
VARIATIONS ON A RESULT OF BRESSOUD
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Abstract. The well-known Rogers-Ramanujan identities have been a rich source of math-
ematical study over the last fifty years. In particular, Gordon’s generalization in the early
1960s led to additional work by Andrews and Bressoud in subsequent years. Unfortunately,
these results lacked a certain amount of uniformity in terms of combinatorial interpreta-
tion. In this work, we provide a single combinatorial interpretation of the series sides of
these generating function results by using the concept of cluster parities. This unifies the
aforementioned results of Andrews and Bressoud and also allows for a strikingly broader
family of q–series results to be obtained. We close the paper by proving congruences for a
“degenerate case” of Bressoud’s theorem.

1. Introduction

A partition of a positive integer n is a sum of non-decreasing positive integers which sum
to n. For instance, 1 + 1 + 1 + 3 + 4 + 5 is a partition of 15. There are numerous ways
to represent the same partition, one of which is the frequency notation where we write
n = f1 × 1 + f2 × 2 + f3 × 3 + . . . where fi is the number of times the number i appears
as a part. For the example above, f1 = 3, f2 = 0 (because there are no 2’s as parts),
f3 = f4 = f5 = 1 and fi = 0 for i ≥ 6.

A well-known family of results involving such frequencies in partitions is the Rogers-Ramanujan-
Gordon identities [11].

Theorem 1.1. Given a positive integer k and an integer r such that 1 ≤ r ≤ k, define Ak,r(n)
to be the number of partitions of n into parts 6≡ 0,±r (mod 2k + 1). Let Bk,r(n) denote the
number of partitions of n such that f1 < r and fi + fi+1 < k. Then, Ak,r(n) = Bk,r(n) for
all n.

Andrews [3] provided the generating function for bk,r(m,n), the number of partitions enu-
merated by Bk,r(n) with m parts:

(1)
∑

m,n≥0

bk,r(m,n)xmqn =
∑

n1,...,nk−1≥0

qN
2
1+N2

2+···+N2
k−1+Nr+Nr+1+···+Nk−1xN1+···+Nk−1

(q; q)n1(q; q)n2 · · · (q; q)nk−1

,
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where Nj = nj + nj+1 + · · ·+ nk−1, and (a; q)n = (1− a)(1− aq) · · · (1− aqn−1).

Soon after, Bressoud [8] proved a closely related result:

Theorem 1.2. Given a positive integer k and an integer r such that 1 ≤ r < k, define
Ak,r,2(n) to be the number of partitions of n into parts 6≡ 0,±r (mod 2k). Let Bk,r,2(n)
denote the number of partitions of n such that f1 < r, fi + fi+1 < k, and if fi + fi+1 = k− 1,
then ifi + (i+ 1)fi+1 ≡ r − 1 (mod 2). Then, Ak,r,2(n) = Bk,r,2(n) for all n.

Notice that the congruence ifi + (i + 1)fi+1 ≡ r − 1 (mod 2) when fi + fi+1 = k − 1 is
equivalent to saying that for consecutive parts, feven and fodd have fixed parities that depend
on k and r. In [9], Bressoud found the generating function for bk,r,2(m,n), the number of
partitions enumerated by Bk,r,2(n) which have exactly m parts:

(2)
∑

m,n≥0

bk,r,2(m,n)xmqn =
∑

n1,...,nk−1≥0

qN
2
1+N2

2+···+N2
k−1+Nr+Nr+1+···+Nk−1xN1+···+Nk−1

(q; q)n1(q; q)n2 · · · (q; q)nk−2
(q2; q2)nk−1

,

where Nj = nj + nj+1 + · · ·+ nk−1 as above.

Theorems 1.1 and 1.2 extend a number of classical results such as Euler’s partition theorem [5,
Corollary 1.2], and the Rogers-Ramanujan identities [5, Corollaries 7.6, and 7.7]. Moreover,
for odd k, Theorem 1.2 was given by Andrews [2]. It is important to note at this stage that
the case r = k is excluded in the statement of Theorem 1.2; this will prove important later
in this work as we address this particular case below.

In 2010, Andrews [6] found the following theorem which is in the same genre as Theorems 1.1
and 1.2.

Theorem 1.3. Suppose 2 ≤ r ≤ k are integers with k ≡ r (mod 2). Let Wk,r(n) denote
the number of partitions enumerated by Bk,r(n) with the added restriction that even parts
appear an even number of times. If k and r are both even, let Gk,r(n) denote the number
of partitions of n in which no odd part is repeated and no even part ≡ 0,±r (mod 2k + 2).
If k and r are both odd, let Gk,r(n) denote the number of partitions of n into parts that are
neither ≡ 2 (mod 4) nor ≡ 0,±r (mod 2k + 2). Then Wk,r(n) = Gk,r(n) for all n.

The generating function for wk,r(m,n), the number of partitions enumerated byWk,r(n) with
exactly m parts is also given in [6]:

(3)
∑

m,n≥0

wk,r(m,n)xmqn =
∑

n1,...,nk−1≥0

qN
2
1+N2

2+···+N2
k−1+2Nr+2Nr+2+···+2Nk−2xN1+···+Nk−1

(q2; q2)n1(q
2; q2)n2 · · · (q2; q2)nk−1

,

where Nj = nj + nj+1 + · · · + nk−1, as above. Observe the similarity in the generating
functions (1), (2) and (3).
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Note that a series of the following form is not included in the above theorems:

(4)
∑

n1,n2,n3≥0

qN
2
1+N2

2+N2
3+N3xN1+N2+N3

(q2; q2)n1(q; q)n2(q
2; q2)n3

.

That is to say, the above theorems require either zero, one (in particular, the last one), or
all of the products in the denominator of the summand to be functions of q2. Our hope is to
address sums such as (4) whereby any number of the denominator products may be functions
of q2 while the others are simply functions of q.

The structure of the remaining part of this paper is as follows. In section 2, we provide some
necessary preliminary material. In section 3, we recall the partition–theoretic interpretations
of series such as (4) which are mentioned in [14]. We note that our interpretations appear
to be different than those of Bressoud, although we will show their equivalence. In section
4, we examine the case r = k in Theorem 1.2 (which was previously excluded by Bressoud).
We explain why this case is “degenerate” in a sense, and prove curious congruences for it.
Finally in section 5, we discuss possible directions for future research.

2. Background

Let λ = λ1 + · · ·+ λm be a partition of n with λ1 ≤ λ2 ≤ · · · ≤ λm. The following definition
appears in [15].

Definition 2.1. The Gordon marking of a partition λ is an assignment of positive integers
( marks) to λ such that

i) equal or consecutive parts are assigned distinct marks,
ii) smallest possible marks are used, and
iii) parts are marked from smallest to largest.

Let λ(r) denote the sub-partition of λ that consists of all r-marked parts.

For instance, if
λ = 4 + 5 + 5 + 6 + 6 + 6 + 7 + 8 + 8 + 9,

then its Gordon marking would be

λ = 41 + 52 + 53 + 61 + 64 + 65 + 72 + 81 + 83 + 92.

A more visual representation of the Gordon marking is a two-dimensional array. Columns
specify the values of parts, and rows specify the marks. The 2-marked 5 (52), say, is in the
fifth column from the left, and second row from the bottom.




6
6

5 8
5 7 9

4 6 8





Here, λ(2) is the sub-partition 5 + 7 + 9.
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The following two definitions are from [14].

Definition 2.2. An r-cluster in λ = λ1 + · · ·+λm is a sub-partition with r parts λi1 ≤ · · · ≤
λir such that

i) λij is j-marked for j = 1, . . . , r,
ii) λij+1

= λij or λij + 1, and
iii) there are no (r + 1)-marked parts equal to λir or λir + 1.

It is not hard to show that the Gordon marking, and decomposition of any given partition
into clusters, is unique [14, 15]. In the figure below, the clusters of the above partition λ are
indicated.





6
6

5 8
5 7 9

4 6 8





a 5-cluster a 3-cluster
a 2-cluster

Definition 2.3. The parity of an r-cluster is the opposite parity of the number of even parts
in that r-cluster.

For instance, the 5-cluster in the above λ is an even cluster, because there are three even
parts in it. The 3-cluster is an odd cluster, and the 2-cluster is an even one.

Definition 2.3 may seem a little awkward at first, but there are two constraints which lead
to it. First, a 1-cluster is simply a number. We would like to keep its “traditional” parity
as is. Next, we would like a single file of odd parts to be an odd cluster for obvious reasons,
no matter how many parts.

3. Interpretations of the Series

Although the full theorem is stated and proven below (Theorem 3.3), we begin with a special
case. This will give us the connection to Theorem 1.2. To facilitate the proof, we state a
proposition first.

Proposition 3.1. Given a partition λ, suppose the r-marked i determines an r-cluster.
Then, among the 1, . . . , r- marked (i − 1)’s and i’s, the number of even parts (respectively,
odd parts) equals the number of even parts (respectively, odd parts) in the r-cluster.

Proof. For a moment, discard all (r + 1) or greater marked parts from λ. Nothing in the
r-clusters changes.

By the definition of Gordon marking, there must be 1, . . . , (r − 1)-marked (i − 1)’s or i’s,
exactly one for each mark. If there are 1−, . . . , r−marked i’s in λ, then there are no r or
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smaller marked (i− 1)’s, and all those i’s are in the r-cluster. The proof is clear in this case.
This provides the basis cases in the strong induction.

If there is an (i − 1) which is marked smaller than r, let s be the maximal mark such that
there is an s-marked (i− 1) in the cluster. Then, the (s+ 1), (s+ 2), . . . , r-marked i’s are in
the r-cluster. When we discard all of those i’s, then the s-marked (i−1) would determine an
s-cluster (s < r). This s-cluster consists precisely of the 1, . . . , s-marked parts of the former
r-cluster. By the inductive hypothesis, the number of even parts (respectively, odd parts)
in the latter s-cluster equals the number of even parts (respectively, odd parts) among the
1, . . . , s-marked (i− 2)’s and (i− 1)’s.

On the other hand, for j < s, if there is a j-marked (i − 2), then there are no j-marked
(i − 1)’s. But because there was an (s + 1)-marked i before we discarded it, there must be
a j-marked i thanks to the definition of Gordon marking. Thus, the number of (i − 2)’s
marked smaller than s equals the number of i’s marked smaller than s. Noting that i−2 ≡ i
(mod 2), the proof is complete. �

One could use direct arguments instead of induction in the proof of Proposition 3.1, sacrificing
brevity for explicit construction. For such constructions, see [14].

Theorem 3.2. Given k ≥ 2, and 1 ≤ r ≤ k, let k−1b̃k,r(m,n) denote the number of partitions
of n into m parts such that f1 < r, fi + fi+1 < k, and all (k − 1)-clusters have the same
parity as (k − r + 1).

Let bk,r,2(m,n) be the number of partitions of n into m parts such that f1 < r, fi + fi+1 < k,
and if fi + fi+1 = k − 1, then ifi + (i+ 1)fi+1 ≡ r − 1 (mod 2).

Then, ∑

m,n≥0

bk,r,2(m,n)xmqn =
∑

m,n≥0
k−1b̃k,r(m,n)xmqn

(5) =
∑

n1,...,nk−1≥0

qN
2
1+N2

2+···+N2
k−1+Nr+Nr+1+···+Nk−1xN1+···+Nk−1

(q; q)n1(q; q)n2 · · · (q; q)nk−2
(q2; q2)nk−1

.

Proof. The fact that the first and the third sums are identical is shown in [9]. To see that the
second and the third ones are the same, we put y1 = · · · = yk−2 = 1, yk−1 = 0 in [14, (3.2)],
and observe that (q2; q2)n = (q; q)n(−q; q)n. This gives a legitimate and complete proof.

However, we can also prove combinatorially that bk,r,2(m,n) = k−1b̃k,r(m,n).

By their respective definitions, partitions counted by bk,r,2(m,n) or k−1b̃k,r(m,n) have m
parts adding up to n. Either satisfy f1 < r and fi + fi+1 < k.

We now show that if a partition enumerated by k−1b̃k,r(m,n), then it is enumerated by
bk,r,2(m,n) also. If there are no (k − 1)-marked parts, then there is nothing to prove.

Otherwise, let i be any of the (k−1)-marked parts. Then, fi−1 +fi = k−1 by the definition
of Gordon marking. The (k − 1)-marked i defines a (k − 1)-cluster, the parity of which is
6≡ k − r (mod 2) by the hypothesis. In other words, the parity of the number of even parts
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in the cluster is ≡ k − r (mod 2). There are a total of (k − 1) parts in the cluster, so the
number of the remaining odd parts is ≡ r − 1 (mod 2). By Proposition 3.1, among the
(i− 1)’s and i’s, the number of odd parts ≡ r − 1 (mod 2), and this implication is shown.

We next show that if a partition enumerated by bk,r,2(m,n), then it is enumerated by

k−1b̃k,r(m,n) also.

If fi +fi+1 = k−1, then by the definition of Gordon marking, there will be a (k−1)-marked
(i+ 1) or i. In either case, the number of odd parts among i’s and (i+ 1)’s ≡ r− 1 (mod 2).

If there is a (k − 1)-marked (i+ 1), then the number of odd parts in that cluster equals the
number of odd parts among i’s and (i + 1)’s by Proposition 3.1, which is ≡ r − 1 (mod 2).
Then, the number of even parts in the cluster is ≡ k − r (mod 2), because there are a total
of (k− 1) parts in the cluster. Hence the parity of the (k− 1)-cluster is ≡ k− r+ 1 (mod 2)
by definition. The proof is complete in this case.

If there is a (k − 1)-marked i, then fi−1 + fi = k − 1, by the definition of Gordon marking.
Because of fi + fi+1 = k − 1, fi−1 = fi+1. The previous paragraph with (i− 1) replacing i,
together with the fact that i− 1 ≡ i+ 1 (mod 2) finishes the proof. �

Next, we consider a significant generalization of Theorem 3.2 which requires the r-clusters
defined above.

Theorem 3.3. Given k ≥ 2, 1 ≤ r ≤ k, suppose I = {i1, i2, . . . , is} is a possibly empty

subset of [k− 1] = {1, 2, . . . , k− 1}. Let i1,...,is b̃k,r(m,n) denote the number of partitions of n
into m parts such that f1 < r, fi + fi+1 < k, and all ij-clusters . . .

i) . . . are odd if ij < r
ii) . . . have the same parity as ij − r if ij ≥ r

for j = 1, . . . , s. Then,

(6)
∑

m,n≥0
i1,...,is b̃k,r(m,n)xmqn =

∑

n1,...,nk−1≥0

qN
2
1+···+N2

k−1+Nr+···+Nk−1xN1+···+Nk−1

∏
i∈I(q

2; q2)ni

∏
i∈[k−1]−I(q; q)ni

.

Proof. We proceed as in the proof of [14, Theorem 3.7].

qN
2
1+···+N2

k−1+Nr+···+Nk−1xN1+···+Nk−1

gives us a base partition λ where

λ(k−1) = 2 + 4 + 6 + · · ·+ 2Nk−1,
...

λ(r) = 2 + 4 + 6 + · · ·+ 2Nr,

λ(r−1) = 1 + 3 + 5 + · · ·+ 2Nr−1 − 1,
...

λ(1) = 1 + 3 + 5 + · · ·+ 2N1 − 1.
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Any j-cluster here is in the form

2
...
2

1
...
1

with possibly no 2’s. The parity of such a cluster is odd if j < r, and it is the same as the
parity of j − r + 1 if j ≥ r. To conclude the proof, we use [14, Theorem 3.6 (ii)]. Note that
(q2; q2)ji in the denominator will fix the parity of all ji-clusters. �

Thanks to cluster parities, Theorem 3.3 provides a combinatorial interpretation of general-
izations of (1) where q is replaced by q2 in an arbitrary selection of denominator factors. In
Bressoud’s result (Theorem 1.2), I = {k − 1}. Choosing I = {1, 2, . . . , k − 1} resembles (3).
Notice that the powers of q in the numerator are different in (3) unless k = r.

As an example, let’s utilize Theorem 3.3 to interpret (4).

∑

n1,n2,n3≥0

qN
2
1+N2

2+N2
3+N3xN1+N2+N3

(q2; q2)n1(q; q)n2(q
2; q2)n3

=
∑

m,n≥0
1,3b̃4,3(m,n)xmqn,

where 1,3b̃4,3(m,n) is the number of partitions of n into m parts such that f1 < 3, fi+fi+1 < 4,
all 1-clusters are odd, and all 3-clusters are even.

4. A Degenerate Case and Congruences

When r = k in Theorem 1.2, Bressoud’s proof [8] still holds, i.e.

(7)
∑

n≥0

Bk,k,2(n)qn =
(qk; q2k)2∞(q2k; q2k)∞

(q; q)∞
=

∑

n≥0

Ak,k,2(n)qn,

where (a; q)∞ = limn→∞(a; q)n. However, we cannot interpret Ak,k,2(n) as the number of
partitions of n into parts that are 6≡ ±k (mod 2k) anymore. This is because k ≡ −k
(mod 2k). Even so, it is possible to use standard q-series manipulations [5, Ch. 1] to simplify
the infinite product in (7). We can then write Ak,k,2(n) as a difference of cardinalities of
certain classes of pairs of partitions. Yet, one sees that this interpretation is so unlike Ak,r,2(n)
described in Theorem 1.2 for 1 ≤ r < k. Our goal is rather to give congruence relations for
Bk,k,2(n).

Before moving to the congruence results satisfied by Bk,k,2(n), we first note that the gener-
ating function in question can be rewritten as follows:
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∑

n≥0

Bk,k,2(n)qn =
(qk; q2k)2∞(q2k; q2k)∞

(q; q)∞

=
(qk; q2k)∞(qk; qk)∞

(q; q)∞

=
(qk; qk)2∞

(q; q)∞(q2k; q2k)∞
(8)

From (8), we immediately see the following parity result for Bk,k,2 :

Theorem 4.1. For all n ≥ 0 and for any k, Bk,k,2(n) ≡ p(n) (mod 2) where p(n) is the
number of (unrestricted) partitions of n.

Proof. The proof of this result is almost immediate:

∑

n≥0

Bk,k,2(n)qn =
(qk; qk)2∞

(q; q)∞(q2k; q2k)∞

≡ (q2k; q2k)∞
(q; q)∞(q2k; q2k)∞

(mod 2)

=
1

(q; q)∞

=
∑

n≥0

p(n)qn

The result follows. �

The parity of p(n) has been a topic of study for some time. The interested reader may wish
to see [1, 7, 12, 13, 16, 17, 18] for a variety of works related to the parity of p(n).

Again thanks to the form of the generating function for Bk,k,2 as seen in (8), we can prove
an additional set of somewhat unexpected congruence results satisfied by Bk,k,2 for certain
small values of k.

Theorem 4.2. For all n ≥ 0,

B5,5,2(5n+ 4) ≡ 0 (mod 5),

B7,7,2(7n+ 5) ≡ 0 (mod 7), and

B11,11,2(11n+ 6) ≡ 0 (mod 11).

Proof. The proof of this theorem is almost as elementary as the proof of Theorem 4.1. First,
note that when written as power series, the terms (qk; qk)2∞ and 1/(q2k; q2k)∞ will be functions
of qk (for fixed k = 5, 7, or 11). This means that every value Bk,k,2(kn + rk) for the pairs
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(k, rk) = (5, 4), (7, 5), and (11, 6) will be a sum of terms each of which contains a factor of
the form p(kn+ rk). Lastly, since

p(5n+ 4) ≡ 0 (mod 5),

p(7n+ 5) ≡ 0 (mod 7), and

p(11n+ 6) ≡ 0 (mod 11)

for all n ≥ 0, our result follows. �

Actually, a bit more can be said thanks to the work of Ramanujan [19, Paper 25]. Namely,
we have

∑

n≥0

B5,5,2(5n+ 4)qn = 5
(q5; q5)5∞

(q; q)4∞(q2; q2)∞

and ∑

n≥0

B7,7,2(7n+ 5)qn = 7
(q7; q7)3∞

(q; q)2∞(q2; q2)∞
+ 49q

(q7; q7)7∞
(q; q)6∞(q2; q2)∞

.

5. Further Problems

One goal for the future would be to discover representations of general series like (4) as linear
combinations of nice infinite products. Indeed, it is known that, given a q-series, there is a
unique representation of the q-series as a single infinite product of powers of (1 − qi). An
algorithm for finding these powers is given in [10]. Sadly, a straightforward computer search
shows us that there are no nice representations for series like (4) which are a single infinite
product. So we must next attempt to find representations which are linear combinations of
infinite products, but this is a much harder task. This is because there is no a priori reason
for the representations of such series as linear combinations of infinite products to be unique.

Another obstacle in this study is that the r-clusters do not readily yield functional equations,
as opposed to Andrews’ [4] or Bressoud’s [8] characterizations of classes of partitions, which
use so many consecutive frequencies. Therefore, in order to obtain a partition identity
relating multiplicity conditions (such as fi + fi+1 < k) to conditions on residue classes of
parts (such as f5j = f5j±1 = 0), or variants thereof, one has to come up with a way to make
r−clusters work in functional equations. Otherwise, we need to devise a way to interpret
general series of the form (4) using other mathematical machinery.
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E-mail address: kursungoz@sabanciuniv.edu

Department of Mathematics, The Pennsylvania State University, State College, PA 16802,
United States

E-mail address: sellersj@psu.edu


