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Abstract. The notion of broken k-diamond partitions was introduced by Andrews and
Paule in 2007. For a fixed positive integer k, let ∆k(n) denote the number of broken
k-diamond partitions of n. Recently, Paule and Radu conjectured two relations on ∆5(n)
which were proved by Xiong and Jameson respectively. In this paper, employing these
relations, we prove that for any prime p with p ≡ 1 (mod 4), there exists an integer
λ(p) ∈ {2, 3, 5, 6, 11} such that for n, α ≥ 0, if p - (2n+ 1), then

∆5

(
11pλ(p)(α+1)−1n+

11pλ(p)(α+1)−1 + 1

2

)
≡ 0 (mod 11).

Moreover, some non-standard congruences modulo 11 for ∆5(n) are deduced. For example,

we prove that for α ≥ 0, ∆5

(
11×55α+1

2

)
≡ 7 (mod 11).
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1 Introduction

A combinatorial study guided by MacMahon’s Partition Analysis led Andrews and Paule
[1] to the construction of a new class of directed graphs called broken k-diamond partitions.
Let ∆k(n) denote the number of broken k-diamond partitions of n for a fixed positive
integer k. Andrews and Paule [1] established the following generating function of ∆k(n):

∞∑
n=0

∆k(n)qn =
(q2; q2)∞(q2k+1; q2k+1)∞
(q; q)3∞(q4k+2; q4k+2)∞

,
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where

(q; q)∞ :=
∞∏
n=1

(1− qn).

Employing generating function manipulations, Andrews and Paule [1] proved that for all
integers n ≥ 0,

∆1(2n+ 1) ≡ 0 (mod 3).

Moreover, they gave three conjectures modulo 2, 5 and 25 for ∆k(n). Since then, a number
of congruences satisfied by ∆k(n) for small values of k have been proved, see for example,
Chan [2], Cui and Gu [3], Hirschhorn and Sellers [4], Lin [6], Lin and Wang [7], Radu
and Sellers [9, 10], Wang and Yao [16], Xia [11, 12, 13] and Yao [15]. Recently, Paule
and Radu [8] discovered some non-standard congruences modulo 5 for ∆2(n). Moreover,
they presented two conjectures on ∆5(n) which were proved by Xiong [14] and Jameson
[5] respectively.

In this paper, we establish infinite families of congruences and non-standard congru-
ences modulo 11 for ∆5(n) by utilizing the two relations on ∆5(n) which were conjectured
by Paule and Radu and proved by Xiong [14] and Jameson [5].

In order to state the main results of this paper, we first give some definitions. In this
paper, we always define

S0 := {(0, 1), (0, 3), (0, 4), (0, 5), (0, 9)}

and for 1 ≤ k ≤ 5,

Sk := {(r, s)|1 ≤ r ≤ 10, 1 ≤ s ≤ 9, s ≡ k2r2 (mod 11)}.

Moreover, we let p be a prime with p ≡ 1 (mod 4) and assume that c
(
p−1
2

)
≡ r (mod 11)

and p8 ≡ s (mod 11) with 0 ≤ r ≤ 10 and s ∈ {1, 3, 4, 5, 9} (the quadratic residues
modulo 11). Define

λ(p) :=



2, if (r, s) ∈ S0,

3, if (r, s) ∈ S1,

6, if (r, s) ∈ S2,

5, if (r, s) ∈ S3 ∪ S4,

11, if (r, s) ∈ S5,

(1.1)

and

∞∑
n=0

c(n)qn := (q; q)8∞(q2; q2)2∞

(
1 + 240

∞∑
n=1

q2n

1− q2n

)
. (1.2)
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The coefficients c(n) are of interest here since they are related to broken 5-diamond
partitions in the following congruence relation:

c(n) ≡ 8∆5(11n+ 6) (mod 11). (1.3)

Congruence (1.3) was conjectured by Paule and Radu [8] and was proved by Xiong [14]
by using the theory of modular forms.

The infinite families of congruences modulo 11 for ∆5(n) can be stated as follows.

Theorem 1.1 Let p be a prime with p ≡ 1 (mod 4). For n, α ≥ 0, if p - (2n+ 1), then

∆5

(
11pλ(p)(α+1)−1n+

11pλ(p)(α+1)−1 + 1

2

)
≡ 0 (mod 11), (1.4)

where λ(p) is defined by (1.1).

The non-standard congruences modulo 11 for ∆5(n) can be stated as follows.

Theorem 1.2 Let p be a prime with p ≡ 1 (mod 4). For α ≥ 0,

∆5

(
11pλ(p)α + 1

2

)
≡ 7V (r, s)α (mod 11), (1.5)

where

V (r, s) :=



− s, if (r, s) ∈ S0,

− r3, if (r, s) ∈ S1,

2r6, if (r, s) ∈ S2,

− r5, if (r, s) ∈ S3,

r5, if (r, s) ∈ S4,

6r11, if (r, s) ∈ S5.

(1.6)

For example, let p = 5 in Theorem 1.1. It is easy to check that c(2) = 258 ≡ 5 =
r (mod 11) and 58 ≡ 4 = s (mod 11). Therefore, λ(5) = 5. From Theorem 1.1, we see
that if 5 - (2n+ 1), then for α ≥ 0,

∆5

(
11 · 55α+4n+

11 · 55α+4 + 1

2

)
≡ 0 (mod 11).

From Theorem 1.2, we deduce that for α ≥ 0,

∆5

(
11× 55α + 1

2

)
≡ 7 (mod 11).

3



2 Proof of Theorem 1.1

In order to prove Theorem 1.1, we first prove two lemmas.

Lemma 2.1 Let (r, s) ∈
5⋃

k=0

Sk and define

Sr,s := {p|p is a prime, p ≡ 1 (mod 4), c

(
p− 1

2

)
≡ r (mod 11) and p8 ≡ s (mod 11)}.

If p ∈ Sr,s, then for n, α ≥ 0,

c

(
pαn+

pα − 1

2

)
≡ Ar,s(α)c

(
pn+

p− 1

2

)
+Br,s(α)c(n) (mod 11), (2.1)

where c(n) is defined by (1.2), Ar,s(α) and Br,s(α) are defined by

Ar,s(α + 2) =rAr,s(α + 1)− sAr,s(α), (2.2)

Br,s(α + 2) =rBr,s(α + 1)− sBr,s(α), (2.3)

with Br,s(0) = Ar,s(1) = 1 and Br,s(1) = Ar,s(0) = 0.

Proof. We prove (2.1) by induction on α. It is routine to check that (2.1) holds when

α = 0 and α = 1 since Ar,s(1) = Br,s(0) = 1 and Ar,s(0) = Br,s(1) = 0 for (r, s) ∈
5⋃

k=0

Sk.

Suppose that (2.1) holds when α = m and α = m+ 1 (m ≥ 0), that is,

c

(
pmn+

pm − 1

2

)
≡ Ar,s(m)c

(
pn+

p− 1

2

)
+Br,s(m)c(n) (mod 11), (2.4)

and

c

(
pm+1n+

pm+1 − 1

2

)
≡ Ar,s(m+ 1)c

(
pn+

p− 1

2

)
+Br,s(m+ 1)c(n) (mod 11),

(2.5)

where p ∈ Sr,s. From the definition of Sr,s,

c

(
p− 1

2

)
≡ r (mod 11) and p8 ≡ s (mod 11). (2.6)

Jameson [5] proved that there exists an integer y(p) such that for n ≥ 0,

c

(
pn+

p− 1

2

)
= y(p)c(n)− p8c

(
n− (p− 1)/2

p

)
, (2.7)
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where p is a prime with p ≡ 1 (mod 4). Identity (2.7) was conjectured by Paule and Radu

[8]. Taking n = 0 in (2.7) and using the facts that c(0) = 1 and c
(
−(p−1)/2

p

)
= 0, we

deduce that

y(p) = c

(
p− 1

2

)
. (2.8)

Replacing n by pn+ p−1
2

in (2.7) and using (2.8) yields

c

(
p2n+

p2 − 1

2

)
= c

(
p− 1

2

)
c

(
pn+

p− 1

2

)
− p8c(n). (2.9)

Thanks to (2.6) and (2.9),

c

(
p2n+

p2 − 1

2

)
≡ rc

(
pn+

p− 1

2

)
− sc(n) (mod 11), (2.10)

where p ∈ Sr,s. Replacing n by pmn+ pm−1
2

in (2.10) and utilizing (2.2)–(2.5) yields

c

(
pm+2n+

pm+2 − 1

2

)
≡ rc

(
pm+1n+

pm+1 − 1

2

)
− sc

(
pmn+

pm − 1

2

)
≡ rAr,s(m+ 1)c

(
pn+

p− 1

2

)
+ rBr,s(m+ 1)c(n)

− sAr,s(m)c

(
pn+

p− 1

2

)
− sBr,s(m)c(n)

≡ (rAr,s(m+ 1)− sAr,s(m))c

(
pn+

p− 1

2

)
+ (rBr,s(m+ 1)− sBr,s(m))c(n)

≡ Ar,s(m+ 2)c

(
pn+

p− 1

2

)
+Br,s(m+ 2)c(n) (mod 11),

which implies that (2.1) is true when α = m+ 2. Congruence (2.1) is proved by induction
and this completes the proof of Lemma 2.1.

Lemma 2.2 If (r, s) ∈
5⋃

k=0

Sk, then for α ≥ 0,

rAr,s(λ(p)(α + 1)− 1) +Br,s(λ(p)(α + 1)− 1) ≡ 0 (mod 11), (2.11)

where λ(p), Ar,s(α) and Br,s(α) are defined by (1.1), (2.2) and (2.3), respectively.
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Proof. We also prove (2.11) by induction on α. It is easy to verify that (2.11) holds when
α = 0 for all (r, s) ∈ Sk with 0 ≤ k ≤ 5. Assume that (2.11) is true when α = m (m ≥ 0),
namely,

rAr,s(λ(p)m+ λ(p)− 1) +Br,s(λ(p)m+ λ(p)− 1) ≡ 0 (mod 11), (2.12)

where (r, s) ∈
5⋃

k=0

Sk. Based on (2.2) and (2.3),

rAr,s(λ(p)m+ 2λ(p)− 1) +Br,s(λ(p)m+ 2λ(p)− 1)

≡V (r, s)(rAr,s(λ(p)m+ λ(p)− 1) +Br,s(λ(p)m+ λ(p)− 1)) (mod 11), (2.13)

where V (r, s) is defined by (1.6).

Combining (2.12) and (2.13), we see that for (r, s) ∈
5⋃

k=0

Sk,

rAr,s(λ(p)m+ 2λ(p)− 1) +Br,s(λ(p)m+ 2λ(p)− 1) ≡ 0 (mod 11),

which implies that (2.11) is true when α = m+ 1 and (2.11) is proved by induction. This
completes the proof of this lemma.

Now, we turn to prove Theorem 1.1.

Let p be a prime with p ≡ 1 (mod 4). Assume that c
(
p−1
2

)
≡ r (mod 11) and

p8 ≡ s (mod 11) with 0 ≤ r ≤ 10 and s ∈ {1, 3, 4, 5, 9}. Thus, for any prime p, there

exists a pair (r, s) ∈
5⋃

k=0

Sk such that p ∈ Sr,s, where Sr,s is defined in Lemma 2.1. In view

of (2.1), (2.7) and (2.8),

c

(
pαn+

pα − 1

2

)
≡ Ar,s(α)

(
c

(
p− 1

2

)
c(n)− p8c

(
n− (p− 1)/2

p

))
+Br,s(α)c(n)

≡ (rAr,s(α) +Br,s(α))c(n)

− sAr,s(α)c

(
n− (p− 1)/2

p

)
(mod 11). (2.14)

Replacing α by λ(p)(α + 1)− 1 in (2.14) and utilizing (2.11), we obtain

c

(
pλ(p)(α+1)−1n+

pλ(p)(α+1)−1 − 1

2

)
≡− sAr,s(λ(p)(α + 1)− 1)c

(
n− (p− 1)/2

p

)
(mod 11). (2.15)

Note that if p - (2n+ 1), then n−(p−1)/2
p

is not an integer and

c

(
n− (p− 1)/2

p

)
= 0. (2.16)

6



Combining (2.15) and (2.16), we deduce that if p - (2n+ 1), then for α ≥ 0,

c

(
pλ(p)(α+1)−1n+

pλ(p)(α+1)−1 − 1

2

)
≡ 0 (mod 11). (2.17)

Replacing n by pλ(p)(α+1)−1n + pλ(p)(α+1)−1−1
2

in (1.3) and using (2.17), we arrive at (1.4).
This completes the proof of Theorem 1.1.

3 Proof of Theorem 1.2

In order to prove Theorem 1.2, we first prove the following two lemmas.

Lemma 3.1 Let (r, s) ∈
5⋃

k=0

Sk and let Sr,s be defined in Lemma 2.1. If p ∈ Sr,s, then for

α ≥ 0,

Ar,s(λ(p)α) ≡ 0 (mod 11), (3.1)

where Ar,s(α) is defined by (2.2) respectively.

Proof. We prove (3.1) by induction on α. It is easy to see that (3.1) holds when α = 0
since Ar,s(0) = 0. Suppose that (3.1) holds when α = m (m ≥ 0), namely,

Ar,s(λ(p)m) ≡ 0 (mod 11). (3.2)

Thanks to (2.2),

Ar,s(λ(p)m+ λ(p)) ≡ V (r, s)Ar,s(λ(p)m) (mod 11), (3.3)

where V (r, s) is defined by (1.6). Because of (3.2) and (3.3), we see that (3.1) is true
when α = m+ 1 and Lemma 3.1 is proved by induction.

Lemma 3.2 Let (r, s) ∈
5⋃

k=0

Sk and let Sr,s be defined in Lemma 2.1. If p ∈ Sr,s, then for

α ≥ 0,

Br,s(λ(p)α) ≡ V (r, s)α (mod 11), (3.4)

where V (r, s) and Br,s(α) are defined by (1.6) and (2.3) respectively.

Proof. We also prove (3.4) by induction. It is easy to see that (3.4) is true when α = 0
since Br,s(0) = 1. Suppose that (3.4) holds when α = m (m ≥ 0), that is,

Br,s(λ(p)m) ≡ V (r, s)m (mod 11). (3.5)
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In view of (2.3),

Br,s(λ(p)m+ λ(p)) ≡ V (r, s)Br,s(λ(p)m) (mod 11). (3.6)

It follows from (3.5) and (3.6) that Lemma 3.2 is true when α = m + 1. This lemma is
proved by induction.

Now, we are ready to prove Theorem 1.2.

Setting n = 0 in (2.1) and using the fact that c(0) = 1, we get

c

(
pα − 1

2

)
≡ Ar,s(α)c

(
p− 1

2

)
+Br,s(α) (mod 11), (3.7)

Replacing α by λ(p)α in (3.7) and employing (3.1) and (3.4),

c

(
pλ(p)α − 1

2

)
≡ V (r, s)α (mod 11). (3.8)

It follows from (1.3) that for n ≥ 0,

∆5(11n+ 6) ≡ 7c(n) (mod 11). (3.9)

Replacing n by pλ(p)α−1
2

in (3.9) and using (3.8), we arrive at (1.5). This completes the
proof.
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