 

with appropriate Lucas identities substituted for Fibonacci identities.

5.5 More than four B’s

With 5 B’s, we found no infinite families.  Sporadic cases that lead to purely 

periodic solutions to (3) are given in the table below.

Table 5.5

M r eigenvector

(5, 5, 5, 0, 0) % 1
4  &

'
((
(  )

*
++
+

59

33

(11, 5, 9, 9, 9) % 19
50  &

'
((
(  )

*
++
+

2627

1623

(11, 9, 9, 9, 5) % 19
50  &

'
((
(  )

*
++
+

27

25

We only looked at a small sample of products with six B’s, due to the 

combinatorial explosion.  The following sporadic cases lead to solutions to (3):
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Table 5.6

M r eigenvector

(5, 0, 5, 0, 2, 2) % 1
10  &

'
((
(  )

*
++
+

211

129

(5, 0, 5, 2, 2, 0) % 1
10  &

'
((
(  )

*
++
+

453

277

(5, 0, 2, 5, 0, 2) % 
1
4  &

'
((
(  )

*
++
+

5

3

(5, 2, 0, 5, 2, 0) % 1
4  &

'
((
(  )

*
++
+

13

7

(8, 4, 7, 8, 4, 5) % 64
147  &

'
((
(  )

*
++
+

5211121

3279305

(8, 7, 4, 8, 5, 4) % 
64
147  &

'
((
(  )

*
++
+

486557

295189

We found four related infinite families that appear to provide solutions to (3).

Table 5.7  

M r eigenvector

(4n+2, 4n, 4n+1, 4n+2, 4n, 4n+1) %  
an

bn  &

'

(
(
(  )

*

+
+
+

F4n+1F2n+2

F4n+2F2n

(4n+2, 4n+1, 4n, 4n+2, 4n+1, 4n) %  
an

bn

?

(4n+4, 4n+2, 4n+3, 4n+4, 4n+2, 4n+3) % 
cn

dn  &

'

(
(
(  )

*

+
+
+

F4n+3L2n+3

F4n+4L2n+1

(4n+4, 4n+3, 4n+2, 4n+4, 4n+3, 4n+2) %  
cn

dn

?

Where an = F4n+1F2n%1 + F4nF2n+1,  bn = F4n+2F2n + F4n+1F2n+2

and cn = F4n+4L2n + F4n+2L2n+1,  dn = F4n+4L2n+1 + F4n+3L2n+3.

As in the case of three B’s, we could not find the general pattern of the 

eigenvectors in the second and fourth rows.  Those eigenvectors did provide solutions to 
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(3) in all the cases we checked.  We sketch the justification for the first and third rows in 

the next section.  We close this section with a summary table of all of the infinite families 

we have found.  In each case, we list the value of r, followed by one eigenvector.  As 

usual, given an eigenvector 
 &

'
((
(  )

*
++
+

u

v
, the initial conditions for (3) would be a0 = v, a1 = u.

Table 5.8

Value of r Eigenvector

% 
F2n % 1

F2n+2 + 1
 &

'

(
(
(  )

*

+
+
+

F2n+1

F2n + 1

% 
F2n + 1

F2n+2 % 1
 &

'

(
(
(  )

*

+
+
+

F2n+1

F2n % 1

% 
Fn

Fn+2  &

'

(
(
(  )

*

+
+
+

Fn+1

Fn

% 
Ln

Ln+2  &

'

(
(
(  )

*

+
+
+

Ln+1

Ln

%  

 &

'

(
((
(

Fn+1

Fn+2  )

*

+
++
+

2

(%1)n+1

 &

'
((
(  )

*
++
+

1

1
 + 2Fn+1

 &

'

(
(
(  )

*

+
+
+

Fn+2

Fn+1

%  

 &

'

(
((
(

Ln+1

Ln+2  )

*

+
++
+

2

5(%1)n

 &

'
((
(  )

*
++
+

1

1
 + 2Ln+1

 &

'

(
(
(  )

*

+
+
+

Ln+2

Ln+1

% 
F4n+1L2n%1 + F4nL2n+1

F4n+2L2n + F4n+1L2n+2  &

'

(
(
(  )

*

+
+
+

F4n+1L2n+2

F4n+2L2n

% 
F4n+1F2n%1 + F4nF2n+1

F4n+2F2n + F4n+1F2n+2  &

'

(
(
(  )

*

+
+
+

F4n+1F2n+2

F4n+2F2n

% 
F4n+4F2n + F4n+2F2n+1

F4n+4F2n+1 + F4n+3F2n+3  &

'

(
(
(  )

*

+
+
+

F4n+3F2n+3

F4n+4F2n+1

% 
F4n+4L2n + F4n+2L2n+1

F4n+4L2n+1 + F4n+3L2n+3  &

'

(
(
(  )

*

+
+
+

F4n+3L2n+3

F4n+4L2n+1
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6. The infinite families (4n++++2, 4n, 4n++++1) and (4n++++4, 4n++++2, 4n++++3).

In this section we prove that there is an infinite family of solutions to (3) 

associated with the product A4n+2BA4nBA4n+1B, and sketch the proofs for the families 

A4n+4BA4n+2BA4n+3B, (A4n+2BA4nBA4n+1B)2 and (A4n+4BA4n+2BA4n+3B)2.  We post 

the following summary, noting the beautiful symmetry between F and L:

Table 6.1  

Form Value of r Eigenvector

A4n+2BA4nBA4n+1B % 
F4n+1L2n%1 + F4nL2n+1

F4n+2L2n + F4n+1L2n+2  &

'

(
(
(  )

*

+
+
+

F4n+1L2n+2

F4n+2L2n

(A4n+2BA4nBA4n+1B)2 % 
F4n+1F2n%1 + F4nF2n+1

F4n+2F2n + F4n+1F2n+2  &

'

(
(
(  )

*

+
+
+

F4n+1F2n+2

F4n+2F2n

A4n+4BA4n+2BA4n+3B % 
F4n+4F2n + F4n+2F2n+1

F4n+4F2n+1 + F4n+3F2n+3  &

'

(
(
(  )

*

+
+
+

F4n+3F2n+3

F4n+4F2n+1

(A4n+4BA4n+2BA4n+3B)2 % 
F4n+4L2n + F4n+2L2n+1

F4n+4L2n+1 + F4n+3L2n+3  &

'

(
(
(  )

*

+
+
+

F4n+3L2n+3

F4n+4L2n+1

Theorem 6.2.  Each row of Table 6.1 corresponds to an infinite family of periodic 

solutions to (3).

For example, if a0 = F4n+2F2n,  a1 = F4n+1F2n+2, and r = % 
F4n+1F2n%1 + F4nF2n+1

F4n+2F2n + F4n+1F2n+2

, then 

{an} is a periodic solution to (3) with period 2(12n + 6) or 24n + 12.  To prove Theorem 

6.2, we first introduce the following notation:  We suppress the index n and refer to the 

eigenvectors in these rows as v1, v2, v3, v4.  Similarly, let the values of r be r1, r2, r3, r4, 

and let M1 = A4n+2BA4nBA4n+1B, using r1, M2 = A4n+2BA4nBA4n+1B using r2, M3 = 

A4n+4BA4n+2BA4n+3B using r3 and M4 = A4n+4BA4n+2BA4n+3B using r4.

The proof of Theorem 6.2 will be to show that the conditions of Theorem 4.1 are 

satisfied.  To do that, we must prove that the v’s are eigenvectors of their appropriate 

matrices  In particular, we need
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(7) M1v1 = v1,    M2v2 = % v2,    M3v3 = v3,    M4v4 = % v4.

Moreover, we show that certain partial products, Mi of M have the property that

(1, 1)Miv = ± q.

As will be seen below, the various v’s of Theorem 4.1 will have entries of the same sign, 

so we need not worry about condition (c).  Conditition (d) will not apply as our 

eigenvectors have the property that (1, 1)v = q.

We proceed in stages as follows:

Lemma 6.3.  Using the v’s as above, and the appropriate r%values in B, we have

a. A4n+1Bv1 = v1 + L2n+1 
 &

'
((
(  )

*
++
+

1

%1
,

b. A4n+1Bv2 = % v2 + F2n+1 
 &

'
((
(  )

*
++
+

1

%1
,

c. A4n+3Bv3 = v3 + F2n+2 
 &

'
((
(  )

*
++
+

1

%1
,

d. A4n+3Bv4 = % v4 % L2n+2 
 &

'
((
(  )

*
++
+

1

%1
.

Proof:  For (a), if we denote v1 by
 &

'
((
(  )

*
++
+

a

b
, then (a + b)r is in integer, call it % c.  We have  

A4n+1Bv1  =  
 &

'

(
(
(  )

*

+
+
+

F4n+2 F4n+1

F4n+1 F4n  &

'
((
(  )

*
++
+

r r

1 0  &

'
((
(  )

*
++
+

a

b
  =  

 &

'

(
(
(  )

*

+
+
+

aF4n+1 % cF4n+2

aF4n % cF4n+1

,

So we need

(8)
aF4n+1 % cF4n+2 = a + L2n+1,

aF4n % cF4n+1 = b % L2n+1.

With  a = F4n+1L2n+2, b = F4n+2L2n,  c = F4n+1L2n%1 + F4nL2n+1,

aF4n+1 % cF4n+2 = F4n+1
 2 L2n+2 % F4n+2F4n+1L2n%1 % F4n+2F4nL2n%1

               = F4n+1
 2 L2n+2 % F4n+2F4n+1L2n%1 % (F4n+1

 2  % 1)L2n%1,

by Cassini’s identity.  Thus, we must show that

F4n+1
 2 L2n+2 % F4n+2F4n+1L2n%1 % F4n+1

 2 L2n+1 = F4n+1L2n+2,

or equivalently,

(9) F4n+1L2n % F4n+2L2n%1 = L2n+2.

The second line of (8) follows a similar pattern:  We have
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aF4n % cF4n+1  =  F4n+1F4nL2n+2 % F4n+1
 2 L2n%1 % F4n+1F4nL2n+1

=  F4n+1F4nL2n % F4n+1
 2 L2n%1

=  F4n+2F4n+1L2n % F4n+1
 2 L2n % F4n+1

 2 L2n%1

=  F4n+2F4n+1L2n % F4n+1
 2 L2n+1

=  F4n+2F4n+1L2n % F4n+2F4nL2n+1 % L2n+1.

To get this, we used F4n = F4n+2 % F4n+1 in the third line and Cassini’s identity to get the 

last line.  We want aF4n % cF4n+1 = b % L2n+1, and this will follow if we can show that

(10) F4n+1L2n % F4nL2n+1 = L2n.

The simplest way to verify (9) and (10) is to note that each side satisfies the same 

recurrence of degree at most 7 (the characteristic polynomial has at most 06, 04, 02, 1, 

12, 14, and 16 as zeros), so checking 7 values of n suffices (we checked n = 0, …, 10).

Obviously, (b), (c), (d) are similar.  In each case, a result similar to (8) must be 

established, and this result is equivalent to two Fibonacci/Lucas identities.  For (b), the 

identities are:

F4n+1F2n % F4n+2F2n%1 = % F2n+2,

F4n+1F2n % F4nF2n+1 = % F2n.

For (c), we need

F4n+3F2n+1 % F4n+4F2n = F2n+3,

F4n+3F2n+1 % F4n+2F2n+2 = F2n+1,

and for (d), the required identities are

F4n+3L2n+1 % F4n+4L2n = % L2n+3,

F4n+3L2n+1 % F4n+2L2n+2 = % L2n+1.

Again, each of these holds for at least seven values of n, so they are identities.

Next, we take the results of Lemma 6.3 and multiply by an appropriate AkB.
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Lemma 6.4.  Using the v’s as above, and the appropriate r%values in B, we have

a. A4nBA4n+1Bv1 =  v1 % L2n 
 &

'
((
(  )

*
++
+

1

%1
,

b. A4nBA4n+1Bv2 =  v2 + F2n 
 &

'
((
(  )

*
++
+

1

%1
,

c. A4n+2BA4n+3Bv3 = v3 % F2n+1 
 &

'
((
(  )

*
++
+

1

%1
,

d. A4n+2BA4n+3Bv4 = v4 + L2n+1 
 &

'
((
(  )

*
++
+

1

%1
.

Proof.  Consider the statement in part (a).  Using Lemma 6.3 (a) we have

A4nBA4n+1Bv1  =  A4nB
 &

'
((
(
v1 + L2n+1 

 &

'
((
(  )

*
++
+

1

%1  )

*
++
+

=  A%1A4n+1B
 &

'
((
(
v1 + L2n+1 

 &

'
((
(  )

*
++
+

1

%1  )

*
++
+

=  A%1

 &

'
((
(
v1 + L2n+1 

 &

'
((
(  )

*
++
+

1

%1  )

*
++
+
 + L2n+1A4nB

 &

'
((
(  )

*
++
+

1

%1
.

Using the notation of Lemma 6.3, we require the following:

b % L2n+1 + F4nL2n+1 = a % L2n,

a % b + 2L2n+1 + F4n%1L2n+1 = b + L2n

As in Lemma 6.3, we need only verify these for seven values of n.  Parts (b), (c), (d) 

follow the same pattern.

Lemma 6.5  The equations in (7) hold.

Proof.  The proof is essentially the same as above.  We provide one sample calculation.  

To show that A4n+4BA4n+2BA4n+3Bv4 = % v4,

by Lemma 6.4 (d) we have

A4n+4BA4n+2BA4n+3Bv4  =  A4n+4B
 &

'
((
(
v4 + L2n+1 

 &

'
((
(  )

*
++
+

1

%1  )

*
++
+

=  A
 &

'
((
(
% v4 % L2n+2 

 &

'
((
(  )

*
++
+

1

%1  )

*
++
+
 + L2n+1A4n+4

 &

'
((
(  )

*
++
+

0

1
.

Letting  v4 = 
 &

'
((
(  )

*
++
+

a

b
, we must verify that

% 
 &

'
((
(  )

*
++
+

a + b

a
 % L2n+2

 &

'
((
(  )

*
++
+

0

1
 + L2n+1

 &

'

(
(
(  )

*

+
+
+

F4n+4

F4n+3

 = % 
 &

'
((
(  )

*
++
+

a

b
,

or b = F4n+4L2n+1,
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a % b = F4n+3L2n+1 % L2n+2.

The first is true by definition, the second follows by checking seven values of n.

Proof of Theorem 6.2.  The lemmas show that the conditions of Theorem 4.1 are met, so 

the given vectors do provide families of periodic solutions to (3).  We note that a careful 

analysis will show that the proper number of B’s is used at each stage.  That is, when 

using Theorem 4.1, no uk is 0.  We simply sketch the proof of this.  First, if some uk was 

zero, by Theorem 2.6 (c), the u’s would have to all have the form uk = cFk%j for some 

integers c and j.  However, the entries in v are relatively prime and this can be used to 

show c = ± 1.  This means that consecutive u’s must be consecutive Fibonacci numbers.  

Since this is not the case, no uk can be 0.

7.  Concluding Remarks.

Missing from this paper are any strong results about the non existence of 

solutions to (3).  Whereas we have shown that the only possible positive values of r for 

which (3) admits periodic solutions are reciprocals of integers, we suspect the much 

stronger result that 1
2

, 1
3

, and 1
5

 are the only positive values that admit periodic solutions, 

and that the only possible periodic solutions for these with relatively prime initial 

conditions are the known ones.  We have verified that any other positive r must have a 

period longer that 24.

Among the negative values of r, again, we have not classified the periodic solutions 

for any value of r, but only exhibited a periodic solution for the r%values we have found.  

We can not rule out any value of r with %1 < r < 0 which we have not discovered.  We 

have found all values of r having periodic solutions of length at most 24, and we have 

found all values of r with much larger periods if we restrict the number of B’s involved.

Even in the restricted search for periodic solutions to (3) which use a prescribed 

number of steps of the form an = r(an%1 + an%2), we can say very little.  We have classified 

all such solutions in which there is only one of these steps.  If there are two, we are fairly 

confident that they are all characterized in Table 5.1 because we have explicitly calculated 

all r for which AmBAnB has 1 as an eigenvalue, with 0 ! m, n ! 100.  It might not be too 

hard to prove that Table 5.1 is complete.  If M = AmBAnB, then
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(11) fM(x) = (Fm+2Fn+2 % (%1)m+n) x2 + 2Fm+1Fn+1 x + FmFn % 1.

The discriminant of this polynomial is

(12) (Fm+2 + (%1)m Fn)(Fn+2 + (%1)n Fm),

so rational solutions occur only if this is a square.  If we restrict to the case where m " n, 

(12) was only found to be a square for (m, n) = (1, 0), (2, 1), or for the infinite families

m = n, and m = n + 2, with n odd.  We do not know how to prove that these are the only 

cases, but see [4] where it is proved that there are only finitely many Fibonacci numbers 

or Lucas numbers that are squares.

The only infinite families of M’s we found with more than three B’s all have the 

form M = N2.  It is possible that we have found all such infinite families, though we are 

not confident enough to state such a thing as a conjecture.  We at least looked at the case 

M = N2, where N has four B’s, and with as many as 16 A’s between B’s.  We found no 

obvious infinite families leading to solutions to (3).  We tried a similar search for N with 

five B’s, again without success.

We would like to have formulas for the missing eigenvectors in Tables 5.2 and 5.7.  

We would also like to see proofs that these eigenvectors give periodic solutions to (3).  

This could be difficult since Theorem 4.1 will not apply as the entries in the eigenvectors 

are too big.  For example, both A8BA7BA6B and A8BA6BA7B have eigenvectors when

r = % 37
107

; the eigenvector for the latter one is 
 &

'
((
(  )

*
++
+

65

42
, but for the former, it is 

 &

'
((
(  )

*
++
+

3157

1979
.

Finally, we mention that the infinite families with three B’s (or infinite families 

with 6 B’s in which M is a square) have a consequence for Fibonacci numbers.  If  M = 

A2n+2BA2n+1BA2nB, then

(13) fM(x) = (F2n+4F2n+3F2n+2 % 1) x3 + (F2n+3
3  + F2n+2

2 F2n+1) x2

                                        + (F2n+3F2n+2
2  + F2n+1

3 ) x + F2n+2F2n+1F2n % 1.

This polynomial always has a linear factor since it has a rational zero.  From the values of 

r given in Table 6.1, we are led to the following identities:
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(14)
F4n+2F4n+1F4n % 1 = (F4nF2n%1 + F4n%1F2n+1)(F4n+1L2n%1 + F4nL2n+1),

F4n+4F4n+3F4n+2 % 1 = (F4n+2L2n + F4nL2n+2)(F4n+4F2n + F4n+2F2n+1). 

Similarly, from the fact that M = (A2n+2BA2n+1BA2nB)2 has values of r leading to 

periodic solutions, and from their form in Table 6.1, we have the identities

(15)
F4n+2F4n+1F4n + 1 =  (F4nL2n%1 + F4n%1L2n+1)(F4n+1F2n%1 + F4nF2n+1),

F4n+4F4n+3F4n+2 + 1 =  (F4n+2F2n + F4nF2n+2)(F4n+4L2n + F4n+2L2n+1).  

We had great difficulty establishing these identities, though, of course, they can be 

verified by checking a finite number of cases.  On the other hand, for odd n,

Fn+2Fn+1Fn ± 1 does not have a nice factorization as witnessed by the fact that 

F17F16F15 % 1 and F15F14F13 + 1 are prime.
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