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The triplication formula for Gauss sums 

JOHN GREENE AND DENNIS STANTON 

Abstract. A new proof of the triplication formula for Gauss sums is given. It mimics an old proof of the 
analogous result for gamma functions, The techniques are formal and rely upon the character properties 
of fields. A new character sum evaluation is given, 

1. Introduction 

The analogy between Gauss sums and the gamma function has been pointed out 
at various times [9], [6; p. 144], [14, Sec. 2]. Given the field GF(q) (or N), Gauss 
sums (the gamma function) can be defined as the Fourier transform of a multiplicative 
character. Many properties of Gauss sums and gamma functions have identical proofs 
using only formal character properties, the Fourier inversion formula, and a 
convolution. For example, the Jacobi sum evaluation [8, p. 93] 

J()~l, Z2) = G(z1)G(z2) (1.1) 

G(XI~2) 

and the beta function evaluation [5, eq. 1.5(5), p. 9] 

8(x, y) = r(x)r(y_____)) 0.2) 
r(x + y) 

follow from taking the Fourier transform of a convolution of two multiplicative 
characters. Gauss's evaluation of the modulus of a Gauss sum 
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G(x)G(z-) = ;~(- 1)q (1.3) 

and the reflection formula  for the g a m m a  function 

F ( x ) F ( 1 - x ) = - -  (1.4) 
s in~x 

follow from the Four ier  inversion formula. 
There is ano ther  pair  of  formulas which are completely analogous.  The  multi-  

plication formula  for the g a m m a  function is [5, 1.2(11), p. 4] 

F(nx)F(1/n)... F((n - 1)/n) = n"X-lF(x)F(x + 1/2) . . .  F(x + (n-1)/n). (1.5) 

The Hasse -Davenpor t  formula  for Gauss  sums is [14, Eq. (2.2)], [2], 

G(;~")G(~o)G(~oz)... G(~o"-1)= z"(n)G(z)G(zq~)... G(Zqg"-1), (1.6) 

where q~ is a multiplicative character  of GF(q) such that  ~0" = 1. As far as we know, 

there is no simple formal  p roof  for (1.5) and (1.6) simultaneously. Guided by a p roof  
of (1.5), in this note  we shall prove (1.6) for n = 3 and q = p, a prime. 

There are two interesting features of our  proof. First, we use a t ransformat ion  
for a generalized hypergeometr ic  series 3F2 to establish the appropr ia te  congruence 
relation. We have not  seen an applicat ion of these series to Gauss  sums. Also we will 

explicitly evaluate  some character  sums in Proposi t ion 3.2. 

2. Liouville's proof of (1.5) 

In [4, p. 175] one can find Liouville's proof  [12] of (1.5). His idea was to represent 
the f ight-hand-side of  (1.5) as a multiple integral, change variables, and evaluate all 

but one integral to obta in  the left-hand-side of  (1.5). For  (1.6) and Gauss  sums we 
let n = 3 and  3 J p -  1 so that  there is a multiplicative character  q~ such that  ~o 3 = 1. 

Then, if p = exp(2~zi/p), 

G(z)G(;~o)G(xqg2) = ~ p,+b+c;~(abc)q~(bc 2) (2.1) 
a,b,c6GF(p) 

~ 0  

Liouville then proceeds to change variables a = d3/bc in the triple integral. However ,  
for (2.1) it is not  true that  abc is always a cube so we put  a = d/bc and get 
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G(z)G(zqg)G(z~o 2) = ~ pb+C+a/bC~(d)qg(bc2). (2.2) 
b,c,d~GF(p) 

SO 

Next  we will see that  the change of variables a = d 3/bc was proper  in (2.1) because 
we will show that  the r ight-hand-side of  (2.2) is zero unless d is a cube: 

f (d )  = ~ pb+c+d/bcq~(bc2) = 0 if q~(d) 4: 1. (2.3) 
b,cc-GF(p) 

SO 

The  subst i tut ion e = d/bc shows that  

f (d )  = q~(d)f(d) (2.4) 

s o f ( d )  = 0 if q~(d) 4: 1. Thus  we can replace d by d 3 in (2.2) and divide by 3. 
Then  Liouville evaluates  [4, p. 173-175], [12], 

fo°f0 o ()() e_b_c_d3/b~b_2/3c_l/3dbd c = 2ne_3d/, ~ = e_3d F 1 F 2 ~ . (2.5) 

The  Gauss  sum analog  of (2.5) that  we will p rove  is 

Z pb+C+,t3/bCqg(bc 2) = p(p3d + p3rd + p3r2d) (2.6) 
b,c~GF(p) 

~0 

where r is a primitive cube roo t  of 1. 
Assuming (2.6) we see that  

G(z)G(zqg)G(zq~2) = P ~. z3 (d ) [p3d  + p3rd -1- p 3r2d] --~ p ~ 3 ( 3 ) G ( z 3  ) (2.7) 
3 dEGF(p) 

SO 

This is the n = 3 case of  (1.6) because G(~)G(~02) = p. 

3. Proof of (2.6) 

Note  that  the change of variables b ~ bd and c --, cd shows that  it is sufficient to 
prove  (2.6) for d = 1 and any  non-tr ivial  p th- root  of  unity p. In  this case the 

subst i tut ions b ---, be, c ~ 1/c allow (2.6) to be  rewrit ten as 
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pb+C+l/b~o(bcZ)= ~ pX ~ (p(b). 
b,ceGF(p) x~GF(p) b,ceGF(p), • 0 

~:0 b2+(1 -xc)b+c3=O 

Thus (2.6) (for d = 1) will follow from the following proposi t ion .  

137 

(3.1) 

P R O P O S I T I O N  3.2. Let p be a prime such that 31p - 1. Let re2~p be a primitive 
cube root of unity and let tp be a cubic residue character, q)3 : 1. Then 

q ~ ( b ) = { P 3 3  x = 3 , 3 r ,  3r 2 

b,c~Gr~p~, e o otherwise. 
b2+(1 -xcjbWc3=O 

We prove  direct ly that  P ropos i t ion  3.2 holds for x = 3, 3r, and  3r 2 by showing 

that each so lu t ion  b is a cube, and that  there are p - 3 solutions.  F o r  each c :/: 0, 

there is a so lu t ion  b to b 2 +  ( 1 -  xc)b + c 3 =  0 if and  only if ( 1 -  xc) 2 -  4C 3 is a 

square. However ,  for x = 3, 3r, and  3r 2 ( 1 -  xc) 2 -  4C 3 has a repeated root ,  e.g. 

(1--3c)  2 --4C 3 =  ( 1 - - C ) 2 ( t - 4 c ) .  In this case we can put  1 - 4 c  = (~2 SO that  

2b = 3(1 - ct2)/4 - 1 _+ ~(3 + ~2)/4 are the solutions. This implies that  8b -- ( T- ct - 1)3, 

so that  b is a lways  a cube. Two values o f c  (c = 1/4, 1) a l low one b, while the remaining  

( p - 1 ) / 2 - 2  values of c al low 2 dist inct  b's. Thus the number  of solut ions  is 

2[(p - 1)/2 - 2] + 2 = p - 3, all of which have ~0(b) = 1. 

There  is also a s imilar  a rgument  for x = 0 in Propos i t ion  3.2. Ins tead we give a 

lemma that  appl ies  to all x. 

L E M M A  3.3. In Proposition 3.2, 

f(x) = ~ ~o(b) --= - 3  (mod p) for all x. 
b,c~GF(p), =¢= 0 

b2+(l ' -xc)b+c3=O 

Note  tha t  L e m m a  3.3 makes  sense. If bl  and  b2 are two dist inct  roots  of  the 

quadrat ic  equa t ion  for b, then bib2 = c 3 so ~0(bl) + ~o(b2) is an integer. To see that  

Lemma 3.3 implies P ropos i t ion  3.2, clearly 

f (x)  = 0 
x~GF(p) 

and 

f(3) = f (3r )  = f ( 3 r  2) = p - 3. 
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So f ( x ) > - p - 2  shows that  Lemma 3.3 implies Proposi t ion 3.2. However, 

f(x) > - p -  2 is immediate because there are at most  2 ( p - 1 )  solutions b (with 
repetition) to b 2 + (1 - xc)b + c 3 = 0, and iF(b) + ~(c3/b) = - 1 for pairs of  non-cube 

solutions. 

Finally we come to the p roof  of Lemma 3.3. In fact, we show tha t f (x )  is a constant 
mod  p. If  we choose b, c~{l  . . . . .  p - 1}, then tp(b) -- b tp- z~/3(mod p) and the quadratic 

character  x(b) = b tp- zj/2. In Lemma 3.3 we put h(x,c) = (1 - x c )  2 - 4 c  3. If h(x,c) is 

a non-zero  square, then 

(p(b~) + (p(b2) =- 2 + 

(3.4) 

Also (3.4) holds if h(x, c) = 0 so that there is a simple repeated root  bl. Because mod p 

we have 

{~ h(x,c) a non-square  
I + [h(x, c)] ~p-l~/2 = h(x,c) a square, 

we see that 

~ ( - 1 ) / 3 )  1~/2} f(x) = 2 t-2-v)/3 (P {1 + [h(x, c)] (p- 
. = o \ 2n c~G~F(p) 

¢~0 

(CX - -  t ) t P -  1)/3 - 2 n l - h ( x ,  c)]n. (3.5) 

Note  that h(x, c) is a polynomial  in c of  degree three so that  the individual terms in 

(3.5) are polynomials  in c of  degree at most  2 ( p -  1). However  

c I = 0 unless (p - OIL 
cr~GF(p) 

So the only possible contr ibut ions  to (3.5) are the c °, c p- 1, and c 2tp- ~) terms. 

Fo r  the c o term, we put c = 0, h(x, 0) = 1. We see that there is no x dependence 

in (3.5) for c = 0. 
Fo r  the c 2tp-~ term, we need to choose [h(x, c)]tP-l~/2+"(cx-1) tp-1)/3-2n for 

n = (p - 1)/6. Again this is clearly independent  of  x. 
By the binomial theorem we find that  the c p-  ~ term is a multiple of  
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A ( x ) =  ~ ((P-1)/3~ ~ ((p-1)/2 + n ' ] ( 4 ( p - 1 ) / 3 -  2k '~(_4)k  
.>=o\ 2n /k>=O\ k I \  p -  l -  3k ] 
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X X p -  1-3k(__ 1)(p- 1)/3 +k (3.6) 

Clearly 

4(p 2k ' ]  = 0 for 0 < 2k < (p - 1)/3. (3.7) 
1)/3 

p - l - 3 k  / = = 

So it is sufficient to p rove  

~( (P21 ) /3 ) ( (P -1 ) /2+n)=o for (p -1 ) / 6<k<(p -1 ) /3 .  (3.8, 
,_~o\ k 

In terms of  general ized hypergeomet r i c  series (3.8) is [5, Chap.  IV]  

3F2( (1  - p)/6, (4 - p)/6, (p + 1)/2 1 ~ = 0 (mod  p) (3.9) 
\ 1/2, (p + 1)/2 - k 7 

for (p - 1)/6 < k < (p - 1)/3. In o rder  to show (3.9) we use a te rmina t ing  3F~ t rans-  

format ion (put  p = 1 in ['13, Eq. (4.4)]) 

(-1)n(c)"3F2(-n'a'bl)c,d 1 = t = o ~ ( - n ) ' ( a ) t ( d - b ) t ( l l ' ( d ) , + a - n - c + l ) n - t  (3.10) 

For  n = (p - 1)/6, a = (p + I)/2, b = (4 - p)/6, c = 1/2, and  d = (p + 1)/2 - k we need 

~, ~) /6  ((1 - p)/6) ,  (( p + 1 )/2)t (( p + I ) /2  + ( p - I ) /6  - -  k - ½), (( p + 2) /3  + l + ½)tp ~1 )/6 - l  

2., ~=o l!((p + 1)/2 - k), 
- 0 ( m o d  p) (3.11) 

for (p - 1)/6 < k < (p - 1)/3. 

It is clear tha t  

2'((p + 1)/2 + (p - 1)/6 - k - 1/2), - 0 for (p - 1)/6 < k < (p - 1)/6 + l - 1 (3.12) 

and 

2tP-1)/6-1((p+2)/3+l+ ½)(p- 1)/6-~ = 0 for 0 < l < ( p =  -- 1)/6. (3.13) 
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Because all of the other factors in (3.1 I) are integers, and p never divides the denomi- 
nator of (3.11), (3.12) and (3.13) imply that (3.11) holds for ( p -  1)/6 < k < ( p -  1)/3. 
This completes the proof of (3.11), which implies (3.8) and thus finally Lemma 3.3. 

We remark that the constant - 3  can be obtained by carefully computing the 
constants in this section. 

4. Remarks 

There is an analogue of Proposition 3.2 for n ~: 3 but the techniques here do not 
apply. Alan Adolphson has shown us a geometric proof of Proposition 3.2 from 
Bezout's theorem. It also works for q = p~. Our proof is motivated by the analogy 
with gamma functions and is formal in nature. 

The 3F2 transformation can be found in the work of Thomae in the late 1800's. 
It is interesting to note that Jacobi [9] had discovered the Hasse-Davenport 

formula. In fact, he was motivated by the analogy with gamma functions. Yet he 
could not give a proof that was analogous. 

Our ultimate aim is to find a field theoretic foundation for the q-gamma and 
q-beta functions [1]. They have nice analogues of (1.2), (1.4), and (1.5) in [1, Th. 5.1], 
[1, Eq. 5.20], and [1, Eq. (3.18)]. Unfortunately we do not have a field theoretic 
interpretation of the q-gamma function. 

There is a relation between Gauss sums and the p-adic F-function due to Gross 
and Koblitz [7, Th. 1.12]. The p-adic F-function has a multiplication formula which 
implies the Hasse-Davenport formula for Gauss sums [7, Eq. (3.3)]. However, the 
proof is not character related. Boyarsky [2] gave a proof based upon the functional 
equation for the p-adic gamma function. He commented that such a theorem could 
be expected in view of Dirichlet's proof of the multiplication formula. Dirichlet used 
an integral representation of the logarithmic derivative of the gamma function. Jacobi 
[9] found this proof remarkable. Yet Dirichlet's proof does not work for Gauss sums 
because there is no analogue of a first derivative for characters of GF(p). 

Koblitz has given many properties of the q-analogue of the p-adic gamma function 
in [10], [11]. 
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