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Have you experienced a “mathematical yawp” lately? (Not sure you want to
answer until you know what one is?) Well, the phrase “mathematical yawp” was
recently coined by Francis Su in his James R. Leitzel Lecture at the 2006 MathFest.
In essence, a mathematical yawp is one of those “light bulb” or “aha!” moments
when a mathematician comes to an understanding of a topic so moving that it is
accompanied by a yelp of joy or disbelief. By specialization, a combinatorial yawp
is one of those moments achieved while counting.

Combinatorial proofs are appreciated for the elegance and/or simplicity of their
arguments. However, the true (and frequently underappreciated) beauty lies in
their power to generalize results. Understanding the components of a mathemat-
ical identity in a concrete counting context provides the first clue for exploring
natural extensions. Investigating and stretching the role of each parameter in turn,
leads to different generalizations—ones that might not be connected without the
combinatorial insight.

Our yawp occurred while exploring Problem # 11220, proposed by David Beck-
with, from the April 2006 issue of the American Mathematical Monthly [1], the
innocuous-looking alternating binomial identity below.

Identity 1. For n ≥ 1,
n∑

r=0

(−1)r

(
n

r

)(
2n− 2r

n − 1

)
= 0.

Equipped with the ability to select subsets, to paint elements black, blue, or
white, and to count, we will work through a novel proof of this identity and then
explore numerous related results. What qualifies as a natural generalization is open
to debate, but the greatest surprise is the sheer number of interesting generalizations
to be explored.

To prove Identity 1, begin by understanding the unsigned quantity in the alter-
nating sum,

(
n
r

)(
2n−2r
n−1

)
. Consider the set of n consecutive pairs, {{1, 2}, {3,4}, . . . ,

{2n− 1, 2n}}. Given r, 0 ≤ r ≤ n, select r of the pairs to paint black in
(
n
r

)
ways.

Of the remaining 2n − 2r elements that have not yet been painted, select n − 1 to
paint blue. The remaining elements are then painted white. We call such a painted
set a configuration. For example, when n = 5,

X = {{1, 2}, {3, 4}, {5,6}, {7, 8}, {9,10}}

is a configuration where black elements are bold, blue elements are underlined, and
the remaining elements are white.

Now define two sets, denoted E and O, that depend on the parameter r, the
number of black pairs.
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Set E . All configurations with an even number of black pairs.
Set O. All configurations with an odd number of black pairs.

If we can show that |Set E| − |Set O| = 0, then Identity 1 is proved. Our goal
then is to find a bijection between E and O.

Correspondence. Find the minimum integer j such that 1 ≤ j ≤
n and {2j−1, 2j} contains no blue element, i.e., it is either a black
pair or a white pair. Then toggle the color of this pair—if it is
black, make it white and if it is white, make it black.

Since there are only n − 1 blue elements (and n total pairs),
every configuration has at least one pair containing no blue element.
So j always exists and the correspondence is a bijection. Hence,
|Set E| = |Set O| and the proof is complete.

As an illustration, the previously considered configuration

X = {{1, 2}, {3, 4}, {5,6}, {7, 8}, {9,10}},

belongs to E since it contains r = 2 black intervals. By toggling the first blueless
interval {5, 6}, X is matched with

X ′ = {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9,10}},

which belongs to O, since it has r = 1 black interval.
At this point, many natural questions arise. Can we change the number of blue

elements? What happens if we replace the pairs above by k-sets? Can we say
something about partial sums? We will consider each of these questions in turn.

Changing the number of blue elements. If we paint fewer than n−1 elements
blue in our proof above, the argument doesn’t change. We are still guaranteed
a blueless pair, so a toggle point exists. Letting m represent the number of blue
elements to be painted, this gives

Identity 2. For 0 ≤ m < n,
n∑

r=0

(−1)r

(
n

r

)(
2n− 2r

m

)
= 0.

What happens when m is larger than n− 1? Well, the initial set-up is the same.
Select r pairs to color black and m of the remaining elements to color blue. The sets
E and O contain configurations with an even or odd number of black pairs. Again,
toggle the color of the first blueless pair. Unfortunately, there are now unpaired
elements in our correspondence (so it is no longer a bijection). Since m is greater
than or equal to n, we can no longer guarantee a toggle point exists. However, we
know that the unpaired configurations have at least one blue element in every pair,
so these configurations have zero black pairs and hence belong to E .

For example, when n = 5 and m = 7, the configuration

X = {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}}

has no toggle point.
How many of these unpaired configurations are there? Such configurations have

m − n pairs where both elements are painted blue. So there are
(

n
m−n

)
ways to

select the blue pairs. Then, the other n − (m − n) = 2n − m pairs have one blue
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element and one white element, and there are 22n−m ways to paint them. Thus,
there are

(
n

m−n

)
22n−m unpaired configurations, leading to our next generalization.

Identity 3. For n, m ≥ 0,
n∑

r=0

(−1)r

(
n

r

)(
2n − 2r

m

)
= 22n−m

(
n

m − n

)
.

Note that this is a generalization of Identity 2 since
(

n
m−n

)
= 0 when m < n. To

some, this would be enough for a yawp. But we press on for more!

From pairs to k-sets. Rather than creating n subsets by pairing consecutive
elements of the set {1, 2, 3, . . . , 2n}, we asked what would happen if we grouped k
consecutive elements from {1, 2, 3, . . ., kn}. By mimicking the argument for Identity
1, we can immediately generalize Identity 2 as follows.

Identity 4. For 0 ≤ m < n and k ≥ 1,
n∑

r=0

(−1)r

(
n

r

)(
kn − kr

m

)
= 0.

For example, when n = 5, k = 3, m = 4, the configuration

X = {{1, 2, 3}, {4,5,6}, {7, 8, 9}, {10, 11, 12}, {13,14,15}}

has r = 2 black intervals (and thus belongs to E) and by toggling the first blueless
interval, we get

X ′ = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10, 11, 12}, {13,14,15}}

(which belongs to O).
Can we generalize Identity 4, allowing m ≥ n blue elements? Yes and no. We

can formulate a general answer, but the alternating sum becomes a sum over integer
partitions. Although it is not the nice answer we were hoping for, it still has some
notable specializations.

In the general situation with m ≥ n, unpaired objects are configurations with at
least one blue element in every k-set. These objects necessarily belong to E since
they have r = 0 black intervals. For example, when n = 5, k = 3, m = 8, the
painted set

{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10, 11, 12}, {13, 14, 15}}

has no blueless interval.
We can count these by considering the distribution of blue elements among the

n different k-sets. Let xi count the number of k-sets containing i blue elements
(1 ≤ i ≤ k). In our example, x1 = 3, x2 = 1, x3 = 1. Then sum over all nonnegative
integer solutions (x1, x2, . . . , xn) to

{
n = x1 + x2 + · · ·+ xk

m = x1 + 2x2 · · ·+ kxk
.

(Equivalently, we are summing over all partitions of m into n positive parts of size
at most k.) Since the number of ways to choose which xi intervals have i blue
elements is the multinomial coefficient

(
n

x1,x2,...,xk

)
= n!

x1!x2!···xk! , and an interval
with i blue elements can be painted

(
k
i

)
ways, we get
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Identity 5. For all k, m, n ≥ 1,
n∑

r=0

(−1)r

(
n

r

)(
kn − kr

m

)
=

∑

(x1,x2,...,xk)

(
n

x1, x2, . . . , xk

) k∏

i=1

(
k

i

)xi

,

where the sum is taken over all simultaneous nonnegative integer solutions to n =
x1 + x2 + · · ·+ xk and m = x1 + 2x2 · · ·+ kxk.

Note that this is a generalization of Identity 4 since when m is less than n, the sum
on the right is empty. Some other special cases are worth mentioning:

• m = n
n∑

r=0

(−1)r

(
n

r

)(
kn − kr

n

)
= kn.

• m = n + 1
n∑

r=0

(−1)r

(
n

r

)(
kn − kr

n + 1

)
= nkn−1

(
k

2

)
.

Partial sums. The final generalization considers what happens if we return to
creating pairs from the set {1, 2, 3, . . . , 2n} and only consider the first s terms of
the original sum. To make life easier, we restrict our attention to the situation
where m < n and consider

s∑

r=0

(−1)r

(
n

r

)(
2n− 2r

m

)
.

In this case, the development parallels Identity 2 except that only configurations
with s or fewer black pairs are considered. To match configurations between E and
O, we toggle the color of the first blueless pair unless the configuration contains
the maximum s black pairs and a white pair precedes them.

For example, when n = 5, m = 2, s = 3 the configuration

X = {{1, 2}, {3,4}, {5,6}, {7, 8}, {9,10}},

is unmatched, since by toggling the first blueless set {1, 2}, we would wind up
with four black intervals, exceeding our upper bound. We note that among the
configurations with s black intervals and w white intervals, the fraction of those
where a white interval comes before a black interval is w

w+s .
To count the number of unmatched objects, let b represent the number of blue

pairs in a configuration. Since b blue pairs contain 2b blue elements, there must
be m − 2b pairs containing one blue and one white element (and since we have s
black pairs, there are n − b − (m − 2b) − s = n − m − s + b white pairs). So there
are 2m−2b

(
n

s, b, m−2b, n−m−s+b

)
configurations with s black pairs, b blue pairs, and

a total of m blue elements. Of these, n−m−s+b
n−m+b of the configurations have a white

pair coming before all the black pairs. These unmatched elements all belong to E
or all belong to O depending on the parity of s. This yields the following identity:

Identity 6. For 0 ≤ m < n and 0 ≤ s ≤ n,
s∑

r=0

(−1)r

(
n

r

)(
2n − 2r

m

)
= (−1)s

∑

b≥0

n − m − s + b

n − m + b
2m−2b

(
n

s, b, m − 2b, n − m − s + b

)
.
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Perhaps you don’t find this solution satisfactory? Let’s make one last restriction
in hopes of finding a “nice” solution. Restrict the location of the black pairs to only
occur in the first s positions. Then, for 1 ≤ m, n, the alternating sum becomes

s∑

r=0

(−1)r

(
s

r

)(
2n − 2r

m

)
.

The unsigned quantity in the alternating sum,
(
s
r

)(
2n−2r

m

)
, counts the ways to

select r black pairs from {{1, 2}, {3, 4}, . . ., {2s − 1, 2s}} and then paint m of the
remaining uncolored elements from {1, 2, 3, . . . , 2n} blue. We then use the same
toggling argument as before:

Set E . All configurations with an even number of black pairs.
Set O. All configurations with an odd number of black pairs.
Correspondence. Find the minimum integer j such that 1 ≤ j ≤
s and {2j − 1, 2j} contains no blue element, i.e., it is either a black
pair or a white pair. Then toggle the color of the pair.

The unmatched configurations are those in which each of the first s pairs contains
at least one blue element. (Unlike the previous situation, we don’t have to worry
about generating too many black pairs.) All of these unmatched elements belong
to E .

The right-hand side sum corresponding to this alternating sum depends on the
size of m, the number of blue elements to be painted. If m < s, a toggle point always
exists and our correspondence is a bijection, giving the following generalization of
Identity 2.

Identity 7. For 0 ≤ m < s ≤ n,
s∑

r=0

(−1)r

(
s

r

)(
2n − 2r

m

)
= 0.

If m = s, there are 2s different unmatched configurations, and we get

Identity 8. For 0 ≤ s ≤ n,
s∑

r=0

(−1)r

(
s

r

)(
2n − 2r

s

)
= 2s.

Lastly, if m > s, we convert the alternating sum into a positive sum by count-
ing the configurations that are unmatched by the previous correspondence. Such
unmatched configurations have at least one blue element among each of the first
s pairs (and therefore have zero black elements). For 0 ≤ w ≤ s, we claim that
there are

(
s
w

)(
2n−s−w

m−s

)
unmatched configurations where w of the first s pairs begin

with a white element. To see this, note that once we choose which s pairs begin
with a white element (which can be done

(
s
w

)
ways) then those w pairs must end

with a blue element and the remaining s − w pairs must begin with a blue ele-
ment. The remaining m − s blue elements can be chosen among the unspecified
(s − w) + (2n − 2s) = 2n − s − w elements in

(
2n−s−w

m−s

)
ways. Since all of the un-

matched configurations belong to E , we arrive at our final identity, which actually
encapsulates Identities 7 and 8 too.
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Identity 9. For all m, n, s ≥ 0,
s∑

r=0

(−1)r

(
s

r

)(
2n − 2r

m

)
=

s∑

w=0

(
s

w

)(
2n − s − w

m − s

)
.

So starting from a single alternating binomial identity, a concrete counting con-
text, and a good correspondence, eight related identities were explored by manip-
ulating the roles of the parameters (and sometimes introducing new ones). The
resulting identities were often beautiful generalizations—though occasionally the
results didn’t quite qualify as “simple” or “nice.” Regardless, the questions were
worth asking, the answers worth exploring, and the connections worth making. We
yawped. Did you?
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