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Abstract

Beginning in 1893, L. J. Rogers produced a collection of papers in which he considered

series expansions of infinite products. Over the years, his identities have been given a variety

of partition theoretic interpretations and proofs. These existing combinatorial techniques,

however, do not highlight the similarities and the subtle differences seen in so many of these

remarkable identities. It is the goal of this paper to present a new combinatorial approach

that unifies numerous q–series identities. The eight identities of Rogers that appear in G.

E. Andrews’ 1986 CBMS monograph on q–series will serve as a basis for the collection of

identities studied in this paper.
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1 Introduction

Near the end of the 19th century, L. J. Rogers produced a series of three papers [12, 13, 14] in
which he considered numerous series expansions of infinite products. His work culminated in the
now-celebrated Rogers–Ramanujan identities:

∞
∑

n=0

qn2

(q; q)n

=
∞
∏

n=1

1

(1 − q5n−1)(1 − q5n−4)
(1)

∞
∑

n=0

qn2+n

(q; q)n
=

∞
∏

n=1

1

(1 − q5n−2)(1 − q5n−3)
(2)

where (z; q)n = (1 − z)(1 − zq) · · · (1 − zqn−1). The history behind these works of Rogers, as well
as Ramanujan’s re–discovery of the Rogers–Ramanujan identities, has been told and re–told on
numerous occasions; see, for example, Andrews [1] and Ramanujan’s Collected Works [8].

As noted by Andrews [1], Rogers proved numerous series–product identities in his three–paper
series, not just the two identities mentioned above. Many of these series have proven to be
invaluable in the field of q–series. For example, R. J. Baxter [3, 4] re–discovered many of Rogers’
results on his way to the solution of the now–famous Hard Hexagon model in statistical physics.
And while a number of techniques have been employed to prove many of Rogers’ identities, both
analytic as well as combinatorial, it is the goal of this work to prove a variety of q-series identities,
most of which appear in Rogers’ work (and are re–stated by Andrews [1, pp. 7–8]), from a new,
unified combinatorial viewpoint which is described in detail below.

In particular, consider the following identities:
∞

∑

n=0

qn2

(q4; q4)n
=

∞
∏

n=1

1

(1 − q5n−1)(1 − q5n−4)(1 + q2n)
(3)

∞
∑

n=0

q(3n2−n)/2

(q; q)n(q; q2)n
=

∞
∏

n=1

(1 − q10n−4)(1 − q10n−6)(1 − q10n)

(1 − qn)
(4)

∞
∑

n=0

qn2

(q; q)2n
=

∞
∏

n=1

(1 − q20n−8)(1 − q20n−12)(1 − q20n)(1 + q2n−1)

(1 − q2n)
(5)

These appear, in one form or another, in Rogers’ “trilogy” [12, 13, 14] as noted in Andrews
[1], and all of these appear in Slater’s extensive list of product–series identities [16, 17]. (The
interested reader may also wish to see the recent survey article of McLaughlin, Sills and Zimmer
[11] which provides an expansive, annotated list of Rogers–Ramanujan–Slater type identities.) For
our purposes, it will be more convenient to use (1) to rewrite the above identities in the following
form:

∞
∑

n=0

qn2

(q; q)n
= (−q2; q2)∞

∞
∑

n=0

qn2

(q4; q4)n
(6)

∞
∑

n=0

q2n2

(q2; q2)n
= (q; q2)∞

∞
∑

n=0

q(3n2−n)/2

(q; q)n(q; q2)n
(7)

∞
∑

n=0

q4n2

(q4; q4)n
= (q; q2)∞

∞
∑

n=0

qn2

(q; q)2n
(8)
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It is in this form that we view such identities from the combinatorial perspective of tilings.
As in recent papers of the authors [7, 10], the combinatorial setting of the proofs of the identities

studied in this paper (including those mentioned above) will be tilings of a 1 × ∞ board using
some collection of squares and dominoes. The position of a tile refers to its location on the board
and can be any positive integer, provided that no two tiles cover the same position and that every
position on the board is covered by a tile. In the case of a domino, we say that it is in position i
if it covers positions i and i + 1. The parity of a tile refers to the parity of the position of the tile.
In other words, we say that a tile is even (resp. odd) if it is in an even (resp. odd) position.

As we work through the various proofs below, we will vary which types of tiles will be used
as well as the weight of the tiles. In every case, white squares will have a weight of 1 and will
be used as “filler” to cover positions not covered by a tile with non-trivial weight. In particular,
each tiling will contain a finite number of non–white squares and dominoes. Given a tiling T , the
weight of each tile t ∈ T will be denoted by w(t) and the weight of a tiling T will be defined as

∏

t∈T

w(t).

Before proceeding, we wish to contrast the use of tilings over the more customary partitions to
prove identities of this type. In many instances, partition theoretic proofs rely on demonstrating a
bijection between two different collections of partitions. In some cases, the same set of partitions
is constructed in two different manners in order to prove an identity. For example, the identity

∞
∑

n=0

qn2

(q; q)2
n

=

∞
∑

n=0

qn

(q; q)n

can be proven by pointing out that the left hand side generates all partitions according to the size
of their Durfee square whereas the right hand side generates all partitions according to the size of
their largest part.

All of our proofs will follow this latter method of proof by constructing the same combinatorial
objects in two different manners. For example, to prove equation (6), Bressoud demonstrated
a bijection between partitions where parts differ by at least 2 and partitions with distinct parts
where each even part is larger than twice the number of odd parts. In the next section, we will
prove the same identity by constructing the same set of tilings with squares and dominoes in two
different ways. The tiling constructions used to explain different identities are extremely similar,
underlining the fact that the identities presented here have much more in common than mere
appearance.

We conclude this section by presenting a general outline of the following sections and proofs.
Each section will begin with a brief description of the type of tilings to be studied, followed by
a definition of the corresponding weight function w(t). Furthermore, each section will contain
a unique method for constructing all relevant tilings. Each construction will be based on an
operation that moves tiles around on the board. In particular, the term projection will be used to
refer to any invertible operation on tiles that satisfies the following properties:

P1: Only the position of the tiles are affected. In other words, no tiles are permanently removed
from the board and no new tiles are introduced.

P2: The effect on the weight of a tiling is to multiply by qk, where k does not depend on which
tile was projected.
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P3: The relative position of the projectiles (i.e., tiles that can be projected) cannot change.

P4: When projected, a tile is moved past r white squares, for some fixed value of r > 0, while
the position of the remaining projectiles does not change.

Given a specific tiling T , we can create infinitely many more tilings by systematically projecting
all of the projectiles in the following manner. Suppose that T contains projectiles, t1, t2, . . . , tn,
where tile ti+1 appears to the right of tile ti for 1 ≤ i < n. We begin by projecting tile tn a total of
pn ≥ 0 times. Next, project tile tn−1 a total of pn−1 times where 0 ≤ pn−1 ≤ pn. In general, working
in a right–to–left manner, project tile ti pi times for 1 ≤ i ≤ n, where 0 ≤ p1 ≤ p2 ≤ · · · ≤ pn. We
will refer to this operation as projecting the tiles.

Note that this right–to–left manner in which projecting the tiles must take place is essentially
dictated by properties P3 and P4. Property P2 and the fact that projection must be invertible
leads us to the following lemma.

Lemma 1 Let T be a tiling that contains n projectiles. Then the generating function for all tilings

that can be obtained from T by projecting the tiles is given by

w(T )

(qk; qk)n

if each projection increases the weight of a tiling by a factor of qk.

Proof. Note that any tiling that can be obtained from T by projecting the tiles corresponds to
a unique sequence, 0 ≤ p1 ≤ · · · ≤ pn, where pi represents the number of times the ith projectile
in T was projected. If each projection increases the weight of the tiling by a factor of qk, then the
cumulative effect of projecting the tiles is given by

∑

0≤p1≤p2≤...≤pn

qk(p1+p2+p3+···+pn) =
1

(qk; qk)n

as claimed. 2

For example, consider tilings that consist of white squares and gray dominoes where the weight
function is given by

w(t) =

{

zqi if t is a gray domino in position i

1 if t is a white square in position i.

In this case, any domino will be considered a projectile. Since we always project tiles in a right–
to–left manner, it is enough to explain how to project a domino that is immediately followed by a
white square. To project such a domino, simply increase the position of the domino by one, which
increases the weight of the tiling by a factor of q.

To construct a tiling with exactly n dominoes, initially place dominoes in positions 1, 3, 5, . . . ,
2n − 1, which accounts for a weight of znqn2

. It remains to project the tiles (i.e., project the
dominoes). Applying Lemma 1 with k = 1 shows that

znqn2

(q; q)n
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is the generating function for tilings with exactly n dominoes.
With the above machinery constructed, we now proceed to prove a variety of q-series identities

via weighted tilings. The proofs provided are very straightforward and brief in this context, adding
to the elegance of this proof approach when dealing with such identities.

2 Fibonacci Tilings

Consider tilings of a 1 ×∞ board using white squares and gray dominoes. We will refer to such
tilings as (infinite) Fibonacci tilings since the number of ways to cover a 1 × n boards with white
squares and gray dominoes is given by the nth Fibonacci number, Fn, where Fn = Fn−1 + Fn−2,
F0 = 1 and F1 = 1. The weight of tile t is defined as follows:

w(t) =

{

zqi if t is a domino in position i

1 if t is a white square in position i

Note that Fibonacci tilings together with the above weight function are the same objects used
in the example at the end of the previous section. Consequently, the generating function for all
Fibonacci tilings with respect to the above weight function is given by

∞
∑

n=0

znqn2

(q; q)n
. (9)

However, in this section, we will project a tile in a slightly different manner so that we can count
Fibonacci tilings according to the number of odd dominoes. Therefore, in this section, projectiles
will refer to odd dominoes only. To project an odd domino that is followed by a white square,
simply move it to the beginning of the next collection of odd dominoes. Note that the next
collection of odd dominoes could be empty, before this projection is performed.

More formally, suppose that there is an odd domino in position i, followed by a white square,
followed by j ≥ 0 even dominoes, followed by another white square. To project the odd domino,
rearrange these tiles so that there are white squares in positions i and i + 2j + 1 and dominoes
covering the remaining positions. Clearly this operation preserves the number of odd dominoes
and increases the weight of the tiling by a factor of q2, as illustrated below.

w
(

· · ·

)

= zqi
· zqi+3

· · · zqi+2j−1
· zqi+2j+1

= zj+1q(i+j+1)(j+1)−1

w
(

· · ·

)

= zqi+1
· zqi+3

· · · zqi+2j−1
· zqi+2j+2

= zj+1q(i+j+1)(j+1)+1

Theorem 2
∞

∑

n=0

znqn2

(q; q)n
= (−zq2; q2)∞

∞
∑

n=0

znqn2

(q2; q2)n(−zq2; q2)n
(10)
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Proof. As mentioned above, the left–hand side is the generating function for all Fibonacci
tilings. It remains to show that the right–hand side is also the generating function for all Fibonacci
tilings. We will do so by counting tilings according to the number of odd dominoes. To construct a
Fibonacci tiling that has exactly n odd dominoes, first place dominoes in positions 1, 3, 5, . . . , 2n−
1, which accounts for a weight of znqn2

. Now go through each of the remaining even positions
and decide whether or not to place a domino in that position. The factor (1 + zq2j) represents
the choice of whether or not to place a domino in position 2j for j ≥ n + 1. This accounts for a
weight of

∏

j≥n+1

(1 + zq2j) =
(−zq2; q2)∞
(−zq2; q2)n

.

And finally, project the odd dominoes. Applying Lemma 1 with k = 2 yields that

(−zq2; q2)∞
znqn2

(q2; q2)n(−zq2; q2)n

is the generating function for all Fibonacci tilings that have exactly n odd dominoes. Summing
over all values of n ≥ 0 completes the proof. 2

Theorem 2 unifies the following two identities of Rogers which appear as equations (4.11) and
(4.7) in Andrews [1].

Corollary 3

∞
∑

n=0

qn2

(q; q)n

= (−q2; q2)∞

∞
∑

n=0

qn2

(q4; q4)n

(11)

∞
∑

n=0

qn2+n

(q; q)n

= (−q; q2)∞

∞
∑

n=0

qn2+n

(q2; q2)n(−q; q2)n+1

(12)

Proof. The above identities follow by setting z = 1 and z = q in (10), respectively. 2

Equation (11), after applying (1), appears in Slater’s list [17, Equation (20)]. Equation (12),
after applying (2), also appears in Slater’s list [17, Equation (17)].

Theorem 4
∞

∑

n=0

znqn2+n

(q; q)n

= (−zq2; q2)∞

∞
∑

n=0

znqn2+2n

(q2; q2)n(−zq2; q2)n

(13)

Proof. Note that the left–hand side is obtained by replacing z with zq in (9). Combinatorially,
this replacement is equivalent to increasing the position of each domino by one. In other words,
we are now counting Fibonacci tilings where position one must be covered with a white square.
To complete the proof, we will show that the right–hand side also counts these Fibonacci tilings
according to the number of odd dominoes.

As before, we begin by placing n dominoes in positions 1, 3, 5, . . . , 2n − 1. Next, go through
each of the remaining even positions and decide whether or not to place a domino in that position.
Now, to make sure that position one is covered by a white square, project each of the odd dominoes
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exactly once, starting with the domino in position 2n−1 and working right–to–left. This increases
the weight of the tiling by a factor of q2n. Now finally, project the odd dominoes. Applying Lemma
1 with k = 2 shows that

(−zq2; q2)∞
znqn2+2n

(q2; q2)n(−zq2; q2)n

is the generating function for Fibonacci tilings that have position one covered with a square and
have exactly n odd dominoes. Summing over all values of n ≥ 0 completes the proof. 2

Theorem 4 unifies the following two identities of Rogers which appear as equations (4.8) and
(4.12) in Andrews [1].

Corollary 5

∞
∑

n=0

qn2

(q; q)n
= (−q; q2)∞

∞
∑

n=0

qn2+n

(q2; q2)n(−q; q2)n
(14)

∞
∑

n=0

qn2+n

(q; q)n
= (−q2; q2)∞

∞
∑

n=0

qn2+2n

(q4; q4)n
(15)

Proof. The above identities follow by setting z = 1/q and z = 1 in (13), respectively. 2

Equation (15), after applying (2), also appears in Slater’s list [17, Equation (16)].

In a recent article [5], Bowman, McLaughlin and Sills present a collection of Rogers-Ramanujan
type identities. Among them are the following identities:

∞
∑

n=0

qn2+n(−q; q)n+1

(q2; q2)n
=

∞
∏

n=1

1

(1 − q5n−1)(1 − q5n−4)

∞
∑

n=0

qn2

(q; q2)n+1

(q; q)n(q; q2)n
=

∞
∏

n=1

1

(1 − q5n−2)(1 − q5n−3)

In light of our combinatorial interpretation of (9) and the Rogers-Ramanujan identities (1,2), the
above identities can be proven by showing that the two series count the appropriate collection of
Fibonacci tilings. In particular, the first series counts all Fibonacci tilings according to the number
of dominoes in position 2 or more. More specifically, suppose that there are exactly n dominoes
that are in position 2 or more. First, construct all tilings that have a white square in position 1.
To do so, place dominoes in positions 2, 4, 6, . . . , 2n and then arbitrarily project these n dominoes.
In this context, to project a domino, simply increase its position by 1. Second, construct all tilings
that have a domino in position 1. To do so, place dominoes in positions 1, 3, 5, . . . , 2n + 1 and
then arbitrarily project the n dominoes in positions 3, 5, 7, . . . , 2n + 1. Therefore, the generating
function (with z = 1) for tilings that have exactly n dominoes in position 2 or more is given by

qn2+n

(q; q)n

+
q(n+1)2

(q; q)n

=
qn2+n(1 + qn+1)

(q; q)n

=
qn2+n(−q; q)n+1

(q2; q2)n
.
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The second series counts Fibonacci tilings that contain a square in position 1 by constructing
all Fibonacci tilings and then removing the tilings where position 1 is covered by a domino. In
particular, the difference between the generating functions (with z = 1) for Fibonacci tilings with
n dominoes and Fibonacci tilings with n + 1 dominoes where position 1 is covered by a domino
(using the same construction as described above) is given by

qn2

(q; q)n

−
q(n+1)2

(q; q)n

=
qn2

(1 − q2n+1)

(q; q)n

=
qn2

(q; q2)n+1

(q; q)n(q; q2)n
.

A natural generalization of Fibonacci tilings is tilings that use only white squares and k-
ominoes for a fixed value of k ≥ 1. By analogy, the position of a k-omino refers to the left–most
position covered by the tile and the weight of a k–omino in position i would be given by zqi. The
parity of a k-omino refers to the residue class of the position of the tile mod k. In other words, a
k-omino of parity j is a k-omino in position km + j for some m ≥ 0 and 0 ≤ j < k.

To project a k-omino that is immediately followed by a white square, first find the kth white
square that appears to its right. Suppose that the k-omino is in position i and that the kth white
square to its right is in position j. To project the k-omino in position i, first remove it from the
board, decrease by k the position of the tiles in positions i + k through j, and finally reinsert the
k-omino in position j − k + 1. The overall effect on the weight of the tiling is to multiply by qk.

The following theorem generalizes the results of this section by counting tilings using white
squares and k-ominoes where the first k-omino appears in position i or greater.

Theorem 6 For 1 ≤ i ≤ k,

∞
∑

n=0

znqk(n

2)+in

(q; q)n
= (−zqk; qk)∞

∑

n1,n2,...,nk−1≥0

zn1+n2+···+nk−1qN

(qk; qk)n1
(qk; qk)n2

· · · (qk; qk)nk−1
(−zqk; qk)n1+n2+···+nk−1

(16)
where

N = k

(

n1 + n2 + · · · + nk−1

2

)

+ n1 + 2n2 + · · ·+ (k − 1)nk−1 + k(n1 + · · ·+ ni−1).

Proof. We present an outline of the proof, as the constructions below mirror the proofs of
Theorems 2 and 4. In particular, we will show that each side of (16) is the generating function for
tilings using white squares and k-ominoes where the first k-omino appears in position i or greater.

One method for constructing such tilings is to place n ≥ 0 k-ominoes in positions i, i +
k, i + 2k, . . . , i + (n − 1)k and then to increase the position of the jth k-omino by mj such that
0 ≤ m1 ≤ m2 ≤ m3 ≤ · · · ≤ mn. This construction corresponds to the left–hand side of (16).

Another method is to construct tilings based on the number of k-ominoes of each parity that
appear in the tiling. In particular, let ni ≥ 0 represent the number of k-ominoes of parity i for
1 ≤ i ≤ k−1. Place k-ominoes in the first n1 positions of parity 1, then place n2 k-ominoes in the
first available positions of parity 2, and so on. Now go through the remaining uncovered positions
of parity 0 and decide whether or not to place a k-omino in that position. It remains to project
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the k-ominoes in all possible ways. This can be done by projecting the k-ominoes of parity 1, then
projecting the k-ominoes of parity 2, and so on. In order to make sure that no k-omino appears
in positions 1 through i− 1, make sure to project all of the k-ominoes of parity 1 through i− 1 at
least once. This completes the construction associated with the right–hand side of (16). 2

The k = i = 1 case of equation (16) simplifies to the usual series–product identity for partitions
with distinct parts. The k = 2 case yields Theorems 2 and 4 for i = 1 and i = 2, respectively.
Bressoud gave a bijective proof of a partition–theoretic variant of these cases. For example,
equation (11) can be interpreted as the number of partitions of n with minimal difference at least
2 between parts equals the number of partitions of n into distinct parts wherein each even part
is larger than twice the number of odd parts. Bressoud’s bijection is described in Andrews [1,
Theorem 6.2]. It should be noted that Fibonacci tilings are equivalent to partitions with minimal
difference at least 2 between parts, where the position of a domino corresponds to a part in a
partition. The construction used in the proof of Theorem 2 begins with the positions of each even
domino being at least twice the number of odd dominoes placed at the beginning of the board.
In other words, the tiling built after the first step of our construction is equivalent to a partition
with n odd parts 1, 3, 5, . . . , 2n− 1 and each even part larger than twice the number of odd parts.
However, instead of increasing the value of the odd parts without changing their parity or the
value of the even parts as Bressoud did, we have simultaneously increased the positions of the
odd dominoes and decreased the position of the even dominoes via the operation of projection to
stay in the context of Fibonacci tilings or equivalently, partitions with minimal difference at least
2 between parts. The cumulative effect of projecting the odd tiles in this case is equivalent to
rearranging the parts of the partitions as Bressoud did. Generalizations of Bressoud’s work that
correspond to the partition–theoretic interpretation of Theorem 6 can be found in [6].

3 Even Weighted Fibonacci Tilings

For the next two identities, we again consider Fibonacci tilings with the same projection operation
from the previous section. However, the weight function is now given by

w(t) =











−zq2i if t is an even domino in position 2i

zq2i if t is an odd domino in position 2i − 1

1 if t is a square covering position i.

Notice that projection still has the same effect on the weight of a tiling, even though the weight
function has changed. In particular, increasing the position of an odd domino by one changes its
weight by a factor of −1. Increasing the position of an even domino by one changes its weight by a
factor of −q2. It is easy to see that the projection described in the previous section involved moving
one odd domino and one even domino and thus the cumulative effect of projection combined with
this new weight function is to multiply by a factor of q2.

The collection of Fibonacci tilings combined with the above weight function and projection
will be referred to as even weighted Fibonacci tilings. The following theorem, which yields two
additional Rogers identities, concerns even weighted Fibonacci tilings counted according to the
number of odd dominoes.
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Theorem 7
∞

∑

n=0

z2nq4n2+2n

(q4; q4)n

= (zq2; q2)∞

∞
∑

n=0

znqn2+n

(q2; q2)n(zq2; q2)n

(17)

Proof. Consider even weighted Fibonacci tilings that contain exactly n odd dominoes. To
construct such a tiling, first place n odd dominoes in positions 1, 3, . . . , 2n− 1, which accounts for
a combined weight of

znq2+4+···+2n = znqn2+n.

Next, decide whether or not to place a domino in each of the remaining even positions. This
accounts for a weight of

∏

j≥n+1

(1 − zq2j) =
(zq2; q2)∞
(zq2; q2)n

.

And finally, project the odd dominoes. Applying Lemma 1 with k = 2 shows that

(zq2; q2)∞
znqn2+n

(q2; q2)n(zq2; q2)n

is the generating function for even weighted Fibonacci tilings with exactly n odd dominoes. Sum-
ming over n ≥ 0 yields the right–hand side of (17).

We now use a sign–reversing involution to simplify our construction. In particular, given an
even weighted Fibonacci tiling, T , find the first occurrence (from left to right) of a sequence of
consecutive odd dominoes of odd length or a sequence of consecutive odd dominoes of nonnegative
even length followed by a square followed by an even domino. Note that if there is at least one
even domino in T , then at least one of these sequences of tiles must appear in T .

If the consecutive odd dominoes of odd length appear first, then increase the position of the
last of these odd dominoes by one, resulting in a sequence of consecutive odd dominoes of even
length followed by a square followed by an even domino. If the consecutive odd dominoes of even
length appear first, then decrease the position of the corresponding even domino by one, resulting
in a sequence of consecutive odd dominoes of odd length.

For example, the tilings

· · ·

and

· · ·

are paired off under this involution. Note that the even positions covered by the dominoes remain
the same under this involution, but the number of even dominoes changes by exactly one. In other
words, the tilings have the same z and q-weights, but opposite signs, and therefore cancel each
other out in the right–hand side of (17).

The only tilings to which this involution cannot be applied are ones that do not contain any
even dominoes or sequences of consecutive odd dominoes of odd length. Therefore, our above
construction need only account for tilings that contain an even number of odd dominoes and each
sequence of consecutive odd dominoes must contain an even number of dominoes. To construct

12



such a tiling, place 2n odd dominoes in positions 1, 3, 5, . . . , 4n− 1, which has a combined weight
of z2nq4n2+2n. Now project the odd dominoes in pairs. In other words, project the last two odd
dominoes pn ≥ 0 times. Then project the next two odd dominoes (from right–to–left) pn−1 ≤ pn

times, and so on. Consequently, each projection (applied to two dominoes at a time) will increase
the weight of the tiling by a factor of q4. Applying Lemma 1 with k = 4 shows that

z2nq4n2+2n

(q4; q4)n

is the generating function for even weighted Fibonacci tilings that contain exactly 2n odd domi-
noes. Summing over n ≥ 0 completes the proof. 2

Theorem 7 unifies the following two identities of Rogers which appear as equations (4.9) and
(4.10) in Andrews [1].

Corollary 8

∞
∑

n=0

q4n2

(q4; q4)n

= (q; q2)∞

∞
∑

n=0

qn2

(q2; q2)n(q; q2)n

(18)

∞
∑

n=0

q4n2+4n

(q4; q4)n

= (q; q2)∞

∞
∑

n=0

qn2+2n

(q2; q2)n(q; q2)n+1

(19)

Proof. The above identities follow by setting z = 1/q and z = 1 in (17), respectively. 2

Equation (18), after applying (1), appears in Slater’s list [17, Equation (79)]. Equation (19),
after applying (2), also appears in Slater’s list [17, Equation (96)].

4 Signed Jacobsthal Tilings

Now consider tilings of a 1 ×∞ board using white squares, black dominoes and gray dominoes.
We will refer to such tilings as (infinite) Jacobsthal tilings since the number of ways to cover a
1 × n board with one color of squares and two colors of dominoes is the nth Jacobsthal number,
Jn, where Jn = Jn−1 + 2Jn−2, J0 = 1 and J1 = 1. The weight of tile t is defined as follows:

w(t) =











zqi if t is a black domino in position i

−zqi if t is a gray domino in position i

1 if t is a white square in position i

In this case, only black dominoes will be used as projectiles. Suppose that there is a black domino
in position i, followed by j ≥ 0 gray dominoes followed by a white square. To project the black
domino, rearrange the tiles so that the gray dominoes start in position i, the white square is placed
in position i + 2j and the black domino is placed in position i + 2j + 1. Note that the effect of
this operation is to increase the weight of the tiling by a factor of q, as illustrated below.

13



w
(

· · ·

)

= zqi(−zqi+2)(−zqi+4) · · · (−zqi+2j)

= (−1)jzj+1q(i+j)(j+1)

w
(

· · ·

)

= (−zqi)(−zqi+2) · · · (−zqi+2j−2)zqi+2j+1

= (−1)jzj+1q(i+j)(j+1)+1

The collection of Jacobsthal tilings combined with the above weight function and projection will
be referred to as signed Jacobsthal tilings.

Theorem 9
∞

∑

n=0

znq2n2+n

(q2; q2)n
= (zq2; q2)∞

∞
∑

n=0

znq(3n2+n)/2

(q; q)n(zq2; q2)n
(20)

Proof. Consider all signed Jacobsthal tilings that contain exactly n black dominoes, each one
of which is immediately preceded by at least one white square, and do not contain any odd gray
dominoes. To construct such a tiling, first place n black dominoes in positions 1, 3, 5, . . . , 2n − 1,
which accounts for a weight of znqn2

. Next, arbitrarily place even gray dominoes in positions 2j
for j ≥ n + 1. This accounts for a weight of

∏

j≥n+1

(1 − zq2j) =
(zq2; q2)∞
(zq2; q2)n

.

Now project the ith black domino exactly i times (starting with the right–most black domino and
working right–to–left), for i = 1, 2, . . . , n. This ensures that each black domino is immediately
preceded by a white square and increases the weight of the tiling by a factor of

q1+2+3+···+n = q(n2+n)/2.

Lastly, project the black dominoes. Note that projection does not change the parity of any of the
gray dominoes. Therefore, the generating function for all such tilings is given by

(zq2; q2)∞
znq(3n2+n)/2

(q; q)n(zq2; q2)n
.

Summing over n ≥ 0 completes the construction and yields the right–hand side of (20).
We now use a sign–reversing involution to simplify our constuction. In particular, find the

first occurrence of an even domino. If the first even domino is black, convert it to a gray domino
and vice versa. Notice that if the first even domino that appears is gray, then it must necessarily
be preceded by a white square and thus converting it to a black domino results in a constructible
tiling. Clearly, any two tilings paired off by this involution have the same z and q weights but
opposite signs and, therefore, cancel each other out in the right–hand side of (20).

The only tilings to which this involution cannot be applied are ones that contain only squares
and odd black dominoes. To construct such a tiling that has exactly n ≥ 0 odd black dominoes,
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start by placing n black dominoes in positions 3, 7, . . . , 4n − 1 so that each domino has at least
one white square preceding it, as required. This accounts for a weight of

znq3+7+···+4n−1 = znq2n2+n.

Now project the black dominoes, making sure to project each one an even number of times to
maintain its parity. In other words, think of projection as simply increasing the position of a
domino by two, which increases the weight of a tiling by q2. Therefore,

znq2n2+n

(q2; q2)n

is the generating function for these tilings that contain exactly n odd black dominoes. Summing
over n ≥ 0 completes the proof. 2

Theorem 9 unifies the following two identities of Rogers, which appear as equations (4.5) and
(4.6) in Andrews [1].

Corollary 10

∞
∑

n=0

q2n2

(q2; q2)n
= (q; q2)∞

∞
∑

n=0

q(3n2−n)/2

(q; q)n(q; q2)n
(21)

∞
∑

n=0

q2n2+2n

(q2; q2)n
= (q; q2)∞

∞
∑

n=0

q(3n2+3n)/2

(q; q)n(q; q2)n+1
(22)

Proof. The above identities follow by setting z = 1/q and z = 1 in (20), respectively. 2

Equation (21), after applying (1) with q replaced by q2, appears in Slater’s list [17, Equation
(46)]. Equation (22), after applying (2) with q replaced by q2 also appears in Slater’s list [17,
Equation (44)].

Now suppose that instead of disallowing odd gray dominoes as we did in the previous proof,
we disallow even gray dominoes. In order to use an analogous involution, we would have to insist
that no gray domino is placed in position one. With this in mind, we can now prove the following
theorem.

Theorem 11
∞

∑

n=0

znq2n2

(q2; q2)n

= (zq; q2)∞

∞
∑

n=0

znq(3n2+n)/2

(q; q)n(zq; q2)n+1

(23)

Proof. Consider all signed Jacobsthal tilings that contain exactly n black dominoes, each one
of which is immediately preceded by at least one white square, and do not contain any even gray
dominoes nor a gray domino in position one. To construct such a tiling, place n black dominoes in
positions 1, 3, 5, . . . , 2n−1. Next, arbitrarily place odd dominoes in positions 2j +1 for j ≥ n+1.

Now project the ith black domino exactly i times, just as in the proof of the previous theorem.
Note that since we did not place a gray domino in position 2j +1 (i.e., there are at least two white
squares before the first gray domino), there cannot be a gray domino in position one, as required.
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Lastly, project the black dominoes. Therefore, the generating function for all such tilings is
given by

(zq; q2)∞
znq(3n2+n)/2

(q; q)n(zq; q2)n+1
.

Summing over n ≥ 0 completes the construction and yields the right–hand side of (23).
We now use a sign–reversing involution to simplify our construction. In particular, find the

first occurrence of an odd domino. If the first odd domino is black, convert it to a gray domino
and vice versa. This involution cancels out all tilings except those that contain only squares and
even black dominoes. To construct such a tiling that has exactly n ≥ 0 even black dominoes,
place n black dominoes in positions 2, 6, . . . , 4n − 2 to make sure that each domino has at least
one white square preceding it. Now project the black dominoes (i.e., increase position by two).
Therefore,

znq2n2

(q2; q2)n

is the generating function for those tilings that contain exactly n odd black dominoes. Summing
over n ≥ 0 completes the proof. 2

Corollary 12

∞
∑

n=0

q2n2

(q2; q2)n
= (q; q2)∞

∞
∑

n=0

q(3n2+n)/2

(q; q)n(q; q2)n+1
(24)

∞
∑

n=0

q2n2+2n

(q2; q2)n
= (q; q2)∞

∞
∑

n=0

q(3n2+5n)/2

(q; q)n(q; q2)n+2
(25)

Proof. The above identities follow by setting z = 1 and z = q2 in (23), respectively. 2

Equation (24), after applying (1) with q replaced by q2 and dividing both sides by (q; q2)∞, is
due to Rogers [15, p. 330].

5 Signed Pell Tilings

For the last pair of identities that we examine in this paper, consider tilings of a 1 × ∞ board
using white squares, black squares and gray dominoes. We will refer to such tilings as (infinite)
Pell tilings since the number of ways to tile a 1×n board with two colors of squares and one color
of dominoes is given by the nth Pell number, Pn, where Pn = 2Pn−1 + Pn−2, P0 = 1 and P1 = 2.
The weight of tile t is defined as follows:

w(t) =











−zqi if t is a gray domino in position i

zqi if t is a black square in position i

1 if t is a white square in position i

In this case, only gray dominoes that are immediately preceded by a black square will be used as
projectiles. Suppose that there is a gray domino in position i which is immediately preceded by
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a black square and immediately followed by j ≥ 0 black squares followed by a white square. To
project the gray domino, rearrange the tiles so that the white square is in position i− 1, followed
by j + 1 black squares followed by the gray domino. The effect of this operation is to increase the
weight of the tiling by a factor of q2, as illustrated below.

w
(

· · ·

)

= zqi−1(−zqi)zqi+2
· zqi+3

· · · zqi+j+1

= −zj+2qi(j+2)+(j+2

2 )−2

w
(

· · ·

)

= zqi
· zqi+1

· · · zqi+j(−zqi+j+1)

= −zj+2qi(j+2)+(j+2

2 )

The collection of Pell tilings combined with the above weight function and projection will be
referred to as signed Pell tilings.

Theorem 13
∞

∑

n=0

znqn2

(q; q)n

= (−zq; q)∞

∞
∑

n=0

(−1)nz2nq3n2

(q2; q2)n(−zq; q)2n

(26)

Proof. Consider signed Pell tilings with exactly n dominoes where each domino is immediately
preceded by at least one black square. To construct such a tiling, place n black squares in positions
1, 4, 7, . . . , 3n − 2 and n dominoes in positions 2, 5, 8, . . . , 3n − 1, which accounts for a weight of

(−1)nz2nq3+9+15+···+6n−3 = (−1)nz2nq3n2

.

Next, for each j ≥ 1, determine whether or not to insert a black square immediately before the
jth square (black or white) on the board, starting with j = 1. Suppose that you decide to insert
a black square immediately before the jth square on the board, which has 0 ≤ k ≤ n dominoes
appearing to its left. Thus the jth square appears in position 2k + j and has n− k dominoes and
n − k black squares weakly to its right. Therefore, increasing the position of each of the n − k
dominoes and n− k black squares by one and inserting a black square in position 2k + j increases
the weight of the tiling by a factor of

zq2k+jq2(n−k) = zq2n+j .

Thus the factor (1 + zq2n+j) represents the choice of whether or not to insert a black square
immediately before the jth square. Therefore

∏

j≥1

(1 + zq2n+j) =
(−zq; q)∞
(−zq; q)2n

accounts for all possible choices of inserting black squares. At this stage, the tiling consists of
a collection of dominoes and black squares mixed together followed by a collection of black and
white squares mixed together. It remains to mix these two collections of tiles. We can accomplish
this by projecting the dominoes. Therefore, the generating function for signed Pell tilings with
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exactly n dominoes, each one of which is immediately preceded by at least one black square, is
given by

(−zq; q)∞
(−1)nz2nq3n2

(q2; q2)n(−zq; q)2n
.

Summing over n ≥ 0 completes the construction and yields the right–hand side of (26).
We now use a sign–reversing involution to simplify the right–hand side. In particular, find the

first occurrence of a domino or two consecutive black squares followed by a white square. In the
event that a domino appears first, simply replace this tile with a black square followed by a white
square. In the event that two consecutive black squares followed by a white square appears first,
replace the second of the two black squares and the white square with a single domino.

For example, the tilings

· · ·

and

· · ·

are paired off under this involution. Note that any two tilings paired by this involution clearly
have the same z and q weights, but opposite signs, and therefore cancel each other out in the
right–hand side of (26).

The fixed points of our involution are tilings that do not contain any dominoes or consecutive
black squares. To construct such a tiling that contains n ≥ 0 black squares, start by placing black
squares in positions 1, 3, 5, . . . , 2n−1, which accounts for a weight of znqn2

. Now project the black
squares. To project a black square, simply increase its position by one, which increases the weight
of the tiling by a factor of q. Therefore,

znqn2

(q; q)n

is the generating function for the remaining tilings. Summing over n ≥ 0 completes the proof. 2

Corollary 14

∞
∑

n=0

qn2

(q; q)n
= (−q; q)∞

∞
∑

n=0

(−1)nq3n2

(q2; q2)n(−q; q)2n
(27)

∞
∑

n=0

qn2+n

(q; q)n
= (−q; q)∞

∞
∑

n=0

(−1)nq3n2+2n

(q2; q2)n(−q; q)2n+1
(28)

Proof. The above identities follow by setting z = 1 and z = q in (26), respectively. 2

Equation (27), after applying (1), appears in Slater’s list [17, Equation (19)]. Equation (28),
after applying (2) and dividing both sides by (−q; q)∞, can be attributed to Ramanujan (see [2,
Equation 11.2.7]). Proofs of these identities can also be found in [9, Chapter 5].
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Theorem 15

∞
∑

n=0

znqn2+n(1 − z2q2n+3)

(q; q)n
= (−zq; q)∞

∞
∑

n=0

(−1)nz2nq3n2

(q2; q2)n(−zq; q)2n+1
(29)

Proof. Suppose that in the previous proof, we do not allow for a black square to be placed
before the first square (black or white). In other words, for each n ≥ 0, divide the nth term of the
right–hand side of (26) by (1+zq2n+1), which results in the right–hand side of (29). Consequently,
the right–hand side of (29) can be interpreted as the generating function for signed Pell tilings
where the first domino has exactly one black square appearing to its left, or in the case there are
no dominoes, the first position must be covered by a white square.

Since not all signed Pell tilings are allowed, we must also update our involution from the
previous proof. In particular, if a black square appears in position one and a domino appears
in position two, replacing the domino in position two with a black square followed by a white
square results in a tiling which is no longer allowed. Therefore, in this case only, find the second

occurrence of a domino or the first occurrence of two consecutive black square followed by a white
square and then proceed as before.

Now the fixed points of our involution are tilings that start with a white square or start with
a black square followed by a domino, with the rest of the board covered by white squares and
nonconsecutive black squares. To construct a fixed point that starts with a white square and
contains n ≥ 0 nonconsecutive black squares, place black squares in positions 2, 4, . . . , 2n. Then
project the black squares. In this case, to project a black square which is immediately followed
by a white square, simply increase its position by one. Therefore, the corresponding generating
function is given by

∞
∑

n=0

znqn2+n

(q; q)n
.

To construct a fixed point that starts with a black square followed by a domino and contains n ≥ 0
additional black squares, place black squares in positions 1, 4, 6, 8, · · · , 2n + 2 and a gray domino
in position two. Then project the last n black squares. Therefore, the corresponding generating
function is given by

−

∞
∑

n=0

zn+2qn2+3n+3

(q; q)n

.

Summing these two generating functions completes the proof. 2

Corollary 16

∞
∑

n=0

qn2+n

(q; q)n

= (−q; q)∞

∞
∑

n=0

(−1)nq3n2−2n

(q2; q2)n(−q; q)2n

(30)
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Proof. Replacing z with 1/q in the left–hand side of (29) yields

∞
∑

n=0

qn2

(1 − q2n+1)

(q; q)n
=

∞
∑

n=0

qn2

(q; q)n
−

∞
∑

n=0

qn2+2n+1

(q; q)n

= 1 +

∞
∑

n=1

qn2

(q; q)n
−

∞
∑

n=1

qn2

(q; q)n−1

= 1 +

∞
∑

n=1

qn2

(q; q)n
(1 − (1 − qn))

= 1 +
∞

∑

n=1

qn2+n

(q; q)n

=
∞

∑

n=0

qn2+n

(q; q)n

.

Making the same replacement in the right–hand side of (29) yields

(−1; q)∞

∞
∑

n=0

(−1)nq3n2−2n

(q2; q2)n(−1; q)2n+1

= (−q; q)∞

∞
∑

n=0

(−1)nq3n2−2n

(q2; q2)n(−q; q)2n

as claimed. 2

Equation (30), after applying (2), appears in Slater’s list [17, Equation (15)].

6 Concluding Thoughts

In this work, we have proven the collection of eight identities of Rogers (Corollaries 3, 5, 8, and
10) as presented by Andrews [1, Chapter 4], along with five additional related q–series identities
(Corollaries 12, 14, and 16), in a very natural way using weighted tilings. While it is very satisfying
to see this set of q-series identities proven in this manner, undoubtedly other identities can be
given similar interpretations. Our goal for future work is to prove additional q–series identities
via weighted tilings.
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