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Abstract

Reversed Dickson polynomials over finite fields are obtained from Dickson polynomials
Dn(x, a) over finite fields by reversing the roles of the indeterminate x and the parameter a.
We study reversed Dickson polynomials with emphasis on their permutational properties over
finite fields. We show that reversed Dickson permutation polynomials (RDPPs) are closely
related to almost perfect nonlinear (APN) functions. We find several families of nontrivial
RDPPs over finite fields; some of them arise from known APN functions and others are new.
Among RDPPs on Fq with q < 200, with only one exception, all belong to the RDPP families
established in this paper.

Keywords: almost perfect nonlinear function, Dickson polynomial, finite field, reversed Dickson
polynomial
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1 Introduction

Let n ≥ 0 be an integer and consider the symmetric polynomial xn
1 + xn

2 ∈ Z[x1, x2]. Since the
elementary symmetric polynomials x1 + x2 and x1x2 form a Z-basis of the ring of symmetric
polynomials in Z[x1, x2], there exists Dn(x, y) ∈ Z[x, y] such that

xn
1 + xn

2 = Dn(x1 + x2, x1x2); (1)

see [14]. The polynomial Dn(x, y) is given by Waring’s formula ([13, Theorem 1.76])

Dn(x, a) =
bn/2c∑

i=0

n

n− i

(
n− i

i

)
(−a)ixn−2i, (2)

and is the solution of the recurrence relation ([12, Lemma 2.3])




D0(x, y) = 2,

D1(x, y) = x,

Dn(x, y) = xDn−1(x, y)− yDn−2(x, y), n ≥ 2.

For a prime power q = pe with p a prime and e a positive integer, let Fq denote the finite field
of order q. For fixed a ∈ Fq, Dn(x, a) ∈ Fq[x] is the Dickson polynomial of degree n and parameter
a. These polynomials were studied by L.E. Dickson for their permutational properties over Fq.
In 1923 Schur [16] named these polynomials Dickson polynomials in Dickson’s honor.

When a = 0, Dn(x, 0) = xn, which induces a permutation of Fq, i.e., is a permutation polyno-
mial (PP) on Fq, if and only if (n, q − 1) = 1.

When 0 6= a ∈ Fq, it is known that the Dickson polynomial Dn(x, a) induces a permutation of
Fq if and only if (n, q2−1) = 1; see [13, Theorem 7.16] or [12, Theorem 3.2]. This simple condition
provides a very effective test to determine which Dickson polynomials induce permutations of Fq,
and moreover once the condition is satisfied, we obtain q − 1 different permutations, one for
each of the elements a ∈ F∗q . The value set Vf of a polynomial f ∈ Fq[x] is defined to be
Vf = {f(b) : b ∈ Fq}. In [2] the authors determined the cardinality |VDn(x,a)| of the value set
VDn(x,a) of the Dickson polynomial Dn(x, a) over Fq. For many additional algebraic and number
theoretic properties of Dickson polynomials, we refer to [12].

2 Reversed Dickson polynomials: a different perspective

In this paper, we consider a different perspective; namely we fix a ∈ Fq, and study the polynomial
Dn(a, x) ∈ Fq[x] with emphasis on its permutational behavior over Fq. We call Dn(a, x) ∈ Fq[x]
a reversed Dickson polynomial. (One should refrain from calling Dn(a, x) a Dickson polynomial
of the second kind since the latter terminology already exists; see Definition 2.2 of [12].)

We emphasize that a reversed Dickson polynomial is in general, not a Dickson polynomial.
We use the terminology “reversed” Dickson polynomial to indicate that we start with a Dickson
polynomial Dn(x, a) as defined above, and then we interchange the roles of x and a to obtain
what we call a reversed Dickson polynomial.

In fact, reversed Dickson polynomials have been studied in [9, 10, 11] by Kang in the form of
Dn(a,−x). However, Kang did not consider the permutational properties of these polynomials.
Also see Chapter 2 of [12] for some basic properties of Kang’s polynomials. A reversed Dickson
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polynomial which induces a permutation of Fq is called a reversed Dickson permutation polynomial
(reversed Dickson PP or RDPP) on Fq.

When a = 0, we have

Dn(0, x) =

{
0 if n is odd,

2(−x)k if n = 2k.

Hence Dn(0, x) is a PP on Fq if and only if n = 2k with (k, q− 1) = 1. We thus hereafter assume
that a ∈ F∗q .

It follows from (2) that
Dn(a, x) = anDn

(
1,

x

a2

)
.

Hence Dn(a, x) is a PP on Fq if and only if Dn(1, x) is a PP on Fq. Therefore it suffices to consider
the reversed Dickson polynomial Dn(1, x). The ultimate question is for which n the polynomial
Dn(1, x) is a PP on Fq. This question, unlike the same question for Dickson polynomials Dn(x, a),
does not seem to have an easy answer.

We obtain numerous sufficient conditions for when the RDP Dn(1, x) is a PP on Fq; see for
example Theorem 4.4, Corollary 5.2, and Theorems 5.3 and 5.7. Moreover, in Conjecture 7.1 we
postulate the complete set of values of n for which Dn(1, x) is a PP on Fp, when p > 3 is prime.

In the next proposition, we list some basic facts about the reversed Dickson polynomial
Dn(1, x).

Proposition 2.1. Let q = pe, where p is a prime and e is a positive integer, and let n ≥ 0 be an
integer.

(i) In Z[x], we have
Dn(1, x(1− x)) = xn + (1− x)n. (3)

(ii) In Fq[x], we have
Dnp(1, x) =

(
Dn(1, x)

)p
.

(iii) If n1, n2 > 0 are integers such that n1 ≡ n2 (mod p2e − 1), then Dn1(1, x) = Dn2(1, x) for
all x ∈ Fq.

(iv) If two positive integers n1 and n2 belong to the same p-cyclotomic coset modulo p2e−1, then
Dn1(1, x) is a PP on Fq if and only if Dn2(1, x) is a PP on Fq.

Proof. Parts (i) and (ii) follow immediately from (1).
(iii) For each x ∈ Fq, there exists y ∈ Fq2 such that x = y(1− y). Then

Dn1(1, x) = Dn1(1, y(1− y)) = yn1 + (1− y)n1 = yn2 + (1− y)n2 = Dn2(1, y(1− y)) = Dn2(1, x).

Part (iv) follows from (ii) and (iii).

This paper is organized as follows. In Section 3, we take on a very natural question: Given
integers n1, n2 ≥ 0, when are Dn1(1, x) and Dn2(1, x) equal as functions on Fq? We are able
to answer this question in Theorems 3.1 and 3.2. The proofs of these two theorems are rather
involved and technical; so they are given in Appendix A. In Section 4, we discuss some connections
between reversed Dickson permutation polynomials on Fq and almost perfect nonlinear (APN)
functions on Fq and Fq2 . APN functions (defined in Section 4) have been attracting much attention
because of their important applications in cryptography. We obtain several families of reversed
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Dickson PPs from some known families of APN functions. However, not all reversed Dickson PPs
are obtained from APN functions. In Section 5, we present three families of reversed Dickson
PPs which are not obtainable from APN functions , two of which seem to be new families of
permutation polynomials over finite fields. In Section 6, we explore some necessary conditions on
n and q for Dn(1, x) to be a PP on Fq. Section 7 contains a table which gives all values of pe and
n with pe < 200 such that Dn(1, x) is a PP on Fpe . With only one exception, all RDPPs in this
parameter range are covered by the families discussed in Sections 4 and 5.

3 When are Dn1
(1, x) and Dn2

(1, x) equal as functions on Fpe?

For n1, n2 ∈ {0, 1, . . . , p2e − 1}, we say that n1 ∼ n2 if Dn1(1, x) ≡ Dn2(1, x) (mod xpe − x). The
relation ∼ is an equivalence relation whose equivalence classes can be described as follows.

Theorem 3.1. Let p = 2. Then the ∼-equivalence classes of {0, 1, . . . , 22e − 1} are

{0},
{2k : 0 ≤ k ≤ 2e− 1},
{(2e + 1)2k : 0 ≤ k ≤ e− 1},
{α + β2e, β + α2e}, 0 ≤ α, β ≤ 2e − 1,

α + β2e 6= 0, 2k (0 ≤ k ≤ 2e− 1), (2e + 1)2k (0 ≤ k ≤ e− 1).

Theorem 3.2. Let p be an odd prime. Then the ∼-equivalence classes of {0, 1, . . . , p2e − 1} are

{0},
{pk : 0 ≤ k ≤ 2e− 1},
{p2e−1

2 + pk : 0 ≤ k ≤ 2e− 1},
{α + βpe, β + αpe}, 0 ≤ α, β ≤ pe − 1, α + βpe 6= 0, pk, p2e−1

2 + pk, 0 ≤ k ≤ 2e− 1.

Remark. In Theorem 3.2, note that p2e−1
2 + pk ≡ p2e+1

2 · pk (mod p2e − 1).

The proofs of Theorems 3.1 and 3.2 are given in Appendix A.

4 Reversed Dickson PPs and APN functions

Lemma 4.1. Let x ∈ Fp2e. Then x(1− x) ∈ Fpe if and only if xpe
= x or xpe

= 1− x.

Proof. We have

[x(1− x)]p
e − x(1− x) = xpe − x2pe − x + x2 = −(xpe − x)(xpe

+ x− 1).

The conclusion follows immediately.

We define
V = {x ∈ Fp2e : xpe

= 1− x} (4)

and note that

Fpe ∩ V =

{
∅ if p = 2,

{1
2} if p > 2.
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Proposition 4.2. (i) Let p = 2. Then Dn(1, x) is PP on F2e if and only if the function
y 7→ yn + (1− y)n is a 2-to-1 mapping on F2e ∪ V .

(ii) Let p > 2. Then Dn(1, x) is a PP on Fpe if and only if the function y 7→ yn + (1− y)n is a
2-to-1 mapping on (Fpe ∪ V ) \ {1

2} and yn + (1− y)n 6= (1
2)n−1 for any y ∈ (Fpe ∪ V ) \ {1

2}.
Proof. We only prove (ii) since the proof of (i) is similar.

For neccesity, assume y1, y2 ∈ (Fpe ∪ V ) \ {1
2} such that yn

1 + (1− y1)n = yn
2 + (1− y2)n. Then

y1(1−y1), y2(1−y2) ∈ Fpe and Dn(1, y1(1−y1)) = Dn(1, y2(1−y2)). Thus y1(1−y1) = y2(1−y2)
which implies that y1 = y2 or 1− y2. So y 7→ yn +(1− y)n is a 2-to-1 mapping on (Fpe ∪V ) \ {1

2}.
If y ∈ (Fpe ∪ V ) \ {1

2}, then y(1 − y) ∈ Fpe and y(1 − y) 6= 1
2(1 − 1

2). Thus yn + (1 − y)n =
Dn(1, y(1− y)) 6= Dn(1, 1

2(1− 1
2)) = (1

2)n−1.
For sufficiency, assume x1, x2 ∈ Fpe such that Dn(1, x1) = Dn(1, x2). Write xi = yi(1 − yi),

where yi ∈ Fpe ∪ V , i = 1, 2. Then yn
1 + (1 − y1)n = Dn(1, x) = Dn(1, x2) = yn

2 + (1 − y2)n. If
y1 = 1

2 , then yn
2 + (1 − y2)n = (1

2)n−1 which forces y2 = 1
2 , hence x1 = x2. If y1, y2 6= 1

2 , since
y 7→ yn + (1− y)n is a 2-to-1 mapping on (Fpe ∪ V ) \ {1

2}, we have y1 = y2 or y1 = 1− y2, which
also implies that x1 = x2.

A function f : Fq → Fq is called almost perfect nonlinear (APN) if for each a ∈ F∗q and b ∈ Fq,
the equation f(x+a)−f(x) = b has at most two solutions in Fq. APN functions were introduced
by Nyberg [15] for applications in cryptography. The differential uniformality of APN functions
makes them highly immune to differential and linear cryptanalysis. Much work has been done on
APN functions; we refer the reader to [6, 7, 8] and the references therein. It is clear that a power
function xn is an APN function on Fq if and only if for each b ∈ Fq, the equation (x+1)n−xn = b
has at most two solutions in Fq. The following proposition relates reversed Dickson PPs and
power APN functions.

Proposition 4.3. (i) The polynomial xn is an APN function on F22e ⇒ Dn(1, x) is a PP on
F2e ⇒ xn is an APN function on F2e.

(ii) Let p be an odd prime and n an odd positive integer. Then the polynomial

xn is an APN function on Fp2e ⇒ Dn(1, x) is a PP on Fpe ⇒ xn is an APN function on Fpe.

Proof. Part (i) immediately follows from Proposition 4.2 (i).
Part (ii) follows from Proposition 4.2 (ii), where one only has to notice that since n is odd,

yn + (1− y)n = yn − (y − 1)n.

For a survey of known power APN functions, we refer the reader to [7] (for p = 2) and [8] (for
p > 2). The following theorem lists all reversed Dickson PPs obtained from known power APN
functions using Proposition 4.3.

Theorem 4.4. The reversed Dickson polynomial Dn(1, x) is a PP on Fpe in each of the following
cases:

I. p = 2. (See [7, Table 1].)

(i) n = 2k + 1, (k, 2e) = 1. (Gold)

(ii) n = 22k − 2k + 1, (k, 2e) = 1. (Kasami)
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(iii) n = 28k + 26k + 24k + 22k − 1, e = 5k. (Dobbertin)

II. p > 2. (See [8])

(i) n = 3, p > 3. (D3(1, x) = −3x + 1, trivial)

(ii) n = pe + 2, pe ≡ 1 (mod 3). ([8, Theorem 8])

(iii) n = 5k+1
2 p = 5, (k, 2e) = 1. ([8, Corollary 1])

Remark. When p = 2 and n = 22k − 2k + 1, in F2[x], we have

Dn(1, x(1 + x)) = xn + (1 + x)n

=
x22k+1

x2k +
(1 + x)2

2k+1

(1 + x)2k

=
x22k+1 + x22k+2k

+ x2k+1 + x2k

x2k(1 + x)2k

=
x22k+1 + x22k+2k

+ x2k+1 + x2k+2k

x2k(1 + x)2k + 1

=
(x2k

+ x)2
k+1

x2k(1 + x)2k + 1

=

[(
x(x + 1)

)2k−1

+
(
x(x + 1)

)2k−2

+ · · ·+ x(x + 1)
]2k+1

[
x(1 + x)

]2k + 1.

So

Dn(1, x) =
(x2k−1

+ x2k−2
+ · · ·+ x)2

k+1

x2k + 1 = x(x2k−1−1 + x2k−2−1 + · · ·+ 1)2
k+1 + 1.

We observe that Dn(1, x) − 1 is the polynomial fk in Theorem 1.1 of [3] and that Theorem 4.4
I(ii) of the present paper is a (partial) restatement of Theorem 1.1 of [3].

It is natural to ask if the converses of the statements in Proposition 4.3 are true. Some of
the converses are known to be false while the statuses of others are not known. Here are some
counterexamples.

Example 4.5. Let p = 2, e = 2, n = 24+22+1 = 21. Then D21(1, x) is a PP on F24 (Theorem 5.3)
but x21 is not an APN function on F28 (Proposition 5.4).

Example 4.6. Let p = 2, e = 3, n = 22 + 1 = 5. Then x5 is an APN function on F23 (the Gold
case) but D5(1, x) = x2 + x + 1 is not a PP on F23 .

Example 4.7. Let p > 3 be a prime such that p ≡ −1 (mod 3) and let e = 1, n = p + 2. Then
xp+2(= x3) is an APN function on Fp but Dp+2(1, x) is not a PP on Fp (Corollary 5.2 (ii)).

Example 4.8. Let p > 3 be a prime such that p ≡ 1 (mod 3) and let e = 2, n = p+2. Then xp+2

is an APN function on Fp2 ([8, Theorem 8]). However, we have Dp+2(1, x) = 2(−x+ 1
4)

p+1
2 + 1

2−x

(Proposition 5.1), which is not a PP on Fp2 since the degree of Dp+2(1, x) = p+1
2 is a divisor of

p2 − 1 ([13, Corollary 7.5]).
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The case p = 3 is special in Proposition 4.3 (ii). In fact, if n is odd, xn is not an APN function
on F3e for any e > 0. The function (x + 1)n − xn takes the value 1 at x = 0,±1. Therefore
Proposition 4.3 (ii) implies that if n is odd, Dn(1, x) is never a PP on F3e . (This fact also follows
from Proposition 6.1.)

However, we do not know the answers to the following questions.
Open Questions.

1. If Dn(1, x) is a PP on F2e , where e is odd, is xn an APN function on Fp2e?

2. If Dn(1, x) is a PP on Fpe , where p > 3 and n is odd, is xn an APN function on Fp2e?

5 Reversed Dickson PPs which do not arise from APN functions

Proposition 5.1. Let p be an odd prime and k ≥ 0. Then in Fp[x],

Dpk+1(1, x) = 2
(
−x +

1
4

) pk+1
2 +

1
2
, (5)

Dpk+2(1, x) = 2
(
−x +

1
4

) pk+1
2 +

1
2
− x. (6)

Proof. We only prove (5) since Dpk+2(1, x) = Dpk+1(1, x) − xDpk(1, x) and Dpk(1, x) = 1. We
have

Dpk+1(1, x(1− x)) = xpk+1 + (1− x)pk+1

=
[1
2

+
(
x− 1

2

)]pk+1
+

[1
2
−

(
x− 1

2

)]pk+1

= 2 ·
(1

2

)pk+1
+ 2 ·

(
x− 1

2

)pk+1

= 2
(
x2 − x +

1
4

) pk+1
2 +

1
2

= 2
(
−x(1− x) +

1
4

) pk+1
2 +

1
2
.

Therefore (5) follows.

Corollary 5.2. Let p be an odd prime and let e > 0, k ≥ 0 be integers.

(i) Dpk+1(1, x) is a PP of Fpe if and only if pk ≡ 1 (mod 4) and ν2(e) ≤ ν2(k), where ν2 is the
2-adic order.

(ii) Dpe+2(1, x) is a PP of Fpe if and only if pe ≡ 1 (mod 3).

Proof. (i) By (5), Dpk+1(1, x) is a PP of Fpe if and only if (pk+1
2 , pe− 1) = 1. By [4, Lemma 2.6],

(pk+1
2 , pe − 1) = 1 if and only if pk ≡ 1 (mod 4) and ν2(e) ≤ ν2(k).

(ii) By (6), Dpe+2(1, x) = 2(y
pe+1

2 + 1
2y) + 1

4 , where y = −x + 1
4 . By [13, Theorem 7.11],

y
pe+1

2 + 1
2y is a PP on Fpe if and only if χ((1

2)2− 1) = 1, i.e., χ(−3) = 1, where χ is the quadratic
character of Fpe . When e is even, χ(−3) = 1 if and only if p 6= 3 if and only if pe ≡ 1 (mod 3).
When e is odd, χ(−3) = (−3

p ) = (−1
p )(3

p) = (−1)
p−1
2 ·(−1)

p−1
2
· 3−1

2 (p
3) = (p

3). In this case χ(−3) = 1
if and only if (p

3) = 1 if and only if p ≡ 1 (mod 3) if and only if pe ≡ 1 (mod 3).
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The reversed Dickson PP’s in Corollary 5.2 (ii) arise from APN functions (Theorem 4.4 II(ii)).
However, the reversed Dickson PPs in Corollary 5.2 (i), which include the trivial case D2(1, x) =
−2x + 1, are not obtainable from APN functions through Proposition 4.3 since pk + 1 is even.

Theorem 5.3. Let e be a positive even integer and let n = 2e + 2k + 1, where k is a positive
integer such that (k − 1, e) = 1. Then Dn(1, x) is a PP on F2e.

Proof. By Proposition 4.2 (i), it suffices to show that the mapping x 7→ (x + 1)n + xn is 2-to-1 on
F2e ∪ V where V = {x ∈ F22e : x2e

= x + 1} (see (4)).
Choose ε ∈ F2e such that TrF2e/F2

(ε) = 1 and choose a ∈ F22e such that a2 + a = ε. Then
V = a + F2e .

For x ∈ F2e , we have

(x + 1)n + xn = (x + 1)2
k+2 + x2k+2 =

[
(x + 1)2

k−1+1 + x2k−1+1
]2

.

Since (k− 1, e) = 1, x2k−1+1 is an APN function on F2e (the Gold case), so (x+1)n +xn is 2-to-1
on F2e .

Again for x ∈ F2e , we have

(x + a)n = (x2k
+ a2k

)(x + a)(x + a2e
) = (x2k

+ a2k
)(x + a)(x + a + 1).

(Note that a2e
= a + 1 since a ∈ V .) Also,

(x + 1 + a)n = ((x + 1)2
k

+ a2k
)(x + 1 + a)(x + a).

So we have
(x + a + 1)n + (x + a)n = (x + a)(x + a + 1) = x2 + x + ε.

Therefore, (x + 1)n + xn is 2-to-1 on V = a + F2e .
Note that for x ∈ F2e ,

TrF2e/F2

(
(x + 1)n + xn)

)
= TrF2e/F2

(x2k
+ x2 + 1) = 0 (since e is even)

and
TrF2e/F2

(
(x + a + 1)n + (x + a)n)

)
= TrF2e/F2

(x2 + x + ε) = 1.

So, the value sets of (x + 1)n + xn on F2e and on a + F2e are disjoint. Therefore, (x + 1)n + xn is
a 2-to-1 mapping on F2e ∪ (a + F2e).

In Theorem 5.3, note that if l > 0 is such that l ≡ k (mod e), then 2e+2l+1 and 2e+2k+1 are
in the same 2e-cyclotomic coset modulo (22e− 1). Therefore, we may assume that n = 2e +2k +1
where 1 ≤ k ≤ e. If k = e, then n = 2e+1 +1 and Dn(1, x) arises from an APN function. However,
this is the only case in Theorem 5.3 where the reversed Dickson PP arises from an APN function.

Proposition 5.4. Let 1 ≤ k < e be integers and n = 2e+2k +1. Then xn is not an APN function
on F22e.

Proof. Let ε ∈ F2e such that TrF2e/F2
(ε) = 1 and let a ∈ F22e such that a2 + a = ε. Choose

x0 ∈ F2e such that x2k−1
0 6= 1 and let u = x2k−1

0 +x0

x2k−1
0 +1

. For all x ∈ F2e , similar to the computations
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in the proof of Theorem 5.3, we have

(x + ua)n =
[
x2k

+ (ua)2
k]

(x + ua)(x + (ua)2
e
)

=
[
x2k

+ (ua)2
k]

(x + ua)(x + u(a + 1))

=
[
x2k

+ (ua)2
k]

(x2 + ux + u2ε),

(x + 1 + ua)n =
[
(x + 1)2

k
+ (ua)2

k][
(x + 1)2 + u(x + 1) + u2ε

]

=
[
x2k

+ 1 + (ua)2
k]

(x2 + ux + u2ε + u + 1).

Thus

(x + ua + 1)n + (x + ua)n

=
[
x2k

+ (ua)2
k]

(x2 + ux + u2ε) +
[
x2k

+ (ua)2
k

+ 1
]
(x2 + ux + u2ε + u + 1)

= (u + 1)
[
x2k

+ (ua)2
k]

+ x2 + ux + u2ε + u + 1

= (u + 1)x2k
+ x2 + ux + u2ε + (u + 1)

[
(ua)2

k
+ 1

]
.

The linearized polynomial (u + 1)x2k
+ x2 + ux has at least three roots in F2e : 0, 1 and x0. Thus

the mapping x 7→ (x + 1)n + xn is not 2-to-1 on ua + F2e ⊂ F22e .

Lemma 5.5. Let k be a positive odd integer and let n = 3k+1
2 . Then in F3[x],

Dn(1, 1− x2) = −Dn(x, 1).

Proof. Let x = y2 + y−2. Then

Dn(1, 1− x2) = Dn

(
1, (2 + x)(2− x)

)

= (2 + x)n + (2− x)n

= (y + y−1)2n + (y − y−1)2n (since n is even)

= (y + y−1)3
k+1 + (y − y−1)3

k+1

= 2y3k+1 + 2y−(3k+1)

= −[
(y2)n + (y−2)n

]

= −Dn(x, 1).

Let n ≥ 0 be an integer and let a ∈ Fq. By (2), we can write

D2n(x, a) = Fn(x2, a), (7)

where

Fn(x, a) =
n∑

i=0

2n

2n− i

(
2n− i

i

)
(−a)ixn−i ∈ Fq[x].

Lemma 5.6. Let n > 0 be an integer such that (n, p4e − 1) = 2 and let a ∈ F∗pe. Then Fn
2
(x, a)

is a PP on Fpe.
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Proof. Assume x1, x2 ∈ Fpe such that Fn
2
(x1, a) = Fn

2
(x2, a). Write x1 = y2

1, x2 = y2
2 for some

y1, y2 ∈ Fp2e . Further write y1 = z1 + a
z1

and y2 = z2 + a
z2

for some z1, z2 ∈ F∗p4e . Then we have

zn
1 +

( a

z1

)n
= Dn(y1, a) = Fn

2
(x1, a) = Fn

2
(x2, a) = Dn(y2, a) = zn

2 +
( a

z2

)n
.

Thus zn
1 = zn

2 or zn
1 = ( a

z2
)n. Since (n, p4e − 1) = 2, we have z1 = ±z2 or z1 = ± a

z2
. It follows

that y1 = ±y2, so x1 = x2.

Theorem 5.7. Let k > 0 be an integer such that (k, 2e) = 1 and let n = 3k+1
2 . Then Dn(1, x) is

a PP on F3e.

Proof. By [4, Lemma 2.6], (n, 34e−1) = 2. So by Lemma 5.6, Fn
2
(x, 1) is a PP on F3e . By (7) and

Lemma 5.5, we have Fn
2
(x2, 1) = Dn(x, 1) = −Dn(1, 1 − x2). Hence Fn

2
(x, 1) = −Dn(1, 1 − x).

Therefore Dn(1, x) is a PP on F3e .

The reversed Dickson PP in Theorem 5.7 does not arise from an APN function since n is even.

6 Necessary conditions for Dn(1, x) to be a PP

In this section we explore some necessary conditions on n for Dn(1, x) to be a PP on Fpe .
First note that Dn(1, 0) = 1. The values Dn(1, 1), n = 0, 1, . . . , can also be easily determined.

From the recursive equation




D0(1, 1) = 2,

D1(1, 1) = 1,

Dn(1, 1) = Dn−1(1, 1)−Dn−2(1, 1), n ≥ 2,

we have (D2(1, 1), . . . , D6(1, 1), D7(1, 1)) = (−1,−2,−1, 1, 2, 1). So the sequence {Dn(1, 1) : n =
0, 1, . . . } has period 6 and

Dn(1, 1) =





2 if n ≡ 0 (mod 6),
1 if n ≡ 1, 5 (mod 6),
−1 if n ≡ 2, 4 (mod 6),
−2 if n ≡ 3 (mod 6).

Proposition 6.1. Assume that Dn(1, x) is a PP on Fpe. If p = 2, then 3 | n. If p = 3 then 2 | n.
If p > 3, then (n, 6) 6= 1.

Proof. Compare Dn(1, 0) and Dn(1, 1).

Corollary 6.2. Assume that xn is an APN function on Fp2e. If p = 2, then 3 | n. If p = 3 then
2 | n. If p > 3, then (n, 6) 6= 1. In particular, xn is not a permutation of Fp2e.

Proposition 6.3. Assume that Dn(1, x) is a PP on Fpe. Then for every a ∈ Fp2e \ {0, 1} such
that a(1− a) ∈ Fpe and for every k ≥ 0, we have

n 6≡ pk (mod lcm(o(a), o(1− a))),

where o(a) is the multiplicative order of a in F∗p2e.
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Proof. Assume to the contrary that n ≡ pk (mod lcm(o(a), o(1 − a))) for some k ≥ 0 and a ∈
Fp2e \ {0, 1} such that a(1− a) ∈ Fpe . Then a(1− a) 6= 0 but

Dn(1, a(1− a)) = an + (1− a)n = apk
+ (1− a)pk

= 1 = Dn(1, 0),

which is a contradiction.

For each prime power pe, we define

L(pe) = {lcm(o(a), o(1− a)) : a ∈ Fp2e \ {0, 1}, a(1− a) ∈ Fpe}.
Note that if a ∈ Fp2e \Fpe with TrFp2e/Fpe (a) = ape

+a = 1, then a(1−a) ∈ Fpe and o(a) = o(1−a),

so that o(a) ∈ L(pe). Also note that if p is odd, then o(1
2) = o(2) ∈ L(pe). Consider L(pe) as

a partially ordered set with divisibility as the relation. Let L0(pe) denote the set of minimal
elements in L(pe). Then Proposition 6.3 can be restated as follows.

Proposition 6.3′. Assume that Dn(1, x) is a PP on Fpe. Then for every l ∈ L0(pe) and k ≥ 0,
n 6≡ pk (mod l).

The determination of the set L0(pe) seems to be an interesting problem. In Table 1 we list
the elements of L0(pe) for pe < 200.

7 Numerical results: Reversed Dickson PPs on Fpe with pe < 200

We did a computer search for all reversed Dickson PPs on Fpe with pe < 200. The results are
compiled in Table 2. With only one exception, all entries in Table 2 are covered by Theorem 4.4,
Corollary 5.2, Theorem 5.3 and Theorem 5.7. The exceptional entry has pe = 34 and n =
86. Table 2 suggests that the occurrence of reversed Dickson PPs on Fpe is highly predictable,
especially when e = 1. We make the following conjecture based on the evidence in Table 2.

Conjecture 7.1. Let p > 3 be a prime and let 1 ≤ n ≤ p2 − 1. Then Dn(1, x) is a PP on Fp if
and only if

n =





2, 2p, 3, 3p, p + 1, p + 2, 2p + 1 if p ≡ 1 (mod 12),
2, 2p, 3, 3p, p + 1 if p ≡ 5 (mod 12),
2, 2p, 3, 3p, p + 2, 2p + 1 if p ≡ 7 (mod 12),
2, 2p, 3, 3p if p ≡ 11 (mod 12).

We note that if n is one of the above values, then our previous work shows that Dn(1, x) is
indeed a PP on the field Fp. Moreover, from the discussion at the beginning of Section 6, we
know that if n ≡ 1, 5 (mod 6), then Dn(1, 0) = Dn(1, 1) = 1 so that Dn(1, x) is not a PP on Fp.

Appendix

8 Proofs of Theorems 3.1 and 3.2

In the proofs that follow, we will frequently make use of Lucas’s theorem on the congruence of
binomial coefficients. Let p be a prime and let α, β ≥ 0 be two integers with p-adic expansions
α = α0p

0 + α1p
1 + · · · , β = β0p

0 + β1p
1 + · · · , 0 ≤ αi, βi ≤ p− 1. Lucas’s theorem states that

(
α

β

)
≡

(
α0

β0

)(
α1

β1

)
· · · (mod p).
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Table 1: Elements of L0(pe), pe < 200

pe elements of L0(pe) p2e − 1
2 3 3
22 3 3 · 5
23 3, 7 32 · 7
24 3, 5 · 17 3 · 5 · 17
25 3, 31 3 · 11 · 31
26 3, 7 33 · 5 · 7 · 13
27 3, 127 3 · 43 · 127
3 2 23

32 2 24 · 5
33 2, 13 23 · 7 · 13
34 2 25 · 5 · 41
5 22, 2 · 3 23 · 3
52 22, 2 · 3 24 · 3 · 13
53 22, 2 · 3, 31 23 · 32 · 7 · 31
7 3, 24 24 · 3
72 3, 24, 23 · 52 25 · 3 · 52

11 5, 2 · 3 23 · 3 · 5
112 5, 2 · 3, 3 · 61, 23 · 61 24 · 3 · 5 · 61
13 2 · 3, 22 · 7 23 · 3 · 7
132 2 · 3, 22 · 7, 3 · 7 · 17, 5 · 7 · 17, 24 · 5 · 17 24 · 3 · 5 · 7 · 17
17 2 · 3, 23 25 · 32

19 2 · 3, 32 23 · 32 · 5
23 2 · 3, 11 24 · 3 · 11
29 2 · 3, 7 23 · 3 · 5 · 7
31 5, 2 · 3 26 · 3 · 5
37 2 · 3, 32, 3 · 19, 22 · 19 23 · 32 · 19
41 2 · 3, 22 · 5, 5 · 7, 23 · 7 24 · 3 · 5 · 7
43 2 · 3, 2 · 7, 3 · 7, 3 · 11, 7 · 11, 23 · 11 23 · 3 · 7 · 11
47 2 · 3, 23, 25 25 · 3 · 23
53 2 · 3, 13 23 · 33 · 13
59 2 · 3, 29 23 · 3 · 5 · 29
61 2 · 3, 3 · 5, 22 · 5, 3 · 31, 5 · 31, 23 · 31 23 · 3 · 5 · 31
67 2 · 3, 11, 23 · 17 23 · 3 · 11 · 17
71 2 · 3, 5 · 7, 24 · 5 24 · 32 · 5 · 7
73 2 · 3, 32, 22 · 37 24 · 32 · 37
79 2 · 3, 13 25 · 3 · 5 · 13
83 2 · 3, 41 23 · 3 · 7 · 41
89 2 · 3, 11, 24 · 5 24 · 32 · 5 · 11
97 2 · 3, 25, 22 · 72 26 · 3 · 72
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Table 1: continued

pe elements of L0(pe) p2e − 1
101 2 · 3, 52, 23 · 17, 2 · 5 · 17, 3 · 5 · 17 23 · 3 · 52 · 17
103 2 · 3, 17, 3 · 13, 24 · 13 24 · 3 · 13 · 17
107 2 · 3, 53 23 · 33 · 53
109 2 · 3, 33, 23 · 5 · 11, 32 · 5 · 11 23 · 33 · 5 · 11
113 2 · 3, 22 · 7, 22 · 19, 2 · 7 · 19, 3 · 7 · 19 25 · 3 · 7 · 19
127 2 · 3, 7, 28 28 · 32 · 7
131 2 · 3, 13, 2 · 5 · 11 23 · 3 · 5 · 11 · 13
137 2 · 3, 17 24 · 3 · 17 · 23
139 2 · 3, 23, 3 · 5 · 7 23 · 3 · 5 · 7 · 23
149 2 · 3, 37 23 · 3 · 52 · 37
151 2 · 3, 3 · 5, 52, 5 · 19 24 · 3 · 52 · 19
157 2 · 3, 3 · 13, 22 · 13, 3 · 79, 22 · 79, 13 · 79 23 · 3 · 13 · 79
163 2 · 3, 33, 23 · 41, 32 · 41 23 · 34 · 41
167 2 · 3, 83 24 · 3 · 7 · 83
173 2 · 3, 43, 23 · 29 23 · 3 · 29 · 43
179 2 · 3, 89 23 · 32 · 5 · 89
181 2 · 3, 32 · 5, 32 · 7, 3 · 5 · 13, 23 · 5 · 7, 5 · 7 · 13, 23 · 5 · 13, 23 · 7 · 13 23 · 32 · 5 · 7 · 13
191 2 · 3, 19, 26 · 5 27 · 3 · 5 · 19
193 2 · 3, 25, 3 · 97, 22 · 97 27 · 3 · 97
197 2 · 3, 22 · 7, 72, 32 · 7 23 · 32 · 72 · 11
199 2 · 3, 11 24 · 32 · 52 · 11
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Table 2: Reversed Dickson PPs Dn(1, x) on Fpe , pe < 200

pe n cyclotomic coset mod p2e − 1 reference
2 3 3 T4.4 I(i)
22 3 3, 6, 12, 9 T4.4 I(i)
23 3 3, 6, 12, 24, 48, 33 T4.4 I(i)
24 3 3, 6, 12, 24, 48, 96, 192, 129 T4.4 I(i)

9 9, 18, 36, 72, 144, 33, 66, 132 T4.4 I(i)
21 21, 42, 84, 168, 81, 162, 69, 138 T5.3
39 39, 78, 156, 57, 114, 228, 201, 147 T4.4 I(ii)

25 3 3, 6, 12, 24, 48, 96, 192, 384, 768, 513 T4.4 I(i)
9 9, 18, 36, 72, 144, 288, 576, 129, 258, 516 T4.4 I(i)
57 57, 114, 228, 456, 912, 801, 579, 135, 270, 540 T4.4 I(ii)
213 213, 426, 825, 681, 339, 678, 333, 666, 309, 618 T4.4 I(iii)

26 3 3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 2049 T4.4 I(i)
33 33, 66, 132, 264, 528, 1056, 2112, 129, 258, 516, 1032, 2064 T4.4 I(i)
69 69, 138, 276, 552, 1104, 2208, 321, 642, 1284, 2568, 1041, 2082 T5.3
159 159, 318, 636, 1272, 2544, 993, 1986, 3972, 3849, 3603, 3111, 2127 T4.4 I(ii)

27 3 3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 8193 T4.4 I(i)
9 9, 18, 36, 72, 144, 288, 576, 1152, 2304, 4608, 9216, 2049, 4098, 8196 T4.4 I(i)
33 33, 66, 132, 264, 528, 1056, 2112, 4224, 8448, 513, 1026, 2052,

4104, 8208 T4.4 I(i)
57 57, 114, 228, 456, 912, 1824, 3648, 7296, 14592, 12801, 9219, 2055,

4110, 8220 T4.4 I(ii)
543 543, 1086, 2172, 4344, 8688, 993, 1986, 3972, 7944, 15888, 15393,

14403, 12423, 8463 T4.4 I(ii)
3 2 2, 6 C5.2 (i)
32 2 2, 6, 18, 54 C5.2 (i)

10 10, 30 C5.2 (i)
14 14, 42, 46, 58 T5.7

33 2 2, 6, 18, 54, 162, 486 C5.2 (i)
10 10, 30, 90, 270, 82, 246 C5.2 (i)
122 122, 366, 370, 382, 418, 526 T5.7

34 2 2, 6, 18, 54, 162, 486, 1458, 4374 C5.2 (i)
14 14, 42, 126, 378, 1134, 3402, 3646, 4378 T5.7
82 82, 246, 738, 2214 C5.2 (i)
86 86, 258, 774, 2322, 406, 1218, 3654, 4402 ?
122 122, 366, 1098, 3294, 3322, 3406, 3658, 4414 T5.7
1094 1094, 3282, 3286, 3298, 3334, 3442, 3766, 4738 T5.7
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Table 2: continued

pe n cyclotomic coset mod p2e − 1 reference
5 2 2, 10 C5.2 (i)

3 3, 15 T4.4 II(i)
6 6 C5.2 (i)

52 2 2, 10, 50, 250 C5.2 (i)
3 3, 15, 75, 375 T4.4 II(i)
26 26, 130 C5.2 (i)
27 27, 135, 51, 255 T4.4 II(ii)
63 63, 315, 327, 387 T4.4 II(iii)

53 2 2, 10, 50, 250, 1250, 6250 C5.2 (i)
3 3, 15, 75, 375, 1875, 9375 T4.4 II(i)
6 6, 30, 150, 750, 3750, 3126 C5.2 (i)
26 26, 130, 650, 3250, 626, 3130 C5.2 (i)
126 126, 630, 3150 C5.2 (i)
1536 1563, 7815, 7827, 7887, 8187, 9687 T4.4 II(iii)

7 2 2, 14 C5.2 (i)
3 3, 21 T4.4 II(i)
9 9, 15 T4.4 II(ii)

72 2 2, 14, 98, 686 C5.2 (i)
3 3, 21, 147, 1029 T4.4 II(i)
50 50, 350 C5.2 (i)
51 51, 357, 99, 693 T4.4 II(ii)

11 2 2, 22 C5.2 (i)
3 3, 33 T4.4 II(i)

112 2 2, 22, 242, 2662 C5.2 (i)
3 3, 33, 363, 3993 T4.4 II(i)
122 122, 1342 C5.2 (i)
123 123,1353,243,2673 T4.4 II(i)

13 2 2, 26 C5.2 (i)
3 3, 39 T4.4 II(i)
14 14 C5.2 (i)
15 15, 17 T4.4 II(ii)

132 2 2, 26, 338, 4394 C5.2 (i)
3 3, 39, 507, 6591 T4.4 II(i)
170 170, 2210 C5.2 (i)
171 171, 2223, 339, 4407 T4.4 II(ii)
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Table 2: continued

e = 1, 17 ≤ p ≤ 199
p n cyclotomic coset mod p2 − 1 reference

p ≡ −1 (mod 12) 2 2, 2p C5.2 (i)
3 3, 3p T4.4 II(i)

p ≡ 5 (mod 12) 2 2, 2p C5.2 (i)
3 3, 3p T4.4 II(i)
p + 1 p + 1 C5.2 (i)

p ≡ 7 (mod 12) 2 2, 2p C5.2 (i)
3 3, 3p T4.4 II(i)
p + 2 p + 2, 2p + 1 T4.4 II(ii)

p ≡ 1 (mod 12) 2 2, 2p C5.2 (i)
3 3, 3p T4.4 II(i)
p + 1 p + 1 C5.2 (i)
p + 2 p + 2, 2p + 1 T4.4 II(ii)

We start with a technical lemma.

Lemma 8.1. Let n1 = α1 + β1p
e, n2 = α2 + β2p

e, 0 ≤ α1, α2, β1, β2 ≤ pe − 1. Then

Dn1(1, x) ≡ Dn2(1, x) (mod xpe − x) (8)

if and only if

xα1+β1 + (1− x)α1+β1 ≡ xα2+β2 + (1− x)α2+β2 (mod xpe − x) (9)

and
xα1(1− x)β1 + xβ1(1− x)α1 ≡ xα2(1− x)β2 + xβ2(1− x)α2 (mod xpe

+ x− 1). (10)

Moreover, (9) holds if and only if

(i) α1 = β1 = α2 = β2 = 0 or

(ii) α1 + β1 > 0, α2 + β2 > 0 and α1 + β1 ≡ α2 + β2 (mod pe − 1) or

(iii) α1 +β1 > 0, α2 +β2 > 0, α1 +β1 ≡ pk, α2 +β2 ≡ pl (mod pe−1) for some 0 ≤ k, l ≤ e−1,
k 6= l;

(10) holds if and only if

(−1)β1

(
α1

α1 + β1

)
+ (−1)α1

(
β1

α1 + β1

)
− (−1)β1

(
α1

α1 + β1 − pe

)
− (−1)α1

(
β1

α1 + β1 − pe

)

≡ (−1)β2

(
α2

α2 + β2

)
+ (−1)α2

(
β2

α2 + β2

)
− (−1)β2

(
α2

α2 + β2 − pe

)
− (−1)α2

(
β2

α2 + β2 − pe

)

(mod p)
(11)
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and

(−1)β1

(
α1

α1 + β1 − i

)
+ (−1)α1

(
β1

α1 + β1 − i

)

− (−1)β1

(
α1 + 1

α1 + β1 + 1− pe − i

)
− (−1)α1

(
β1 + 1

α1 + β1 + 1− pe − i

)

≡ (−1)β2

(
α2

α2 + β2 − i

)
+ (−1)α2

(
β2

α2 + β2 − i

)

− (−1)β2

(
α2 + 1

α2 + β2 + 1− pe − i

)
− (−1)α2

(
β2 + 1

α2 + β2 + 1− pe − i

)
(mod p), 1 ≤ i ≤ pe − 1.

(12)

Proof. 1◦ Let x ∈ Fp2e . By Lemma 4.1, x(1− x) ∈ Fpe if and only if xpe
= x or xpe

= 1− x. For
s = 1, 2, we have

Dns(1, x(1− x)) = xns + (1− x)ns =

{
xαs+βs + (1− x)αs+βs if xpe

= x,

xαs(1− x)βs + xβs(1− x)αs if xpe
= 1− x.

Hence (8) holds if and only if both (9) and (10) hold.

2◦ Obviously, any of (i), (ii), (iii) implies (9). Now assume that none of (i), (ii), (iii) is satisfied.
We show that (9) fails. If α1 + β1 = 0 but α2 + β2 > 0, then xα1+β1 + (1 − x)α1+β1 = 2 but
xα2+β2 + (1− x)α2+β2 ≡ 1 6≡ 2 (mod x), so (9) fails. Assume α1 + β1 > 0 and α2 + β2 > 0. Write
αs + βs ≡ γs (mod pe − 1) with 1 ≤ γs ≤ pe − 1, s = 1, 2. If γ1 is a power of p but γ2 is not a
power of p, then

xγ1 + (1− x)γ1 = 1 6≡ xγ2 + (1− x)γ2 (mod xpe − x),

so (9) fails. If both γ1 and γ2 are not powers of p, write γs = a
(s)
0 p0+· · ·+a

(s)
e−1p

e−1, 0 ≤ a
(s)
t ≤ p−1.

Since γ1 6= γ2, we have a
(1)
t 6= a

(2)
t for some 0 ≤ t ≤ e− 1. The coefficient of xpt

in xγs + (1− x)γs

is −a
(s)
t , s = 1, 2. So (9) also fails.
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3◦ For 0 ≤ α, β ≤ pe − 1, we have

xα(1− x)β

=xα
β∑

i=0

(−1)i

(
β

i

)
xi

≡
pe−α−1∑

i=0

(−1)i

(
β

i

)
xα+i +

β∑

i=pe−α

(−1)i

(
β

i

)
xα+i−pe

(1− x) (mod xpe
+ x− 1)

=
pe−1∑

i=α

(−1)i−α

(
β

i− α

)
xi + (1− x)

α+β−pe∑

i=0

(−1)i+pe−α

(
β

i + pe − α

)
xi

=
pe−1∑

i=0

(−1)i−α

(
β

i− α

)
xi +

pe−2∑

i=0

(−1)i+1−α

(
β

i + pe − α

)
xi −

pe−1∑

i=1

(−1)i−α

(
β

i + pe − α− 1

)
xi

=
pe−1∑

i=0

(−1)i−α

(
β

i− α

)
xi +

pe−1∑

i=1

(−1)i+1−α
[( β

i + pe − α

)
+

(
β

i + pe − α− 1

)]
xi + (−1)1−α

(
β

pe − α

)

=(−1)−α

(
β

−α

)
+ (−1)1−α

(
β

pe − α

)
+

pe−1∑

i=1

(−1)i−α
[( β

i− α

)
−

(
β + 1

i + pe − α

)]
xi

=(−1)−α

(
β

α + β

)
− (−1)−α

(
β

α + β − pe

)
+

pe−1∑

i=1

(−1)i−α
[( β

α + β − i

)
−

(
β + 1

α + β + 1− pe − i

)]
xi.

Hence (10) holds if and only if both (11) and (12) do.

Proof of Theorem 3.1. The subsets listed in Theorem 3.1 form a partition of {0, 1, . . . , 22e − 1};
they will be referred to as “parts”. Clearly, if n1, n2 belong to the same part, then n1 ∼ n2. Now
assume that n1 ∼ n2. We want to show that n1 and n2 belong to the same part.

Write ns = αs + βs2e, 0 ≤ αs, βs ≤ 2e − 1, s = 1, 2. Then one of the conditions (i) – (iii) in
Lemma 8.1 holds.

Case 1. α1 = β1 = α2 = β2 = 0, and we are done.
Case 2. α1 + β1 > 0, α2 + β2 > 0 and α1 + β1 ≡ α2 + β2 (mod 2e − 1).
Case 2.1. Assume that α1 + β1 = α2 + β2. Without loss of generality, assume α1 =

min{α1, β1, α2, β2}. Then by (10), we have

(1− x)β1−α1 + xβ1−α1 ≡ xα2−α1(1− x)β2−α1 + xβ2−α1(1− x)α2−α1 (mod x2e
+ x− 1).

In the above equation, both sides have degree ≤ β1 − α1 < 2e. Thus

(1− x)β1−α1 + xβ1−α1 = xα2−α1(1− x)β2−α1 + xβ2−α1(1− x)α2−α1 . (13)

Comparing the x-adic orders of the terms in (13), one can easily see that (α1, β1) = (α2, β2) or
(β2, α2).

Case 2.2. Assume that α1 + β1 6= α2 + β2. Without loss of generality, assume α1 + β1 =
α2 + β2 + 2e − 1. Let i = α1 + β1 − 2e = α2 + β2 − 1. Then 0 ≤ i ≤ 2e − 2. If i = 0, then
α1 + β1 = 2e and α2 + β2 = 1. Then both sides of (10) have degree < 2e. So (10) becomes

xα1(1− x)β1 + xβ1(1− x)α1 = xα2(1− x)β2 + xβ2(1− x)α2 .
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One of α2 and β2 is 0 (since α2 +β2 = 1). It follows (by comparing the x-adic orders of the terms
in the above equation) that one of α1 and β1 is 0, say α1 = 0. Then β1 = 2e > 2e − 1, which is a
contradiction. So i ≥ 1. By (12), we have

(
α1 + 1

1

)
+

(
β1 + 1

1

)
≡

(
α2

1

)
+

(
β2

1

)
(mod 2),

i.e., α1 + β1 ≡ α2 + β2 (mod 2), which is a contradiction.
Case 3. α1 + β1 > 0, α2 + β2 > 0, α1 + β1 ≡ 2k, α2 + β2 ≡ 2l (mod 2e − 1) for some

0 ≤ k, l ≤ e− 1, k 6= l.
By considering 2e−kn1 and 2e−kn2 (modulo 22e − 1) instead of n1 and n2 we may assume

k = 0. (See Proposition 2.1 (ii) (iii).) Therefore α1 + β1 = 1 or 2e.
Case 3.1. Assume α1 + β1 = 1. Then n1 = 1 or 2e; in both cases, Dn1(1, x) = 1. Thus

Dn22e−l(1, x) =
[
Dn2(1, x)

]2e−l

≡ [
Dn1(1, x)

]2e−l

(mod x22e − x)
= 1
= Dn1(1, x).

Note that n22e−l ≡ α′2 + β′22
e (mod 2e − 1), where 0 ≤ α′2, β

′
2 ≤ 2e − 1 and α′2 + β′2 ≡ 1

(mod 2e − 1). Thus by Case 2, n22e−l (mod 2e − 1) and n1 (= 1 or 2e) are in the same part. So
n2p

e−l (mod 2e − 1) is a power of 2, hence n2 is a power of 2. Therefore n2 and n1 are in the
same part.

Case 3.2. Assume α1 + β1 = 2e. Then α2β − 2 = 2l or 2l + 2e − 1.
If α2 + β2 = 2l, then both sides of (10) have degree < 2e, so (10) becomes

xα1(1− x)β1 + xβ1(1− x)α1 = xα2(1− x)β2 + xβ2(1− x)α2 . (14)

Without loss of generality, assume α2 = min{α1, β1, α2, β2}. By comparing the x-adic orders of
the terms in (14), we see that min{α1, β1, β2} = α2. If α2 = β2, then (14) becomes xα1(1−x)β1 +
xβ1(1 − x)α1 = 0, which forces α1 = β1. Then n1 = (2e + 1)2e−1 and n2 = (2e + 1)2l−1, which
belong to the same part. If α2 = α1 or β1, say α2 = α1, then (14) gives

(1− x)β1−α1 + xβ1−α1 = (1− x)β2−α1 + xβ2−α1 .

By Lemma 8.1 (i) – (iii), we have β1 − α1 = β2 − α1 or both β1 − α− 1 and β2 − α1 are powers
of 2. If β1 = β2, then α1 + β1 = α2 + β2, which is a contradiction. If β1 − α1 = 2u, β2 − α1 = 2v,
0 ≤ u, v ≤ e− 1, u 6= v, then

2e − 2u = α1 + β1 − (β1 − α1) = 2α1 = α2 + β2 − (β2 − α1) = 2l − 2v,

which is impossible.
So we may assume α2 + β2 = 2l + 2e − 1.
We claim that α2 < 2e − 1 and β2 < 2e − 1. Assume to the contrary that α2 = 2e − 1 and

β2 = 2l. Then by (11), we have

0 ≡
(

2e − 1
2l − 1

)
+

(
2l

2l − 1

)
(mod 2),
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which is a contradiction. So the claim is proved.
Letting i = 2l in (12), we get

(
α1

2e − 2k

)
+

(
β1

2e − 2l

)
≡ 0 (mod 2). (15)

Letting i = 2l − 1 in (12), we have
(

α1

2e − 2l + 1

)
+

(
β1

2e − 2l + 1

)
≡

(
α2 + 1

1

)
+

(
β2 + 1

1

)
≡ 1 (mod 2).

Without loss of generality, assume
( α1

2e−2l+1

) ≡ 1 (mod 2).
In the following, the notation 0 under 1 denotes the fact that 1 is the coefficient of 20 and

similarly, and l under 1 denotes the fact that 1 is the coefficient of 2l.
Since

2e − 2l + 1 = (1
0

0 · · · 0 1
l
· · · 1)P,

where

P =




20

...
2e−1


 ,

we must have

α1 = (1
0
, a1, · · · , al−1, 1

l
, · · · , 1)P, a1, . . . , al−1 ∈ {0, 1}. (16)

Since α1 + β1 = 2e, we have

β1 = (1
0
, 1− a1, · · · , 1− al−1, 0

l
, · · · , 0)P. (17)

Since
2e − 2l = (0

0
· · · 0 1

l
· · · 1)P,

it follows from (16) and (17) that
(

α1

2e − 2l

)
+

(
β1

2e − 2l

)
≡ 1 (mod 2),

which is a contradiction to (15).

Proof of Theorem 3.2. The subsets listed in Theorem 3.2 form a partition of {0, 1, . . . , p2e − 1};
they will be referred to as “parts”. Clearly, if n1, n2 belong the same part, then n1 ∼ n2. Now
assume that n1 ∼ n2. We want to show that n1 and n2 belong to the same part.

Write ns = αs + βsp
e, 0 ≤ αs, βs ≤ pe− 1. Then one of the conditions (i) – (iii) in Lemma 8.1

holds.
Case 1. α1 = β1 = α2 = β2 = 0, and we are done.
Case 2. α1 + β1 > 0, α2 + β2 > 0 and α1 + β1 ≡ α2 + β2 (mod pe − 1).
Case 2.1. Assume that α1 + β1 = α2 + β2. The proof is the same as in the p = 2 case (Proof

of Theorem 3.1 Case 2.1).
Case 2.2. Assume that α1 + β1 6= α2 + β2. Without loss of generality, assume α1 + β1 =

α2 + β2 + pe − 1. Let i0 = α1 + β1 − pe = α2 + β2 − 1. Then 0 ≤ i0 ≤ pe − 2. By the same
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argument in the p = 2 case (Proof of Theorem 3.1 Case 2.2), we have i0 > 0. Letting i = i0 in
(12), we have

−(−1)β1(α1 + 1)− (−1)α1(β1 + 1) ≡ (−1)β2α2 + (−1)α2β2 (mod p). (18)

Letting i = i0 + 1 in (12), we have

(−1)β1

(
α1

pe − 1

)
+ (−1)α1

(
β1

pe − 1

)
− (−1)β1 − (−1)α1 ≡ (−1)β2 + (−1)α2 (mod p). (19)

We claim that α1 < pe − 1 and β1 < pe − 1. Assume to the contrary that α1 = pe − 1. If
β1 = pe − 1, then α2 + β2 = α1 + β1 − (pe − 1) = pe − 1 is even. By (18), we have α2 + β2 ≡ 0
(mod p), which is false since α2 + β2 = pe − 1. So β1 < pe − 1. Now (19) gives

−1 ≡ (−1)β2 + (−1)α2 (mod p).

Thus p = 3 and both α2 and β2 are even. Since α2 + β2 = β1 < pe − 1, we have α2 + β2 ≤ pe − 3.
We have

(1− x)α2+β2+2 + xα2+β2+2

≡xpe
(1− x)α2+β2+1 + xα2+β2+1(1− x)pe

(mod xpe
+ x− 1)

=x(1− x)
[
xα1(1− x)β1 + xβ1(1− x)α1

]

≡x(1− x)
[
xα2(1− x)β2 + xβ2(1− x)α2

]
(mod xpe

+ x− 1) (by (10))

=xα2+1(1− x)β2+1 + xβ2+1(1− x)α2+1.

Since α2 + β2 + 2 ≤ pe − 1, we must have

(1− x)α2+β2+2 + xα2+β2+2 = xα2+1(1− x)β2+1 + xβ2+1(1− x)α2+1,

which is clearly false. Thus the claim is proved.
Now equation (19) becomes

−(−1)β1 − (−1)α1 ≡ (−1)β2 + (−1)α2 (mod p). (20)

We claim that α1 + β1 is odd. Assume to the contrary that α1 + β1 is even. Then by (20), we
have β2 = α2 ≡ β1 + 1 (mod 2). Thus we have

α1 + β1 + 2 ≡ α2 + β2 (mod p) (by (18))
= α1 + β1 − pe + 1,

which is a contradiction. So the claim is proved. It follows from (20) that α2 + β2 is also odd.
Now equation (18) becomes

−(−1)β1α1 − (−1)α1β1 ≡ (−1)β2α2 + (−1)α2β2 (mod p). (21)

Let i = i0− 1 in (12). (Note that i0− 1 ≥ 1 since i0 = α2 + β2− 1 is positive and even.) We have

−(−1)β1

(
α1 + 1

2

)
− (−1)α1

(
β1 + 1

2

)
≡ (−1)β2

(
α2

2

)
+ (−1)α2

(
β2

2

)
(mod p),
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i.e.,

−(−1)β1(α1 + 1)α1 − (−1)α1(β1 + 1)β1 ≡ (−1)β2α2(α2 − 1) + (−1)α2β2(β2 − 1) (mod p). (22)

We claim that α1 ≡ β1 (mod p) and α2 ≡ β2 (mod p). In (21) and (22), we may assume
without loss of generality that β1 ≡ α2 (mod 2). Then (21) becomes α1− β1 ≡ α2− β2 (mod p).
On the other hand, α1 + β1 ≡ α2 + β2 − 1 (mod p). So 2α1 ≡ 2α2 − 1 (mod p), i.e., α1 + 1

2 ≡ α2

(mod p). It follows that β1 + 1
2 ≡ β2 (mod p). Meanwhile, equation (22) gives

(
α1 +

1
2

)2
−

(
β +

1
2

)2
≡ α2

2 − α2 − β2
2 + β2 (mod p).

Thus we have α2 ≡ β2 (mod p), from which we also have α1 ≡ β1 (mod p). For s = 1, 2, write

αs = a
(s)
0 + a

(s)
1 p + · · ·+ a

(s)
e−1p

e−1,

βs = b
(s)
0 + b

(s)
1 p + · · ·+ b

(s)
e−1p

e−1,

where a
(s)
j , b

(s)
j ∈ {0, . . . , p− 1}, 1 ≤ s ≤ 2, 0 ≤ j ≤ e− 1. Then we have

a
(s)
0 = b

(s)
0 , s = 1, 2. (23)

Now consider n′1 = n1p and n′2 = n2p instead of n1 and n2. Note that for s = 1, 2, n′s ≡
α′s + β′spe (mod p2e − 1), where

α′s = b
(s)
e−1 + a

(s)
0 p + · · ·+ a

(s)
e−2p

e−1,

β′s = a
(s)
e−1 + b

(s)
0 p + · · ·+ b

(s)
e−2p

e−1.

Clearly, n′1 and n′2 are still in Case 2. If they are in Case 2.1, then they are in the same part. It
follows that n1 and n2 are in the same part and we are done. So we may assume that n′1 and
n′2 are in Case 2.2. By (23) (applied to n′1 and n′2), we have a

(s)
e−1 = b

(s)
e−1, s = 1, 2. Continuing

this way, we have a
(s)
j = b

(s)
j for all 0 ≤ j ≤ e − 1, s = 1, 2, i.e., αs = βs, s = 1, 2. Since

α1 + β1 = α2 + β2 + pe − 1, we must have α1 = β1 = α2 + pe−1
2 = β2 + pe−1

2 .
Now (10) gives

[
x(1− x)

] pe−1
2 ≡ 1 (mod xpe

+ x− 1),

which is impossible.
Case 3. α1 + β1 > 0, α2 + β2 > 0, α1 + β1 ≡ pk (mod pe − 1), α2 + β2 ≡ pl (mod pe − 1) for

some 0 ≤ k, l ≤ e− 1, k 6= l.
By considering pe−in1 and pe−in2 (modulo p2e − 1) instead of n1 and n2, we may assume

α1 + β1 ≡ 1 (mod pe − 1). So α1 + β1 = 1 or pe.
Case 3.1. α1 + β1 = 1. The proof is identical to the p = 2 case (Proof of Theorem 3.1, Case

3.1).
Case 3.2. α1 + β1 = pe. Then α2 + β2 = pl or pl + pe − 1 for some 0 < l ≤ e− 1. We claim

that α2 +β2 = pl +pe−1. The proof of this claim is almost identical to the proof in the p = 2 case
(Proof of Theorem 3.1, Case 3.1) and is thus omitted. (We remind the reader that the possibility
that α2 = β2 in the p = 2 case does not occur in the current situation since α2 + β2 is odd.)

We further claim that α2 < pe − 1 and β2 < pe − 1. Again, the proof is the same as in the
p = 2 case (Proof of Theorem 3.1, Case 3.2).
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Letting i = pl in (12), we obtain

(−1)β1

(
α1

pe − pl

)
+ (−1)α1

(
β1

pe − pl

)
≡ 0 (mod p),

i.e., (
α1

pe − pl

)
≡

(
β1

pe − pl

)
(mod p). (24)

Letting i = pl − 1 in(12), we have

(−1)β1

(
α1

pe − pl + 1

)
+ (−1)α1

(
β1

pe − pl + 1

)
≡ −(−1)β2α2 − (−1)α2β2 (mod p).

i.e.,

±(α2 − β2) ≡
(

α1

pe − pl + 1

)
−

(
β1

pe − pl + 1

)
(mod p). (25)

We claim that in (25),
(

α1

pe − pl + 1

)
≡

(
β1

pe − pl + 1

)
≡ 0 (mod p). (26)

Note that
pe − pl + 1 = (1

0
, 0 · · · 0, p− 1

l
, · · · , p− 1)P,

where

P =




p0

...
pe−1


 .

To prove (26), it suffices to show that

α1 6= (∗, · · · ∗, p− 1
l

, · · · , p− 1)P, β1 6= (∗, · · · ∗, p− 1
l

, · · · , p− 1)P. (27)

Assume to the contrary that

α1 = (∗, · · · ∗, p− 1
l

, · · · , p− 1)P.

Since α1 + β1 = pe,
β1 6= (∗, · · · ∗, p− 1

l
, · · · , p− 1)P.

Then
( α1

pe−pl

) ≡ 1 (mod p) and
( β1

pe−pl

) ≡ 0 (mod p), which is a contradiction to (24). So (26)
is proved. Now (25) gives α2 ≡ β2 (mod p). Since α2 + β2 ≡ −1 (mod p), we must have
α2 ≡ β2 ≡ p−1

2 (mod p), i.e.,

α2 = (p−1
2 , ∗, . . . , ∗)P,

β2 = (p−1
2 , ∗, . . . , ∗)P.
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We now use induction to prove that




α2 = (p−1
2 , · · · ,

l−1
p−1
2 , ∗, . . . , ∗)P,

β2 = (p−1
2 , · · · , p−1

2
l−1

, ∗, . . . , ∗)P.

(28)

Let 0 < t < l and let i = pl − pt in (12). We have

(−1)β1

(
α1

pe − pl + pt

)
+(−1)α1

(
β1

pe − pl + pt

)
≡ −(−1)β2

(
α2 + 1

pt

)
− (−1)α2

(
β2 + 1

pt

)
(mod p).

(29)
Note that

pe − pl + pt = (0, · · · , 0, 1
t
, 0, · · · , 0, p− 1

l
, · · · , p− 1)P.

So by (27), (
α1

pe − pl + pt

)
≡

(
β1

pe − pl + pt

)
≡ 0 (mod p).

Thus (29) gives (
α2 + 1

pt

)
≡

(
β2 + 1

pt

)
(mod p),

i.e., (
α2

pt

)
+

(
α2

pt − 1

)
≡

(
β2

pt

)
+

(
β2

pt − 1

)
(mod p).

By the induction hypothesis,

α2 = (p−1
2 , · · · ,

t−1
p−1
2 , ∗, . . . , ∗)P,

β2 = (p−1
2 , · · · , p−1

2
t−1

, ∗, . . . , ∗)P,

which implies (
α2

pt − 1

)
≡

(
β2

pt − 1

)
≡ 0 (mod p).

So we have (
α2

pt

)
≡

(
β2

pt

)
(mod p). (30)

Write

α2 = (p−1
2 , · · · ,

t−1
p−1
2 , a, ∗, . . . , ∗)P,

β2 = (p−1
2 , · · · , p−1

2
t−1

, b, ∗, . . . , ∗)P.

We have {
a = b (by (30)),
a + b = p− 1 (since α2 + β2 = pl − 1 + pe).

So a = b = p−1
2 and the induction is complete.
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Next, we consider n1p
e−l and n2p

e−l. Write n1p
e−l ≡ α′1 + β′1p

e (mod p2e − 1) and n2p
e−l ≡

α′2 + β′2p
e (mod p2e − 1), where 0 ≤ α′s, β′s ≤ pe − 1, s = 1, 2. It is easy to see that α′2 + β′2 = pe

and α′1 +β′1 ≡ pe−l (mod pe− 1). By the remark at the beginning of Case 3.2, we have α′1 +β′1 =
pe−l + pe − 1. Therefore, by (28) (applied to n2p

e−l and n1p
e−l), we have

α′1 = (p−1
2 , · · · ,

e−l−1
p−1
2 , ∗, . . . , ∗)P,

β′1 = (p−1
2 , · · · , p−1

2
e−l−1

, ∗, . . . , ∗)P,

which imply that 



α1 = (∗, . . . , ∗,
l

p−1
2 , · · · , p−1

2 )P,

β1 = (∗, . . . , ∗, p−1
2
l

, · · · , p−1
2 )P.

(31)

Let l < t ≤ e− 1 and let i = pe − 1 + pl − pt in (12). We have

(−1)β1

(
α1

1 + pt − pl

)
+ (−1)α1

(
β1

1 + pt − pl

)
≡ (−1)β2

(
α2

pt

)
+ (−1)α2

(
β2

pt

)
(mod p). (32)

Note that
1 + pt − pl = (1, 0, · · · , 0, p− 1

l
, · · · , p− 1

t−1
, 0, · · · , 0)P.

It follows from (31) that
(

α1

1 + pt − pl

)
≡

(
β1

1 + pt − pl

)
(mod p). (33)

Write

α2 = (p−1
2 , · · · , p−1

2 ,
l∗, . . . ,

t
a, · · · , ∗)P,

β2 = (p−1
2 , · · · , p−1

2 , ∗
l
, . . . , b

t
, · · · , ∗)P.

Then (32) and (33) give a = b. Since α2 + β2 = pl − 1 + pe, we have a + b = p − 1 or p, so we
must have a = b = p−1

2 . Therefore we have proved that





α2 = (p−1
2 , . . . , p−1

2 ,
l
w, p−1

2 , · · · , p−1
2 )P,

β2 = (p−1
2 , . . . , p−1

2 , z
l
, p−1

2 , · · · , p−1
2 )P

for some w, z ∈ {0, . . . , p− 1}. By considering n1p
e−l and n2p

e−l, we also have




α1 = (u, p−1
2 , · · · , p−1

2 )P,

β1 = (v, p−1
2 , · · · , p−1

2 )P

for some u, v ∈ {0, . . . , p− 1}.
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Letting i = pe − 1 in (12), we have

(−1)β1α1 + (−1)α1β1 ≡ (−1)β2

(
α2

pl

)
+ (−1)α2

(
β2

pl

)
(mod p),

i.e.,
u− v ≡ ±(w − z) (mod p).

We also have u + v = p = w + z (since α1 + β1 = pe and α2 + β2 = pl − 1 + pe). Thus
{

u = w,

v = z = p− u,
or

{
u = z,

v = w = p− u.
(34)

The proof will be complete if we can show that u = p−1
2 or p+1

2 . With this claim, we have
{α1, β1} = {pe−1

2 , pe−1
2 + 1} and {α2, β2} = {pe−1

2 , pe−1
2 + pl}. Then n1 = p2e−1

2 + 1 or p2e−1
2 + pe

and n2 = p2e−1
2 + pl or p2e−1

2 + pe+l, so n1 and n2 belong to the same part.
First note that by (10) and (34), we have

xu− p−1
2 (1− x)−u+ p+1

2 + x−u+ p+1
2 (1− x)u− p−1

2

≡
[
xu− p−1

2 (1− x)−u+ p+1
2 + x−u+ p+1

2 (1− x)u− p−1
2

]pl

(mod xpe
+ x− 1).

(35)

(Since (x(1 − x), xpe
+ x − 1) = 1, possible negative exponents in the above do not cause any

problem.) Assume to the contrary that u < p−1
2 or u > p+1

2 , say, u < p−1
2 . Rewrite (35) as

[
xu− p−1

2 (1− x)−u+ p+1
2 + x−u+ p+1

2 (1− x)u− p−1
2

]
[x(1− x)](

p−1
2
−u)pl

≡ [
(1− x)p−2u + xp−2u

]pl

(mod xpe
+ x− 1).

(36)

Both sides of (36) are polynomials of degree < pe, hence they are equal, i.e.,

x( p−1
2
−u)(pl−1)(1− x)(

p−1
2
−u)(pl+1)+1 + x( p−1

2
−u)(pl+1)+1(1− x)(

p−1
2
−u)(pl−1)

=(1− x)(p−2u)pl
+ x(p−2u)pl

.

The above equation implies that x | (1 − x), which is a contradiction. This completes the proof
of the theorem.
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