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Abstract. Over the past several years, numerous authors have stud-
ied properties of the combinatorial objects known as overpartitions

(which are natural generalizations of integer partitions). In this pa-

per, we consider various classes of overpartitions where the “overlined
parts” belong to certain residue classes modulo a positive integer

m. We state new identities between such restricted overpartitions

and standard partition functions. Finally, we prove a number of
Ramanujan–like congruences for many of the restricted overpartition

functions using elementary generating function manipulations.
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1. Introduction

An overpartition of a positive integer n is a partition of n in which the
first occurrence of each part may be overlined. Overpartitions generalize
ordinary partitions. For example, there are 14 overpartitions of 4:

(4), (4), (3, 1), (3, 1), (3, 1), (3, 1), (2, 2), (2, 2),

(2, 1, 1), (2, 1, 1), (2, 1, 1), (2, 1, 1), (1, 1, 1, 1), (1, 1, 1, 1)

The five overpartitions with no overlined parts are the ordinary partitions
of 4.

In a seminal paper, Corteel and Lovejoy [5] explored numerous aspects
of the overpartition function, denoted by p(n). Further works on overparti-
tions have since followed quite rapidly (see, for example, [7, 8, 9, 10, 11, 14]).
Some papers have placed various restrictions on the parts of overparti-
tions, such as limiting the number of all parts or the number of overlined
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parts [10, 11], besides other arithmetic properties. Chen, Sang and Shi [4]
have noted a connection between the generating function for the number of
anti-lecture hall compositions in [6] and the number of overpartitions with
non-overlined parts greater than 1. This led them to study the class of
overpartitions in which the non-overlined parts are not congruent to 0,±1
(mod m).

In this paper we consider a systematic refinement of overpartitions by
focusing on the overlined parts that belong to specified residue classes mod-
ulo a positive integer. We will state and prove certain identities between
the latter and certain ordinary partition functions. We will also reveal a
wealth of congruences satisfied by these special overpartitions.

We began the investigation with classes of overpartitions of n in which
the first occurrence of each part ≡ r (mod m) may be overlined, for dif-
ferent choices of r and m. When r = 1 and m = 2, we have the following
identity.

Theorem 1.1. The number of overpartitions of n in which the first occur-
rence of each odd part may be overlined equals the number of partitions of 2n
in which odd parts occur with multiplicity 2 and even parts are unrestricted.

A generating function proof of Theorem 1.1 will be deducible from a
more general result shortly. For now we give a bijective proof. Let the
enumerators of the two classes of objects in the theorem be denoted by
A2(n) and B2(2n), respectively.

Start with a partition counted by B2(2n); then obtain the corresponding
overpartition counted by A2(n) as follows:

• replace each even part, say 2j, by the part j; and
• replace each pair of odd parts, say 2j + 1, 2j + 1, by one overlined

copy of 2j + 1.

Conversely, starting with an overpartition of weight n, any non-overlined
part is doubled, and any overlined part is replaced by two copies of itself.
Since the overlined parts are unique (for each part size), one is guaranteed
to have odd parts appear in pairs.

The bijection is illustrated in Table 1 when n = 4, so that B2(8) = 10 =
A2(4).

Theorem 1.1 will be generalized to an arbitrary modulusm > 1 in Section
2, so that the correspondence of weights is n → mn, followed with an
extension to a third set of ordinary partitions of 2n. In Section 3, we prove
a similar identity for overpartitions in which the multiples of a fixed integer
may be overlined. The final section, Section 4, is devoted to the exploration
of numerous congruences satisfied by the overpartition functions.



REFINED OVERPARTITIONS VIA RESIDUE CLASSES 3

(8) −→ (4)
(6, 2) −→ (3, 1)

(6, 1, 1) −→ (3, 1)
(4, 4) −→ (2, 2)

(4, 2, 2) −→ (2, 1, 1)
(4, 2, 1, 1) −→ (2, 1, 1)
(3, 3, 2) −→ (3, 1)

(3, 3, 1, 1) −→ (3, 1)
(2, 2, 2, 2) −→ (1, 1, 1, 1)

(2, 2, 2, 1, 1) −→ (1, 1, 1, 1)

Table 1. The bijection of Theorem 1.1 for n = 4

2. General Identities

In this section we prove a generalization of Theorem 1.1 and give a
general composite mapping when the modulus is an odd integer.

Theorem 2.1. Let Am(n) be the number of overpartitions of n where only
parts not divisible by m may be overlined. Let Bm(mn) be the number of
partitions of mn where parts which are not multiples of m appear 0 or m
times. Then, for all m > 1 and all n > 0, Am(n) = Bm(mn).

Clearly, Theorem 2.1 becomes Theorem 1.1 when m = 2.

Proof. We first give a generating function proof. If λ is counted by Am(n),
then the overlined parts of λ form a partition into distinct elements of the
set {d | 0 < d 6≡ 0 (mod m)}, and the non-overlined parts form an ordinary
partition. Therefore we have the generating function

(1)

∞∑
n=0

Am(n)qn =

∞∏
n=1

1 + qn

(1− qn)(1 + qmn)
=

∞∏
n=1

(1− q2n)(1− qmn)

(1− qn)2(1− q2mn)
.

Similarly,
∞∑

n=0

Bm(mn)qmn =

∞∏
n=1

1 + qmn

(1− qmn)(1 + qm(mn))

=

∞∏
n=1

(1− q2mn)(1− qm2n)

(1− qmn)(1− qmn)(1− q2m2n)
.

Lastly, replace qm by q to obtain
∞∑

n=0

Bm(mn)qn =

∞∏
n=1

(1− q2n)(1− qmn)

(1− qn)2(1− q2mn)
=

∞∑
n=0

Am(n)qn.
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Next, we define a bijection. Given a partition λ counted by Bm(mn),
obtain the corresponding overpartition counted by Am(n), by applying the
following procedure in succession to λ:

• replace each multiple of m, say M > 0, by M/m; and
• replace any other part (which occurs exactly m times) with one

copy of that part and overline it.

Clearly the new object has weight n. By construction, no overlined part is
divisible by m. So the resulting overpartition is counted by Am(n).

To reverse the mapping, if one encounters an overlined part in a given
partition, say j, then replace it with j, j, j, . . . , j︸ ︷︷ ︸

m times

; and if one sees a non-

overlined part, say k, then just replace it with the part km. This returns a
unique partition counted by Bm(mn).

The identity asserted in Theorem 2.1 associates certain overpartitions of
n with certain ordinary partitions of mn. We now state an extension of the
theorem to certain ordinary partitions of a smaller weight 2n, achieved at
the price of using only odd moduli.

Theorem 2.2. Let d be an odd positive integer.

• Let Ad(n) be the number of overpartitions of n where only parts not
divisible by d may be overlined.

• Let Bd(dn) be the number of partitions of dn where parts which are
not multiples of d appear 0 or d times.

• Let Cd(2n) be the number of partitions of 2n in which odd parts and
parts that are multiples of d occur with even multiplicities, with the
remaining even parts unrestricted.

Then

Ad(n) = Bd(dn) = Cd(2n)

for all positive integers n.

Proof. In view of Theorem 2.1, it will suffice to show that Ad(n) = Cd(2n).
We do this in two ways - using generating functions and providing an ex-
plicit bijection. Firstly, we note that the generating function for Cd(2n)
is

∞∏
i=1

(1 + q2(2i−1) + q4(2i−1) + · · · )(1 + q2(2di) + q4(2di) + · · · )(1− q2di)
1− q2i

.
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That is,
∞∑

n=0

Cd(2n)q2n =

∞∏
i=1

(1− q2di)
(1− q2i)(1− q4i−2)(1− q4di)

=

∞∏
i=1

(1− q2di)(1− q4i)
(1− q2i)2(1− q4di)

.

Replacing q2 by q, we obtain
∞∑

n=0

Cd(2n)qn =

∞∏
i=1

(1− q2i)(1− qdi)
(1− qi)2(1− q2di)

=

∞∑
n=0

Ad(n)qn.

Secondly, for an odd integer d > 0, we define a bijection between the sets
of objects counted by Ad(n) and Cd(2n). The image of an overpartition
λ is obtained by replacing each overlined part t with the single part 2t;
and then replacing each non-overlined part t with the two copies, t, t (this
insures that odd parts occur with even multiplicities).

Conversely, given a partition counted by Cd(2n), replace each sequence,
of even length h of consecutive odd parts with h/2 copies of the part; and
replace each even part with half its size and overline it.

Hence a (composite) bijection also exists from the set of partitions counted
by Bd(dn) to the set of partitions counted by Cd(2n).

These bijections are illustrated in Table 2 when n = 4 and d = 3; the lists
under respective enumerators correspond one-to-one under the bijections.

Ad(n) Bd(dn) Cd(2n)
(1, 1, 1, 1) (3, 3, 3, 3) (1, 1, 1, 1, 1, 1, 1, 1)
(1,1, 1, 1) (1, 1, 1, 3, 3, 3) (2, 1, 1, 1, 1, 1, 1)
(2, 1, 1) (6, 3, 3) (2, 2, 1, 1, 1, 1)
(2, 1, 1) (2, 2, 2, 3, 3) (4, 1, 1, 1, 1)
(2, 1, 1) (6, 3, 1, 1, 1) (2, 2, 2, 1, 1)
(2, 1, 1) (3, 2, 2, 2, 1, 1, 1) (4, 2, 1, 1)
(2, 2) (6, 6) (2, 2, 2, 2)
(2, 2) (6, 2, 2, 2) (4, 2, 2)
(3, 1) (9, 3 (3, 3, 1, 1)
(3, 1) (9, 1, 1, 1) (3, 3, 3)

(4) (12) (4, 4)
(4) (4, 4, 4) (8)

Table 2. The bijections of Theorem 2.2 for n = 4, d = 3
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3. Overpartitions when multiples of m may be overlined

We give a brief complementary treatment to the previous viewpoint and
consider overpartitions in which only multiples (rather than non-multiples)
of a given integer may be overlined.

A general identity can also be stated for such overpartitions.

Theorem 3.1. The number of partitions of n where only multiples of m > 1
can be overlined at most m− 1 times equals the number of partitions of mn
in which non-multiples of m2 occur with multiplicity divisible by m.

Proof. Let the two classes of partitions in Theorem 3.1 be denoted by
Dm(n) and Em(n) respectively. Since up to m − 1 parts of a partition
counted by Dm(n) may be overlined, we obtain the generating function

∞∑
n=0

Dm(n)qn =

∞∏
n=1

1 + qmn + q2mn + · · ·+ q(m−1)mn

1− qn

=

∞∏
n=1

1− qm2n

(1− qn)(1− qmn)

=

∞∑
n=0

Em(n)qn,

which completes a generating function proof of the identity.
Lastly, we define a bijection f between the sets of objects enumerated by

Dm(n) and Em(n). If λ is counted by Dm(n), then f(λ) is obtained, much
as in previous bijections, by replacing an overlined part t by the part mt
(note that t is a multiple of m), and then by replacing a non-overlined part t
by t, t, . . . , t︸ ︷︷ ︸

m times

. Then the resulting partition f(λ) is counted by Em(n). Thus

a multiple of m2 can occur as a part of the image only from an overlined
part of the pre-image.

The reverse mapping is clear.

4. Congruence Properties

We can use the generating function
∑

n≥0Am(n)qn to prove a number of

congruence properties satisfied by Am(n). We first consider the generating
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function modulo 2. From (1), we have∑
n≥0

Am(n)qn =
∏
n≥1

(1− q2n)(1− qmn)

(1− q2mn)(1− qn)2

≡
∏
n≥1

(1− q2n)(1− qmn)

(1− qmn)2(1− q2n)
(mod 2)

=
∏
n≥1

1

(1− qmn)
(mod 2).

But this is a function of qm, which means that if n is not a multiple of m,
then the coefficient of qn on the right-hand side of this congruence is zero.
Hence we have proved our first theorem related to the parity of Am(n):

Theorem 4.1. Let m ≥ 2 be fixed. For any n ≥ 1, if m - n, then Am(n) ≡ 0
(mod 2).

Numerous corollaries which involve Ramanujan–like congruences satis-
fied by Am(n) now follow. We state just a few.

Corollary 4.2. For any k ≥ 1 and all n ≥ 0, A2k(2n+ 1) ≡ 0 (mod 2).

Corollary 4.3. For any j ≥ 1 and all n ≥ 0, each of the following congru-
ences holds:

A2j (2n+ 1) ≡ 0 (mod 2),

A2j (4n+ 2) ≡ 0 (mod 2),

...

A2j (2jn+ 2j−1) ≡ 0 (mod 2).

Corollary 4.4. Let p be an odd prime which divides m. Then, for all n ≥ 0
and r such that 1 ≤ r ≤ p− 1, we have

Am(pn+ r) ≡ 0 (mod 2).

While the above parity results are satisfying, we desire to prove addi-
tional congruences for moduli larger than 2. In order to do so, we return
to the generating function for Am(n) and analyze it further.

Note that∑
n≥0

Am(n)qn =
∏
n≥1

(1− qmn)

(1− q2mn)
×
∏
n≥1

(1− q2n)

(1− qn)2

=
∏
n≥1

(1− qmn)

(1− q2mn)
× 1

D(q)
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where

(2) D(q) =

∞∑
n=−∞

(−1)nqn
2

=
∏
n≥1

(1− qn)2

(1− q2n)
.

We now consider congruences for the function Am(pn + r) where p is an
odd prime and r is a quadratic nonresidue modulo p. If p | m, then the
function ∏

n≥1

(1− qmn)

(1− q2mn)

can be ignored because it is a function of qm and we are considering only
what happens on the arithmetic progression pn+ r where p | m. Thus, we

really only need to focus our attention on
1

D(q)
.

As noted in [9, Lemma 2.11], we know

(3)
1

D(q)
=

ϕ(q)

D(q2)2
,

where

ϕ(q) =

∞∑
n=−∞

qn
2

= 1 + 2

∞∑
n=1

qn
2

is one of Ramanujan’s famous theta functions. Iteration of (3) ad infinitum
implies

(4)
1

D(q)
= ϕ(q)× ϕ(q2)2 × ϕ(q4)4 . . .

Thus, in order to understand Am(pn + r) modulo powers of 2 where p is
an odd prime, r is a quadratic nonresidue modulo p, and p | m, we simply
need to analyze (4) modulo powers of 2.

Since

ϕ(q) = 1 + 2

∞∑
n=1

qn
2

,

it is clear that ϕ(q2
i

)2
i ≡ 0 (mod 4) for all i ≥ 1. Taking into account all

that has been discussed so far, we see that∑
n≥0

Am(pn+ r)qpn+r ≡ ϕ(q) (mod 4)

≡ 1 + 2
∑
n≥1

qn
2

(mod 4).

Since r is a quadratic nonresidue modulo p, we know that pn+ r 6= m2 for
any n (by simply considering such an equality modulo p together with the
definition of quadratic nonresidues). Therefore, the coefficient of qpn+r on
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the left–hand side of the above, namely A(pn + r,m), must be congruent
to 0 modulo 4.

We can summarize the above in the following theorem.

Theorem 4.5. Let p be an odd prime dividing m and let r be a quadratic
nonresidue modulo p. Then, for all n ≥ 0, Am(pn+ r) ≡ 0 (mod 4).

For each prime p, Theorem 4.5 provides (p − 1)/2 congruences modulo
4. Interestingly the above analysis also leads to a family of congruences
modulo 8.

Theorem 4.6. Let p ≡ ±1 (mod 8) be an odd prime dividing m and let r
be a quadratic nonresidue modulo p. Then, for all n ≥ 0, Am(pn + r) ≡ 0
(mod 8).

Proof. Since ϕ(q2
i

)2
i ≡ 0 (mod 8) for all i ≥ 2, we have

∑
n≥0

Am(pn+ r)qpn+r

≡ ϕ(q)ϕ(q2)2 (mod 8)

= (1 + 2
∑
n≥1

qn
2

)(1 + 2
∑
n≥1

q2n
2

)2

≡ 1 + 2
∑
n≥1

qn
2

+ 4
∑
n≥1

q2n
2

+ 4
∑
n≥1

q4n
2

(mod 8)

≡ 1 + 2
∑
n odd

qn
2

+ 6
∑

n even

qn
2

+ 4
∑
n≥1

q2n
2

(mod 8).

We already know that pn + r 6= m2 for any m given that r is a quadratic
nonresidue modulo the prime p. But we also know that pn + r 6= 2m2 for

any m because the Legendre symbol
(

2
p

)
equals 1 precisely when p ≡ ±1

(mod 8). Thus, no terms of the form qpn+r will appear on the right–hand
side of the congruence above. Therefore, Am(pn + r) ≡ 0 (mod 8) under
the hypotheses of the theorem.

We next consider congruences modulo 3 which are satisfied by specific
functions in this family.

Theorem 4.7. For all n ≥ 0, A3(27n+ 26) ≡ 0 (mod 3).



10 A. O. MUNAGI AND J. A. SELLERS

Proof. We begin with the following generating function manipulations:∑
n≥0

A3(n)qn =
∏
n≥1

(1− q2n)(1− q3n)

(1− q6n)(1− qn)2

≡
∏
n≥1

(1− q2n)(1− qn)3

(1− q2n)3(1− qn)2
(mod 3)

=
∏
n≥1

(1− qn)

(1− q2n)2

=
1

ψ(q)

where

ψ(q) =
∑
n≥0

qn(n+1)/2 =
∏
n≥1

(1− q2n)2

(1− qn)

is another of Ramanujan’s theta functions. Thanks to properties of the
triangular numbers, it is clear that

(5) ψ(q) = H(q3) + qψ(q9)

where

(6) H(q) = 1 + q1 + q2 + q5 + q7 + q12 + q15 + . . . ,

where the exponents on q in H(q) are the pentagonal numbers n(3n− 1)/2
where n is any integer. We now exploit this representation of ψ(q) to prove
our result.

Continuing the work above, we have the following:∑
n≥0

A3(n)qn ≡ 1

ψ(q)
(mod 3)

=
ψ(q)2

ψ(q)3

≡ ψ(q)2

ψ(q3)
(mod 3)

=
(H(q3) + qψ(q9))2

ψ(q3)

=
H(q3)2 + 2qH(q3)ψ(q9) + q2ψ(q9)2

ψ(q3)
.

Thus, ∑
n≥0

A3(3n+ 2)q3n+2 ≡ q2ψ(q9)2

ψ(q3)
(mod 3)
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or ∑
n≥0

A3(3n+ 2)qn ≡ ψ(q3)2

ψ(q)
(mod 3).

We now further dissect this generating function modulo 3.∑
n≥0

A3(3n+ 2)qn ≡ ψ(q3)2

ψ(q)
(mod 3)

=
ψ(q3)2ψ(q)2

ψ(q)3

≡ ψ(q3)2ψ(q)2

ψ(q3)
(mod 3)

= ψ(q3)(H(q3) + qψ(q9))2 from comments above.

Therefore, selecting only those powers of the form q3n+2 from both sides,
we obtain ∑

n≥0

A3(9n+ 8)q3n+2 ≡ q2ψ(q3)ψ(q9)2 (mod 3)

or ∑
n≥0

A3(9n+ 8)qn ≡ ψ(q)ψ(q3)2 (mod 3)

≡ (H(q3) + qψ(q9))ψ(q3)2 (mod 3).

To complete the proof, note that there are no terms of the form q3n+2 on
the right–hand side of the last congruence. Hence for all n ≥ 0,

A3(9(3n+ 2) + 8) = A3(27n+ 26) ≡ 0 (mod 3).

Before we move to our next congruence modulo 3, we note the following
lemma which recently appeared as equation (1.6) in a recent paper of Yao
and Xia [13] and is easily proven using Jacobi’s Triple Product Identity [1,
Theorem 2.8].

Lemma 4.8. Let H(q) =

∞∑
n=−∞

qn(3n−1)/2, as defined in (6). Then

H(q) =
∏
n≥1

(1− q3n)2(1− q2n)

(1− qn)(1− q6n)
.

With Lemma 4.8 in hand, we can now prove the following congruence
modulo 3.

Theorem 4.9. For all n ≥ 0, A9(27n+ 24) ≡ 0 (mod 3).
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Proof. We begin with some basic manipulations of the generating function
for A9(n) :∑

n≥0

A9(n)qn =
∏
n≥1

(1− q2n)(1− q9n)

(1− q18n)(1− qn)2

≡
∏
n≥1

(1− q2n)(1− qn)9

(1− q2n)9(1− qn)2
(mod 3)

=
∏
n≥1

(1− qn)7

(1− q2n)8

=
∏
n≥1

(1− qn)

(1− q2n)2
×
∏
n≥1

(1− qn)6

(1− q2n)6

≡ 1

ψ(q)

∏
n≥1

(1− q3n)2

(1− q6n)2
(mod 3)

≡ ψ(q)2

ψ(q3)

∏
n≥1

(1− q3n)2

(1− q6n)2
(mod 3)

=
(H(q3) + qψ(q9))2

ψ(q3)

∏
n≥1

(1− q3n)2

(1− q6n)2
using (5) above

Extracting powers of the form q3n from both sides, we have∑
n≥0

A9(3n)q3n ≡ H(q3)2

ψ(q3)

∏
n≥1

(1− q3n)2

(1− q6n)2
(mod 3)

or ∑
n≥0

A9(3n)qn ≡ H(q)2

ψ(q)

∏
n≥1

(1− qn)2

(1− q2n)2
(mod 3).

From Lemma 4.8, we see that∑
n≥0

A9(3n)qn ≡ 1

ψ(q)

∏
n≥1

(1− q2n)2(1− q3n)4(1− qn)2

(1− qn)2(1− q6n)2(1− q2n)2
(mod 3)

=
1

ψ(q)

∏
n≥1

(1− q3n)4

(1− q6n)2

≡ ψ(q)2

ψ(q3)

∏
n≥1

(1− q3n)4

(1− q6n)2
(mod 3)

=
(H(q3) + qψ(q9))2

ψ(q3)

∏
n≥1

(1− q3n)4

(1− q6n)2
.
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Extracting powers of the form q3n+2 yields

∑
n≥0

A9(9n+ 6)q3n+2 ≡ q2ψ(q9)2

ψ(q3)

∏
n≥1

(1− q3n)4

(1− q6n)2
(mod 3)

or

∑
n≥0

A9(9n+ 6)qn ≡ ψ(q3)2

ψ(q)

∏
n≥1

(1− qn)4

(1− q2n)2
(mod 3).

But

ψ(q3)2

ψ(q)

∏
n≥1

(1− qn)4

(1− q2n)2
=

ψ(q3)2

ψ(q)2

∏
n≥1

(1− qn)3

≡ ψ(q3)2

ψ(q)2

∏
n≥1

(1− q3n) (mod 3)

≡ ψ(q3)2ψ(q)

ψ(q3)

∏
n≥1

(1− q3n) (mod 3)

= ψ(q3)ψ(q)
∏
n≥1

(1− q3n)

= ψ(q3)(H(q3) + qψ(q9))
∏
n≥1

(1− q3n).

Note that there are no terms of the form q3n+2 in the resulting term. There-
fore,

A9(9(3n+ 2) + 6) = A9(27n+ 24) ≡ 0 (mod 3).

We conclude our discussion of congruences modulo 3 by proving an infi-
nite family of congruences. Our proof utilizes the same tools already used
to prove Theorems 4.7 and 4.9.

Theorem 4.10. For all n ≥ 0 and all j ≥ 3, A3j (27n+ 18) ≡ 0 (mod 3).
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Proof. We have the following:

∑
n≥0

A3j (n)qn =
∏
n≥1

(1− q2n)(1− q3jn)

(1− q2·3jn)(1− qn)2

≡
∏
n≥1

(1− qn)

(1− q2n)2
×
∏
n≥1

(1− qn)3
j−3

(1− q2n)3j−3
(mod 3)

≡ 1

ψ(q)
×
∏
n≥1

(1− q3n)3
j−1−1

(1− q6n)3j−1−1 (mod 3)

≡ ψ(q)2

ψ(q3)
×
∏
n≥1

(1− q3n)3
j−1−1

(1− q6n)3j−1−1 (mod 3)

=
(H(q3) + qψ(q9))2

ψ(q3)

∏
n≥1

(1− q3n)3
j−1−1

(1− q6n)3j−1−1

Extracting powers of the form q3n, we have

∑
n≥0

A3j (3n)qn ≡ H(q)2

ψ(q)

∏
n≥1

(1− qn)3
j−1−1

(1− q2n)3j−1−1 (mod 3).

From Lemma 4.8, we see that

∑
n≥0

A3j (3n)qn ≡ 1

ψ(q)

∏
n≥1

(1− q2n)2(1− q3n)4(1− qn)3
j−1−1

(1− qn)2(1− q6n)2(1− q2n)3j−1−1 (mod 3)

=
1

ψ(q)

∏
n≥1

(1− q3n)4(1− qn)3
j−1−3

(1− q6n)2(1− q2n)3j−1−3

≡ ψ(q)2

ψ(q3)

∏
n≥1

(1− q3n)3
j−2+3

(1− q6n)3j−2+1
(mod 3)

=
(H(q3) + qψ(q9))2

ψ(q3)

∏
n≥1

(1− q3n)3
j−2+3

(1− q6n)3j−2+1
,



REFINED OVERPARTITIONS VIA RESIDUE CLASSES 15

and extracting powers of the form q3n again yields

∑
n≥0

A3j (9n)qn ≡ H(q)2

ψ(q)

∏
n≥1

(1− qn)3
j−2+3

(1− q2n)3j−2+1
(mod 3)

=
1

ψ(q)

∏
n≥1

(1− q2n)2(1− q3n)4

(1− qn)2(1− q6n)2

∏
n≥1

(1− qn)3
j−2+3

(1− q2n)3j−2+1

≡ ψ(q)2

ψ(q3)

∏
n≥1

(1− q2n)(1− q3n)3
j−3+5

(1− qn)2(1− q6n)3j−3+2
(mod 3)

=
∏
n≥1

(1− q2n)5(1− q3n)3
j−3+6

(1− qn)4(1− q6n)3j−3+4

= ψ(q)
∏
n≥1

(1− q2n)3(1− q3n)3
j−3+6

(1− qn)3(1− q6n)3j−3+4

≡ ψ(q)
∏
n≥1

(1− q3n)3
j−3+5

(1− q6n)3j−3+3
(mod 3)

= (H(q3) + qψ(q9))
∏
n≥1

(1− q3n)3
j−3+5

(1− q6n)3j−3+3
.

Note that there are no terms of the form q3n+2 in the resulting term. So
we obtain

A3j (9(3n+ 2)) = A3j (27n+ 18) ≡ 0 (mod 3).

Lastly, we examine some congruences for the counting functions men-
tioned in Theorem 3.1, starting with the generating function

∑
n≥0

Dm(n)qn =
∏
n≥1

(1− qm2n)

(1− qn)(1− qmn)
, m > 1.

We establish two sets of congruences for specific members of this family of
overpartition functions.

Theorem 4.11. Let p ≥ 5 be prime and let r be such that 24r + 1 is
a quadratic nonresidue modulo p. Then, for all n ≥ 0, D2(pn + r) ≡ 0
(mod 2).
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Proof. We have∑
n≥0

D2(n)qn =
∏
n≥1

(1− q4n)

(1− qn)(1− q2n)

≡
∏
n≥1

(1− qn)4

(1− qn)(1− qn)2
(mod 2)

=
∏
n≥1

(1− qn)

≡
∞∑

m=−∞
qm(3m−1)/2 (mod 2),

where the last equality follows from Euler’s Pentagonal Number Theorem
[1, Corollary 1.7]. Thus to find the coefficient of qpn+r on the right–hand
side, we need to find all solutions to the equation

pn+ r =
m(3m− 1)

2
,

where m is any integer. That is,

r ≡ m(3m− 1)

2
(mod p),

which can be expressed as

24r + 1 ≡ (6m− 1)2 (mod p).

But since 24r + 1 is a quadratic nonresidue modulo p, we know that this
last congruence has no solutions. The theorem follows.

Theorem 4.12. For all n ≥ 0,

Dp(pn+ r) ≡ 0 (mod p)

for each ordered pair (p, r) = (5, 4), (7, 5), (11, 6).

Proof. For any prime p, we have∑
n≥0

Dp(n)qn =
∏
n≥1

(1− qp2n)

(1− qn)(1− qpn)

=
∏
n≥1

(1− qp2n)

(1− qpn)

∏
n≥1

1

(1− qn)
.

Now ∏
n≥1

(1− qp2n)

(1− qpn)
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may be ignored since it is function of qp. Thus, we only need to concentrate
on ∏

n≥1

1

(1− qn)

which is the generating function for p(n), the unrestricted partition func-
tion. Our theorem then follows from well–known congruences modulo 5, 7,
and 11 satisfied by p(n) (see, for example, [3, Chapter 2]).
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