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Abstract. We investigate properties of attainable partitions of integers, where a par-

tition (n1, n2, . . . , nr) of n is attainable if
∑

(3 − 2i)ni ≥ 0. Conjecturally, under an

extension of the Cohen and Lenstra heuristics by Holmin et. al., these partitions corre-
spond to abelian p-groups that appear as class groups of imaginary quadratic number

fields for infinitely many odd primes p. We demonstrate a connection to partitions of in-

tegers into triangular numbers, construct a generating function for attainable partitions,
and determine the maximal length of attainable partitions.

1. Introduction

We consider partitions λ = (n1, n2, . . . , nr) of n so that n = n1 + n2 + · · · + nr and
written so that n1 ≥ n2 ≥ · · · ≥ nr. For a fixed odd prime p, we realize the bijection
between partitions of n and abelian groups of order pn by associating to λ the abelian
p-group

Gλ(p) = (Z/pn1Z)× (Z/pn2Z)× · · · × (Z/pnrZ).
The cyclicity index of λ,

c(λ) =

r∑
i=1

(3− 2i)ni

measures the deviation of Gλ(p) from being cyclic and governs the size of Aut(Gλ(p)) (see
Section 2). The partition λ is called attainable if c(λ) ≥ 0, which is equivalent to saying
that n1 ≥ n2+3n3+5n4+· · ·+(2r−3)nr. Holmin et. al. [6] show that under an extension of
the Cohen-Lenstra heuristics [3] for the distribution of class numbers, an attainable partition
corresponds to a family of abelian p-groups that conjecturally are realized as the class groups
of imaginary quadratic number fields for infinitely many odd primes p. We study attainable
partitions to further understand which abelian p-groups should occur in this way.

In this work, we determine a generating function for the attainable partitions.

Theorem 1.1. The generating function for the attainable partitions of n is

A(q) =
1

1− q

∞∏
i=1

1

(1− qi(i+1))
.

To prove this, we show (Lemma 3.6) that the growth of the number of attainable partitions
is governed by partitions of cyclicity index 0, and there are no partitions of odd integers
with cyclicity index equal to zero. Then we demonstrate the following.
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Theorem 1.2. For each m ≥ 1, partitions of 2m with cyclicity index 0 are in bijective
correspondence with partitions of m into triangular numbers.

We also study the shape of attainable partitions. In particular, we demonstrate that
the maximal length of an attainable partition of n increases like

√
n, where the length of a

partition is the number of terms in the partition (r in the notation above).

Theorem 1.3. The length of an attainable partition (n1, n2, . . . , nr) of n is at most r =

⌊
√
4n+1+1

2 ⌋. This bound is realized by λ = (n− r + 1, 1, . . . , 1) with 0 ≤ c(λ) <
√
4n+ 1.

The value of r in Theorem 1.3 is either ⌊
√
n⌋ or ⌊

√
n⌋+ 1. In Remark 3.4 we note that

the smallest cyclicity index of an attainable partition of n = 2m is 0, realized by (m,m),
and the smallest cyclicity index of an attainable partition of n = 2m + 1 is 1, realized by
(m+ 1,m).

2. Background

We now give some background to motivate our study of these partitions. Based on
experimental observations, Cohen and Lenstra [3] noticed that class groups of quadratic
number fields behave like a random sequence with respect to a probability distribution on
the space of finite abelian groups. Their key observation was that the odd part of the class
group is rarely non-cyclic. The even part of the class group is well understood due to Gauss’
genus theory [4]. This led to a heuristic assumption that the weighting of isomorphism classes
of abelian groups should be inversely proportional to the size of their automorphism group.
When G is an abelian group of odd order, this can be stated as F(G) ≈ P (G)F(|G|) where
F(G) and F(h) are the number of fundamental discriminants whose associated class group
is G, and class number is h, respectively. The quantity P (G) is given by

P (G) =
1

|Aut(G)|
/
(∑ 1

|Aut(G′)|

)
where the sum is over abelian groups G′ of order |G|.

This leads to a natural question: What finite abelian groups occur as class groups of
imaginary quadratic fields? Chowla [2] showed that for large r, (Z/2Z)r does not occur. In
fact, (Z/nZ)r does not occur for sufficiently large r (depending on n) [1, 5, 12]. However,
these results are not effective and do not yield explicit examples of non-occurence. Watkins
[11] determined all imaginary quadratics with class number at most 100, and this work
shows, for example, none of the groups

(Z/3Z)3, (Z/9Z)× (Z/3Z)2, (Z/3Z)4

occurs as the class group of an imaginary quadratic field (see [6]).
Holmin et. al. [6] used the Cohen-Lenstra heuristics to predict the p-group decomposition

of the class group of imaginary quadratics. The automorphisms of Gλ(p) are intrinsically
tied to c(λ) since

|Aut(Gλ(p))| = p2n−c(λ)
k∏

i=1

mi∏
j=1

(
1− 1

pj

)
where k is the number of distinct parts of λ and mi is the multiplicity of the ith part (see
[10]). Holmin et al. establish [6, Proposition 7.1] that

P (Gλ(p)) ∼ pc(λ)−n
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which with the Cohen-Lenstra heuristics leads to their Conjecture 1.2 that if c(λ) > 0 then
as p→∞

F(Gλ(p)) ∼
C

n
· p

c(λ)

log p

where C ∼ 11.317 is a constant. Therefore, the expectation is that when c(λ) > 0 the
group Gλ(p) appears as a class group for all but finitely many primes p. For c(λ) = 0 the
conjecture states that as x→∞,∑

p≤x

F(Gλ(p)) ∼
C

n

x

(log x)2
.

So it is expected that Gλ(p) occurs for infinitely many primes p and also does not occur
for infinitely many primes p. For c(λ) < 0 the conjecture states that Gλ(p) appears as
a class group for only finitely many p. Computations determining the number of imagi-
nary quadratics with prescribed odd p-group appearing as class groups of order up to 106

(conditional on the GRH) in [6] support this conjecture.
In light of Theorem 1.3, these conjectures suggest that there are infinitely many primes

p such that the group

(Z/pn−⌊
√
n⌋+1Z)× (Z/pZ)⌊

√
n⌋−1

appears as the class group of an imaginary quadratic number field. The partitions (m,m) of
2m and (m+1,m) of 2m+1 of smallest cyclicity index mentioned in Remark 3.4 correspond
to the groups (Z/pmZ)2 and (Z/pm+1Z) × (Z/pmZ), with automorphism groups of order
p2n−3(p + 1)(p − 1)2 and p2n−3(p − 1)2, respectively. These partitions correspond to the
largest possible automorphism group of an abelian p-group of order pn associated to an
attainable partition. By way of comparison, (n) has cyclicity index n and corresponds to
the cyclic group Z/pnZ which has pn−1(p− 1) automorphisms.

Data from the aforementioned computations are available online (see [7], [8], and [9]). For
n = 5, the odd primes with p5 < 106 are p = 3, 5, 7, 11, 13. The only partition of negative
cyclicity index that is realized for these primes is λ = (3, 1, 1) with c(λ) = −1. This is
realized for p = 5; the group Z/53Z× (Z/5Z)2 is the class group for the imaginary quadratic
with fundamental discriminant 145367147.

λ Gλ(p) c(λ) p = 3 5 7 11 13
(5) Z/p5Z 5 549 4610 19430 147009 314328
(4,1) Z/p4Z× Z/pZ 3 56 218 444 1347 1894
(3,2) Z/p3Z× Z/p2Z 1 8 5 8 13 9

Table 1. Attainable partitions of 5 with corresponding group, cyclicity
index and, for p ≤ 13, the values of F(Gλ(p))

For n = 6 no non-attainable partitions are realized for p6 < 106.

3. Preliminaries

As mentioned in [6] if λ is a partition of n then 1 − (n − 1)2 ≤ c(λ) ≤ n, and c(λ) = n
exactly when Gλ(p) is cyclic. These extremal partitions of n are readily seen to be λ1 =
(1, 1, . . . , 1) with c(λ1) = 1− (n− 1)2 and λ2 = (n) with c(λ2) = n, and correspond to the
p-groups Gλ1

(p) = (Z/pZ)n and Gλ2
(p) = Z/pnZ.

We now transition to a more detailed study of the properties of attainable partitions.
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λ Gλ(p) c(λ) p = 3 5 7
(6) Z/p6Z 6 1512 19469 116278
(5,1) Z/p5Z× Z/pZ 4 177 1024 2887
(4,2) Z/p2Z× Z/p2Z 2 18 37 58
(3,3) Z/p3Z× Z/p3Z 0 2 2 3
(4,1,1) Z/p4Z× (Z/pZ)2 0 0 3 0

Table 2. Attainable partitions of 6 with corresponding group, cyclicity
index and, for p ≤ 7, the values of F(Gλ(p))

Lemma 3.1. For any partition λ of n we have c(λ) ≡ n (mod 2).

Proof. Let λ = (n1, n2, . . . , nr) be a partition of n. By definition

c(λ) =

r∑
i=1

(3− 2i)ni ≡
r∑

i=1

ni (mod 2).

The result follows as n1 + n2 + · · ·+ nr = n. □

Thus, if n is odd then c(λ) cannot be zero, so there are no partitions of odd n with
cyclicity index equal to zero.

Definition 3.2. Given a partition λ = (n1, n2, . . . , nr) of n as above, we say that the
partition λ′ of n + 1 given by λ′ = (n1 + 1, n2, . . . , nr) is a primary addition to λ. If
n1 ̸= n2 then we say λ′′ = (n1, n2 + 1, n3, . . . , nr) is a secondary addition to λ.

The partition λ′ = (8, 1, 1) of 10 is a primary addition to the partition λ = (7, 1, 1) of 9,
and the partition λ′′ = (7, 2, 1) of 10 is a secondary addition to λ. We calculate c(λ) = 3,
c(λ′) = 4 and c(λ′′) = 2.

Lemma 3.3.

• If λ′ is a primary addition to λ then c(λ′) = c(λ) + 1.
• If λ′′ is a secondary addition to λ then c(λ′) = c(λ)− 1.

Proof. For the first assertion,

c(λ) =

r∑
i=1

(3− 2i)ni = n1 +

r∑
i=2

(3− 2i)ni

and so

c(λ) + 1 = (n1 + 1) +

r∑
i=2

(3− 2i)ni = c(λ′).

The second assertion follows similarly.
□

This implies that if λ is an attainable partition of n then a primary addition to λ is an
attainable partition of n + 1. Moreover, if c(λ) = 0 then λ cannot be obtained using a
secondary addition. The following follows directly from Lemma 3.1 and Lemma 3.3.

Remark 3.4. The smallest cyclicity index of an attainable partition of n = 2m is 0, realized
by (m,m). The smallest cyclicity index of an attainable partition of n = 2m+1 is 1, realized
by (m+ 1,m).
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n Attainable Partitions of n
1 (1)
2 (3), (2, 1)
3 (3), (2, 1)
4 (4), (3, 1), (2, 2)
5 (5), (4, 1), (3, 2)
6 (6), (5, 1), (4, 2), (3, 3), (4, 1, 1)
7 (7), (6, 1), (5, 2), (4, 3), (5, 1, 1)
8 (8), (7, 1), (6, 2), (5, 3), (4, 4), (6, 1, 1), (5, 2, 1)
9 (9), (8, 1), (7, 2), (6, 3), (5, 4), (7, 1, 1), (6, 2, 1)
10 (10), (9, 1), (8, 2), (7, 3), (6, 4), (5, 5), (8, 1, 1), (7, 2, 1), (6, 3, 1)
11 (11), (10, 1), (9, 2), (8, 3), (7, 4), (6, 5), (9, 1, 1), (8, 2, 1), (7, 3, 1)
12 (12), (11, 1), (10, 2), (9, 3), (8, 4), (7, 5), (6, 6), (10, 1, 1), (9, 2, 1), (8, 3, 1), (7, 4, 1),

(8, 2, 2), (9, 1, 1, 1)
13 (13), (12, 1), (11, 2), (10, 3), (9, 4), (8, 5), (7, 6), (11, 1, 1), (10, 2, 1), (9, 3, 1), (8, 4, 1),

(9, 2, 2), (10, 1, 1, 1)
14 (14), (13, 1), (12, 2), (11, 3), (10, 4), (9, 5), (8, 6), (7, 7), (12, 1, 1), (11, 2, 1), (10, 3, 1),

(9, 4, 1), (8, 5, 1), (10, 2, 2), (9, 3, 2), (11, 1, 1, 1), (10, 2, 1, 1)
15 (15), (14, 1), (13, 2), (12, 3), (11, 4), (10, 5), (9, 6), (8, 7), (13, 1, 1), (12, 2, 1), (11, 3, 1),

(10, 4, 1), (9, 5, 1), (11, 2, 2), (10, 3, 2), (12, 1, 1, 1), (11, 2, 1, 1)

Table 3. All attainable partitions of n for n ≤ 15

Definition 3.5. Let a(n) denote the number of attainable partitions of n. Let z0(n) denote
the number of partitions of n with cyclicity index equal to zero, and for an even number 2m
let z(m) = z0(2m). We set a(0) = z0(0) = 1.

It follows from Lemma 3.1 that z0(2m + 1) = 0 as there are no partitions of an odd
number with cyclicity index 0.

Lemma 3.6. For any natural number n,

a(n+ 1) = a(n) + z0(n+ 1).

Proof. Partitions of n+ 1 obtained from partitions of n by primary additions have positive
cyclicity index by Lemma 3.3. As such, it is enough to show that if λ is a partition of
n+ 1 and c(λ) > 0, then λ can be obtained from an attainable partition of n by a primary
addition. Let λ = (n1, n2, . . . , nr) be a partition of n+1 and since c(λ) > 0 we have n1 ̸= n2.
Then λ′ = (n1− 1, n2, . . . , nr) is a partition of n with c(λ′) = c(λ)− 1 by Lemma 3.3. Since
c(λ) > 0 we have c(λ′) ≥ 0 is an attainable partition of n. □

Lemma 3.7. For m ≥ 1 we have a(2m+1) = a(2m) and all attainable partitions of 2m+1
occur as primary additions to a partition of 2m.

Proof. Lemma 3.1 implies that z0(2m+1) = 0 and by Lemma 3.6 we conclude a(2m+1) =
a(2m). By Lemma 3.3 every attainable partition of 2m yields an attainable partition of
2m+ 1 by a primary addition. □

Lemma 3.8. For all m ≥ 1 we have a(2m+ 2) > a(2m+ 1).

Proof. Since every primary addition to an attainable partition of 2m + 1 is an attainable
partition of 2m + 2 we have that a(2m + 2) ≥ a(2m + 1). To show that the inequality is



6 KATHLEEN L. PETERSEN AND JAMES A. SELLERS

strict, consider the attainable partition λ′′ = (m + 1,m + 1) of 2m + 2. Since c(λ′′) = 0 it
is not a primary addition to any attainable partition of 2m+ 1 by Lemma 3.3. (In fact, it
is a secondary addition to (m+ 1,m).)

□

Lemma 3.8 implies that there are always attainable partitions of 2m + 2 that are not
primary additions to a partition of 2m + 1. We see from the data that we often get new
attainable partitions by increasing the partition length, for example the attainable partition
(4, 1, 1) of 6 has length 3, but there are no attainable length 3 partitions of n for 1 ≤ n ≤ 5.

4. Lengths of Attainable Partitions

Lemma 4.1. If λ = (n1, . . . , nr) is attainable then, for 1 < k ≤ r, nk ≤ n/k(k − 1).

Proof. We have that n = n1 + n2 + · · ·+ nr so that

n ≥ n1 + n2 + · · ·+ nk

≥ (

k∑
i=2

(2i− 3)ni) + (n2 + · · ·+ nk)

≥
k∑

i=2

(2i− 2)nk = k(k − 1)nk

where we have used the fact that λ is attainable so n1 ≥ n2+3n3+5n4+ · · ·+(2r− 3)nr ≥
n2 + 3n3 + 5n4 + · · ·+ (2k − 3)nk and the fact that if i < j then ni ≥ nj .

□

Theorem 1.3. The length of an attainable partition (n1, n2, . . . , nr) of n is at most r =

⌊
√
4n+1+1

2 ⌋. This bound is realized by λ = (n− r + 1, 1, . . . , 1) with 0 ≤ c(λ) <
√
4n+ 1.

Proof. Lemma 4.1 implies that if n/(k(k − 1)) < 1 then nk = 0. Therefore, the partition
length, r, of an attainable partition is the greatest r ∈ Z such that n ≥ r(r−1). Completing
the square, we see that

r = ⌊
√
n+ 1

4 + 1
2⌋ = ⌊

√
4n+1+1

2 ⌋.

Due to the weighting of c(λ) length is maximized by partitions of the above shape.
The cyclicity index bound is computed directly using the inequality a−1 < ⌊a⌋ ≤ a with

the definition of c(λ). □

This length bound may be achievable by multiple partitions as evidenced by the length 4
partitions (11, 1, 1, 1) and (10, 2, 1, 1) of 14. The partition of the form stated in Theorem 1.3
does not always have the smallest cyclicity index; c((11, 1, 1, 1)) = 2 and c((10, 2, 1, 1)) = 0.

It is elementary to verify that the r value in the above satisfies ⌊
√
n⌋ ≤ r ≤ ⌊

√
n⌋ + 1.

This lower bound is achieved by perfect squares, and in general any n where the fractional
part of

√
n + 1

4 is less than 1
2 . The upper bound for n where

√
n + 1

4 has fractional part

greater than or equal to 1
2 , is achieved for example by integers one less than a perfect square.
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5. Generating Functions

In this section we prove Theorem 1.1. First, we prove Theorem 1.2 which establishes a
connection between partitions of cyclicity index 0 and partitions of integers into triangular
numbers.

From Lemma 3.6 and Lemma 3.7 we have that

a(2m) = a(2m− 2) + z(m)

= a(2m− 4) + z(m− 1) + z(m)

...

= a(2) + z(2) + z(3) + · · ·+ z(m).

Since a(2) = 2 and z(1) = 1 we have that a(2) = a(0) + z(1) and we have shown the
following.

Lemma 5.1. For all m ≥ 1, a(2m) =

m∑
r=0

z(r).

m Partitions of 2m with Cyclicity Index 0
1 (1, 1)
2 (2, 2)
3 (3, 3), (4, 1, 1)
4 (4, 4), (5, 2, 1)
5 (5, 5), (6, 3, 1)
6 (6, 6), (7, 4, 1), (8, 2, 2), (9, 1, 1, 1)
7 (7, 7), (8, 5, 1), (9, 3, 2), (10, 2, 1, 1)

Table 4. All partitions of 2m with cyclicity index 0 for m ≤ 7

Definition 5.2. We will write ti = i(i+2)/2 for the ith triangular number. We call the
numbers of the form 2ti the oblong numbers.

Now we prove that partitions of 2m with cyclicity index 0 are in bijective correspondence
with partitions of 2m into oblong numbers, which is equivalent to the following.

Theorem 1.2. For each m ≥ 1, partitions of 2m with cyclicity index 0 are in bijective
correspondence with partitions of m into triangular numbers.

Proof. Let λ = (n1, n2, . . . , nr) be a partition of 2m with c(λ) = 0. Using the definition of
c(λ),

n1 = n2 + 3n3 + 5n4 + . . . (2k − 3)nr

and we can write

2m = n1 + n2 + n3 + n4 + · · ·+ nr

= (n2 + 3n3 + 5n4 + . . . (2r − 3)nr) + n2 + n3 + n4 + · · ·+ nr

= 2n2 + 4n3 + 6n4 + · · ·+ (2r − 2)nr.
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We rewrite this as

2m = 2(n2 − n3) + 6(n3 − n4) + 12(n4 − n5) + 20(n5 − n6)

+ · · ·+ 2tr−2(nr−1 − nr) + 2tr−1nr.

Since ni ≥ ni+1 the ni − ni−1 terms are all non-negative, and the final term is non-zero as
nr > 0. This demonstrates that 2m is a sum of non-negative multiples of oblong numbers.
Dividing both sides of the equation by 2 demonstrates that m is a sum of non-negative
multiples of triangular numbers.

Conversely, assume that n = c1t1 + · · · + cr−1tr−1 with ci ≥ 0 for i = 1, . . . , r − 2 and
cr−1 > 0. We let nr = cr−1, and for i = 2, . . . r − 1 let

ni = ci−1 + ci + · · ·+ cr−1

and define n1 = n2 + 3n3 + 5n4 + . . . (2r − 3)nr. As such, ni > 0 and ni+1 ≥ ni for
i = 1, . . . , r − 1 so that λ = (n1, n2, . . . , nr) is a partition of 2n with c(λ) = 0.

□

n Partitions of n into Triangular Numbers
1 (1)
2 (1, 1)
3 (3), (1, 1, 1)
4 (3, 1), (1, 1, 1, 1)
5 (3, 1, 1), (1, 1, 1, 1, 1)
6 (6), (3, 3), (3, 1, 1, 1), (1, 1, 1, 1, 1, 1)
7 (6, 1), (3, 3, 1), (3, 1, 1, 1, 1), (1, 1, 1, 1, 1, 1, 1)

Table 5. All partitions of n into triangular numbers for n ≤ 7

Example 5.3. Consider the partition (8, 5, 1) of 14, which has cyclicity index 0. We have

14 = 8 + 5 + 1 = (5 + 3 · 1) + 5 + 1 = 2 · 5 + 4 · 1 = 2(5− 1) + 6(1− 0)

which corresponds to writing 7 = 1 · 4 + 3 · 1 giving the summation 7 = 1 + 1+ 1+ 1+ 3 in
terms of triangular numbers.

Now consider 7 = 1 + 3 + 3 as a different sum of triangular numbers. Writing t1 = 1 as
the first triangular number and t2 = 3 as the second, in the notation above 7 = c1t1 + c2t2
with c1 = 1 and c2 = 2. We have n3 = c2 = 2, n2 = c1 + c2 = 3 and n1 = n2 + 3n3 = 9.
This gives us the partition (9, 3, 2) of 14 with cyclicity index 0.

In this correspondence the partition (1, 1, 1, . . . , 1) of n into triangular numbers corre-
sponds to the partition (n, n) of 2n with cyclicity index 0.

The full bijection for the partitions corresponding to n = 7 can be seen here:

(10, 2, 1, 1) ←→ (6, 1)
(9, 3, 2) ←→ (3, 3, 1)
(8, 5, 1) ←→ (3, 1, 1, 1, 1)
(7, 7) ←→ (1, 1, 1, 1, 1, 1, 1)
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Corollary 5.4. The generating function for z(n) is

∞∑
n=0

z(n)qn =

∞∏
i=1

1

1− qi(i+1)/2
.

Proof. By Theorem 1.2 it suffices to determine a generating function for partitions into
triangular numbers, which is the generating function above.

□

Since z0(2m) = z(m), by Corollary 5.4, the generating function for z0(2m) is

∞∑
m=0

z0(2m)q2m =

∞∏
i=1

1

(1− qi(i+1))
.

By Lemma 5.1 we have

a(2m) =

m∑
j=0

z(j) =

m∑
j=0

z0(2j)

and the generating function of a(2m) is

∞∑
m=0

a(2m)q2m =
1

(1− q2)

∞∏
i=1

1

(1− qi(i+1))
.

Because a(2m+1) = a(2m) the generating function for a(2m+1) is
∑∞

m=0 a(2m)q2m+1.
Putting this together, the generating function for a(n) has the form

∞∑
n=0

a(n)qn =

∞∑
m=0

a(2m)q2m +

∞∑
m=0

a(2m+ 1)q2m+1

= (1 + q)

∞∑
m=0

a(2m)q2m.

From above we have
∞∑

n=0

a(n)qn =
(1 + q)

(1− q2)

∞∏
i=1

1

(1− qi(i+1))
=

1

1− q

∞∏
i=1

1

(1− qi(i+1))

proving Theorem 1.1.
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