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Abstract

We prove several results dealing with various counting functions for par-
titions of an integer into four squares of equal parity. Some are easy conse-
quences of earlier work, but two are new and surprising. That is, we show
that the number of partitions of 72n+60 into four odd squares (distinct or
not) is even.

1. Introduction

In this article, we consider a number of counting functions related to
partitions of the positive integer n into four squares. We will consider
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relationships involving the following functions:
p4o(n), the number of partitions of n into four odd squares

pd
4o(n), the number of partitions of n into four distinct odd squares

p4e(n), the number of partitions of n into four even squares

p+
4e(n), the number of partitions of n into four positive even squares

pd
4e(n), the number of partitions of n into four distinct even squares

pd+
4e (n), the number of partitions of n into four positive distinct even

squares
In particular, we will prove the following theorems:

Theorem 1. For all n ≥ 0,

(1) p4o(8n+ 4) = p4e(8n+ 4) + p+
4e(8n+ 4)

and

(2) pd
4o(8n+ 4) = pd

4e(8n+ 4) + pd+
4e (8n+ 4).

Theorem 2. For all n ≥ 0,

(3) p4o(32n+ 28) = 2p4e(32n+ 28)

and

(4) pd
4o(32n+ 28) = 2pd

4e(32n+ 28).

Theorem 3. For all n ≥ 0,

(5) p4o(72n+ 60) ≡ 0 (mod 2)

and

(6) pd
4o(72n+ 60) ≡ 0 (mod 2).



RESULTS FOR PARTITIONS INTO FOUR SQUARES OF EQUAL PARITY 3

Theorems 1 and 2 are consequences of two straightforward lemmas and some
of our earlier results on partitions into four squares [6]. Also, it should be
noted that (2) was previously proved by Hirschhorn [3].

2. Proofs of Theorems 1 and 2

We begin with the following straightforward observations.

Lemma 1. For all n ≥ 0,

p4e(4n) = p4�(n)

and p+
4e(4n) = p+

4�(n).

Lemma 2. For all n ≥ 0,

p4�(8n+ 4) = p4o(8n+ 4) + p4e(8n+ 4).

Proof. If 8n + 4 is written as the sum of four squares, then the squares
are all odd or all even. This is because any odd square is congruent to 1
modulo 4.

Lemma 3. For all n ≥ 0,

p4�(8n+ 4) = 2p4�(2n+ 1) + p+
4�(2n+ 1)

pd
4�(8n+ 4) = 2pd

4�(2n+ 1) + pd+
4�(2n+ 1)

p4�(32n+ 28) = 3p4�(8n+ 7)

and pd
4�(32n+ 28) = 3pd

4�(8n+ 7)

Proof. These four equalities are proven in [6, Theorem 3]. The third of
these equalities was also proven even earlier in Hirschhorn and Sellers [5].

With Lemmas 1, 2, and 3 in hand, we are now in a position to prove
both Theorems 1 and 2.
Proof of Theorem 1: For all n ≥ 0,

p4o(8n+ 4) = p4�(8n+ 4)− p4e(8n+ 4) by Lemma 2

= 2p4�(2n+ 1) + p+
4�(2n+ 1)− p4�(2n+ 1)

= p4�(2n+ 1) + p+
4�(2n+ 1)

= p4e(8n+ 4) + p+
4e(8n+ 4) by Lemma 1
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which is (1). The same line of reasoning can be used to prove (2).
Proof of Theorem 2: For all n ≥ 0,

p4o(32n+ 28) = p4�(32n+ 28)− p4e(32n+ 28) by Lemma 2

= 3p4�(8n+ 7)− p4�(8n+ 7) by Lemmas 3 and 1

= 2p4�(8n+ 7)

= 2p4e(32n+ 28) by Lemma 1

which is (3). Equality (4) can be obtained similarly.

3. A Generating Function Proof of Theorem 3

We now move to a proof of Theorem 3. Following Ramanujan [2], we
define

ψ(q) =
∑
n≥0

q(n
2+n)/2.

We first prove a number of generating function identities for partitions into
four odd squares.

Lemma 4.∑
n≥0

p4o(n)qn(7)

=
1
24
(
q4ψ(q8)4 + 6q4ψ(q8)2ψ(q16) + 3q4ψ(q16)2

+ 8q4ψ(q8)ψ(q24) + 6q4ψ(q32)
)
,∑

n≥0

pd
4o(n)qn(8)

=
1
24
(
q4ψ(q8)4 − 6q4ψ(q8)2ψ(q16) + 3q4ψ(q16)2

+ 8q4ψ(q8)ψ(q24)− 6q4ψ(q32)
)
,

∑
n≥0

p4o(8n+ 4)qn(9)

=
1
24
(
ψ(q)4 + 6ψ(q)2ψ(q2) + 3ψ(q2)2

+ 8ψ(q)ψ(q3) + 6ψ(q4)
)
,
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and ∑
n≥0

pd
4o(8n+ 4)qn(10)

=
1
24
(
ψ(q)4 − 6ψ(q)2ψ(q2) + 3ψ(q2)2

+ 8ψ(q)ψ(q3)− 6ψ(q4)
)
.

Proof: Here we use the methods of [6]. As in [6], we denote the generating
function for the number of partitions of n of the form n = a2+b2+c2+d2 by
F (a2 + b2 + c2 +d2, q), and use similar notation to define related generating
functions. (So, for example, F (a2 +a2 +b2, q) is the generating function for
the number of partitions of n into the sum of twice one square plus another
(different) square.) Remembering that all squares are odd in the context
of this lemma, we have

F (a2, q) =
∑

a odd, positive

qa2
= qψ(q8).

Then a number of related results follow:

F (a2 + a2, q) = q2ψ(q16),

F (a2 + a2 + a2, q) = q3ψ(q24),

F (a2 + a2 + a2 + a2, q) = q4ψ(q32),

F (a2 + b2, q) =
1
2
(
F (a2, q)2 − F (a2 + a2, q)

)
=

1
2
q2
(
ψ(q8)2 − ψ(q16)

)
,

F (a2 + a2 + b2 + b2, q) =
1
2
q4
(
ψ(q16)2 − ψ(q32)

)
,

F (a2 + a2 + b2, q) = F (a2 + a2, q)F (a2, q)− F (a2 + a2 + a2, q)

= q3
(
ψ(q8)ψ(q16)− ψ(q24)

)
,

F (a2 + a2 + a2 + b2, q) = F (a2 + a2 + a2, q)F (a2, q)

− F (a2 + a2 + a2 + a2, q)
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= q4
(
ψ(q8)ψ(q24)− ψ(q32)

)
,

F (a2 + b2 + c2, q) =
1
3
(
F (a2 + b2, q)F (a2, q)− F (a2 + a2 + b2, q)

)
=

1
6
q3
(
ψ(q8)3 − 3ψ(q8)ψ(q16) + 2ψ(q24)

)
,

F (a2 + a2 + b2 + c2, q) = F (a2 + a2, q)F (a2 + b2, q)

− F (a2 + a2 + a2 + b2, q)

=
1
2
q4
(
ψ(q8)2ψ(q16)− ψ(q16)2

−2ψ(q8ψ(q24) + 2ψ(q32)
)
,

and

F (a2 + b2 + c2 + d2, q)

=
1
4
(
F (a2 + b2 + c2, q)F (a2, q)− F (a2 + a2 + b2 + c2, q)

)
=

1
24
q4
(
ψ(q8)4 − 6ψ(q8)2ψ(q16) + 3ψ(q16)2 + 8ψ(q8)ψ(q24)− 6ψ(q32)

)
From these we obtain∑

n≥0

p4o(n)qn = F (a2 + b2 + c2 + d2, q) + F (a2 + a2 + b2 + c2, q)

+ F (a2 + a2 + b2 + b2, q) + F (a2 + a2 + a2 + b2, q)

+ F (a2 + a2 + a2 + a2, q)

=
1
24
q4
(
ψ(q8)4 + 6ψ(q8)2ψ(q16) + 3ψ(q16)2

+ 8ψ(q8)ψ(q24) + 6ψ(q32)
)
,

which is (7). Next,∑
n≥0

pd
4o(n)qn = F (a2 + b2 + c2 + d2, q)

=
1
24
q4
(
ψ(q8)4 − 6ψ(q8)2ψ(q16) + 3ψ(q16)2
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+ 8ψ(q8)ψ(q24)− 6ψ(q32)
)
,

which is (8). To prove (9), we simply divide the right hand side of (7) by
q4 and replace q8 by q to obtain∑

n≥0

p4o(8n+ 4)qn =
1
24
(
ψ(q)4 + 6ψ(q)2ψ(q2) + 3ψ(q2)2

+ 8ψ(q)ψ(q3) + 6ψ(q4)
)
.

Result (10) follows from (8) in a similar fashion.

We now turn our attention to Theorem 3. We prove Theorem 3 by
verifying the following two generating function identities.

Theorem 4.

(11)
∑
n≥0

p4o(72n+ 60)qn = ψ(q)ψ(q3)

{
(q3)3∞
(q)∞

+
∞∑

r=−∞
q3r2−2r

}

and

(12)
∑
n≥0

pd
4o(72n+ 60)qn = ψ(q)ψ(q3)

{
(q3)3∞
(q)∞

−
∞∑

r=−∞
q3r2−2r

}

where (q)∞ =
∏

n≥1

(1− qn).

In order to prove Theorem 4, we require a number of definitions and
lemmas. We define

P (q) =
∞∑

r=−∞
q(3r2−r)/2, H(q) =

∞∑
n=−∞

q(9n2−n)/2,

I(q) =
∞∑

n=−∞
q(9n2−5n)/2 and J(q) =

∞∑
n=−∞

q(9n2−7n)/2.

We now state and prove a number of lemmas involving various combinations
of the functions above.
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Lemma 5.

ψ(q) = P (q3) + qψ(q9)

and P (q) = H(q3) + qI(q3) + q2J(q3).

Proof: These are straightforward 3–dissections.

Lemma 6.

(13) H(q)I(q2) + qI(q)J(q2) + J(q)H(q2) = 2ψ(q3)
∞∑

r=−∞
q3r2−2r

Proof:

Let G1(q) = H(q)I(q2)+qI(q)J(q2)+J(q)H(q2), the left hand side of (13).
Then

q51G1(q72) =
∞∑

m=−∞
q(18m−1)2+2(18m+5)2

+
∞∑

m=−∞
q(18m+5)2+2(18m−7)2

+
∞∑

m=−∞
q(18m−7)2+2(18m−1)2

=
∑

(a,b)≡(0,1),(1,−1) or (−1,0) (mod 3)

q(6a−1)2+2(6b−1)2

=
∑

a−b≡−1 (mod 3)

q(6a−1)2+2(6b−1)2

=
∞∑

r,s=−∞
q(12r+6s−7)2+2(6s−6r−1)2

= q51
∞∑

r,s=−∞
q216r2−144r+108s2−108s

= 2q51ψ(q216)
∞∑
−∞

q216r2−144r.
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Therefore,

G1(q) = 2ψ(q3)
∞∑

r=−∞
q3r2−2r,

which completes the proof of Lemma 6.

Lemma 7.

(14) H(q)I(q)2 + qI(q)J(q)2 + J(q)H(q)2 = 2ψ(q3)
(q3)3∞
(q)∞

Proof:

Let G2(q) = H(q)I(q)2 +qI(q)J(q)2 +J(q)H(q)2, the left hand side of (14).
Then

q51G2(q72) =
∞∑

m=−∞
q(18m−1)2

( ∞∑
n=−∞

q(18n+5)2

)2

+
∞∑

m=−∞
q(18m+5)2

( ∞∑
n=−∞

q(18n−7)2

)2

+
∞∑

m=−∞
q(18m−7)2

( ∞∑
n=−∞

q(18n−1)2

)2

=
∑

(a,b,c)≡(0,1,1),(1,−1,−1) or (−1,0,0) (mod 3)

q(6a−1)2+(6b−1)2+(6c−1)2

=
1
3

∑
a+b+c=−1

q(6a−1)2+(6b−1)2+(6c−1)2

=
1
3

∞∑
r=−∞

∑
s+t+u=−1

q36((r+s)2+(r+t)2+(r+u)2)−12(3r−1)+3

=
1
3

∞∑
r=−∞

q108r2−108r+15
∑

s+t+u=−1

q36(s
2+t2+u2)

=
2
3
q15ψ(q216)

∞∑
s,t=−∞

q36(s2+t2+(s+t+1)2)
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=
2
3
q51ψ(q216)

∞∑
s,t=−∞

q72(s
2+t2+st+s+t)

=
2
3
q51ψ(q216) · 3(q216)3∞

(q72)∞

= 2q51ψ(q216)
(q216)3∞
(q72)∞

.

Thus,

G2(q) = 2ψ(q3)
(q3)3∞
(q)∞

.

Here we have used the fact that

∞∑
s,t=−∞

qs2+t2+st+s+t = 3
(q3)3∞
(q)∞

,

a proof of which is found in [4].

We are now prepared to prove Theorem 4.
Proof of Theorem 4:

We note that, by Lemma 5,∑
n≥0

p4o(8n+ 4)qn =
1
24
(
ψ(q)4 + 6ψ(q)2ψ(q2) + 3ψ(q2)2

+ 8ψ(q)ψ(q3) + 6ψ(q4)
)

=
1
24

{(
P (q3) + qψ(q9)

)4
+ 6

(
P (q3) + qψ(q9)

)2 (
P (q6) + q2ψ(q18)

)
+3
(
P (q6) + q2ψ(q18)

)2
+ 8

(
P (q3) + qψ(q9)

)
ψ(q3)

+6
(
P (q12) + q4ψ(q36)

)}
.

It follows that∑
n≥0

p4o(24n+ 12)qn =
1
24
{(

4P (q)3ψ(q3) + qψ(q3)4
)
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+6
(
2P (q)P (q2)ψ(q3) + qψ(q3)2ψ(q6)

)
+3qψ(q6)2 + 8ψ(q)ψ(q3) + 6qψ(q12)

}
=

1
24

{
4ψ(q3)

(
H(q3) + qI(q3) + q2J(q3)

)3
+12ψ(q3)

(
H(q3) + qI(q3) + q2J(q3)

)
×(

H(q6) + q2I(q6) + q4J(q6)
)

+8ψ(q3)
(
P (q3) + qψ(q9)

)
+qψ(q3)4 + 6qψ(q3)2ψ(q6) + 3qψ(q6)2 + 6qψ(q12)

}
.

With the aid of Lemmas 6 and 7, one further dissection yields∑
n≥0

p4o(72n+ 60)qn =
1
24
{
4ψ(q)

(
3H(q)I(q)2 + 3qI(q)J(q)2 + 3J(q)H(q)2

)
+12ψ(q)

(
H(q)I(q2) + qI(q)J(q2) + J(q)H(q2)

)}
=

1
2
ψ(q)

{(
H(q)I(q)2 + qI(q)J(q)2 + J(q)H(q)2

)
+
(
H(q)I(q2) + qI(q)J(q2) + J(q)H(q2)

)}
=

1
2
ψ(q)

{
2ψ(q3)

(q3)3∞
(q)∞

+ 2ψ(q3)
∞∑

r=−∞
q3r2−2r

}

= ψ(q)ψ(q3)

{
(q3)3∞
(q)∞

+
∞∑

r=−∞
q3r2−2r

}
,

which is (11). The same approach can be used to prove (12).
Theorem 3 now follows from Theorem 4. Indeed, we have

(q3)3∞
(q)∞

=
(q3)4∞

(q)∞(q3)∞

≡ (q6)2∞
(q)∞(q3)∞

(mod 2)

≡ (q)∞(q6)2∞
(q2)∞(q3)∞

(mod 2)

=
∏
n≥1

(1− q2n−1)(1− q6n)
(1− q6n−3)
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≡
∏
n≥1

(1 + q2n−1)(1− q6n)
(1 + q6n−3)

(mod 2)

=
∞∑

r=−∞
q3r2−2r

by Jacobi’s triple product identity [1, Theorem 2.8].

4. A Combinatorial Proof of Theorem 3

Suppose
72n+ 60 = k2 + l2 +m2 + p2

with k, l, m and p odd. Then, modulo 6,

k2 + l2 +m2 + p2 ≡ 0.

If we consider all possibilities modulo 6, we find that precisely one of k, l, m
and p is 3 (mod 6). Suppose without loss of generality that p = 3q. Then

72n+ 60− 9q2 = k2 + l2 +m2.

Modulo 18, this becomes

k2 + l2 +m2 ≡ 15.

If we consider all possibilities modulo 18, we find that this has the solutions
(with permutations)

(k, l,m) ≡ (±1,±1,±7), (±5,±5,±1) or (±7,±7,±5).

We can suppose without loss of generality (allowing (k, l, m) to be nega-
tive) that

(k, l,m) ≡ (1, 1, 7), (−5,−5, 1) or (7, 7,−5) (mod 18).

Set  k′

l′

m′

 =

 1
3 − 2

3 − 2
3

− 2
3

1
3 − 2

3

− 2
3 − 2

3
1
3

 k
l
m

 .
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Then
(k′, l′,m′) ≡ (1, 1, 1) (mod 6),

k′ + l′ +m′ = −(k + l +m)

and
(k′)2 + (l′)2 + (m′)2 = k2 + l2 +m2 = 72n+ 60− 9q2.

We now show that (k′)2 + (l′)2 + (m′)2 is not the same partition of 72n+

60−9q2 as k2+ l2+m2. For if

 k
l
m

 is a fixed point, we have {k′, l′,m′} =

{k, l,m}, and so k′ + l′ + m′ = k + l + m = 0. But this is impossible as
k + l + m ≡ 3 (mod 6). Thus the involution on the set of solutions of
72n + 60 − 9q2 = k2 + l2 + m2 has no fixed points, and p4o(72n + 60) is
even.
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