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Summary. Let p(n) denote the number of overpartitions of n. Recently, a number of
congruences modulo 5 and powers of 3 for p(n) were established by a number of au-
thors. In particular, Treneer proved that the generating function for p(5n) modulo 5 is
Yoo b(Bn)g" = (¢ 9)%./(¢%;¢*)3, (mod 5). In this paper, employing elementary methods,
we establish the generating function of p(5n) which yields the congruence due to Treneer.
Furthermore, we prove some new congruences modulo 5 and 9 for p(n) by utilizing the fact
that the generating functions for p(5n) modulo 5 and for p(3n) modulo 9 are eigenforms
for half-integral weight Hecke operators.

1. Introduction. Recall that an overpartition of an integer is a partition
in which the first occurrence of a part may be overlined. For instance, there
are eight overpartitions of 3:

3,3, 2+1,24+1,2+1,2+1, 1+1+1, I+1+1.

As usual, let p(n) denote the number of overpartitions of n, and define p(0)
to be 1. Therefore, p(3) = 8. Since its introduction in [7], the overpartition
function has been very popular, and has led to a number of studies in ¢-
series, partition theory, number theory, modular and mock modular forms.
The generating function for p(n) was given by Corteel and Lovejoy [7]:
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where
oo

(a3 ) = [ (1 — ag™).
n=0
Recently, a number of congruences modulo powers of 2, 3 and 5 for
p(n) have been discovered. For congruences modulo powers of 2, we refer
the reader to [3], 9, 12 17, 21, 23]. For congruences modulo powers of 3,
Hirschhorn and Sellers [13] proved that for n, 5 > 0,

(1.2) p(9°(27n + 18)) = 0 (mod 3).

Congruences (1.2)) were generalized by Lovejoy and Osburn [16]. Moreover,
Xia [20] and Xia and Yao [2I] established congruences modulo 9 and 27 for
p(n). In a recent paper, Chen and Xia [5] proved that

(1.3) p(40n + 35) = 0 (mod 40)

by using the (p, k)-parametrization of theta functions, which confirmed a
conjecture given by Hirschhorn and Sellers [12]. Moreover, Lin [I5] presented
a new proof of . Hirschhorn [I0] presented two simple proofs of .
Earlier, by utilizing half-integral weight modular forms, Treneer [I8] proved
that

- . +\6
(1.4) Zﬁ(5n>qn _ Z (_1>Cb+y+qu2+y2+z2 = M (mod 5).
n=0

2. 2)3
x,y,2€Z (q 4 )OO
She used this to show that for a prime p such that p =4 (mod 5),
(1.5) (5p°n) = 0 (mod 5)

for all n coprime to p. Based on (|1.4), many congruences modulo 5 for p(n)
have been proved. Chen, Sun, Wang and Zhang [4] generalized (1.3) by
proving that for n, k > 0,

(1.6) p(4%(40n + 35)) = 0 (mod 5).

Moreover, they proved several infinite families of congruences modulo 5 for
p(n); one of them is

(1.7) p(5 x 4¥p*n) = 0 (mod 5)

where n, k are nonnegative integers, p is a prime with p = 3 (mod 5) and
(77") = —1. Here (%) denotes the Legendre symbol, which is defined by

1 if a is a quadratic residue modulo p and p 1 a,

(a) =40 ifp|a,
p

—1 if a is a nonquadratic residue modulo p.

Wang [19] gave a proof of (1.6) and established many congruences modulo 5
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for p(n). Very recently, Dou and Lin [8] proved that for n > 0,
p(80n + i) =0 (mod 5),

where i € {8,52,68,72}. Hirschhorn [I1] gave a simple proof of the above
congruence.

The aim of this paper is to establish the generating function for p(5n) via
elementary means and to prove new infinite families of congruences modulo 5
and 9 for p(n) by using the fact that the generating functions for p(5n)
modulo 5 and for p(3n) modulo 9 are half-integral weight modular forms.

The main results of this paper can be stated as follows.

THEOREM 1.1. We have

(q *)3 (4% “ *)ac
1.8 p(5n)q
(18) Z (3 0%(¢":¢") o0
(4% 4%)a0 (4% q) L 5@ ) (@ q)
(60)35(a"% ") (698 (d"%:¢")%
Note that ((1.8) implies (|1.4) after using the congruence
(4:9)% = (4% ¢°)oo (mod 5).
THEOREM 1.2. Letn > 1, k > 0, a > 0 be integers with (%) = —1,
where p > 3 is a prime with p=1,2,3 (mod 5).
(1) If p=1 (mod 5), then p(5 x 4¥pl%+4n) =0 (mod 5).
(2) If p=2 (mod 5), then p(5 x 4¥pB*+in) =0 (mod 5).
(3) If p=3 (mod 5), then p(5 x 4¥pB*+2n) = 0 (mod 5).
Note that if we set &« = 0 and p = 3 (mod 5) in Theorem we

get (1.7). Theorem implies many congruences modulo 5 for p(n). For
example, setting k = o = 0 and p = 7, we see that for n > 0,

(5 x 7™ (7n 4 1)) = 0 (mod 5),

where i € {1,2,4}.

THEOREM 1.3. Let p be a prime with p =4 (mod 5). For n,k,a >0, if
p1n, then
(1.9) p(5 x 4kp*e+3n) = 0 (mod 5).

If we take k = a = 0 in (1.9, we obtain (|1.5)). It should be noted that
Wang [19] proved that for n,a > 0, if p = 4 (mod 5) is a prime with p { n,
then

p(5p%*T™n) = 0 (mod 5),
which is a special case of (1.9)).

THEOREM 1.4. Let p be an odd prime and let n, k, o be nonnegative in-
tegers.
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(1) Ifp=1 (mod 5), then p(4¥p'%(40n + 35)) = 0 (mod 5).
(2) If p= =42 (mod 5), then p(4¥p8*(40n + 35)) = 0 (mod 5).
(3) If p=4 (mod 5), then p(4¥p*®(40n + 35)) = 0 (mod 5).
(4) If p =5, then p(4* x 5291 (80 4 7)) = 0 (mod 5).

From Theorem [1.4] we can deduce congruences modulo 5 for p(n). For
example, taking & = 1, k = 0 and p = 11 in Theorem we see that for
n >0,

p(11'°(40n + 35)) = 0 (mod 5).

Moreover, we will prove the following congruences modulo 9 for p(n).

THEOREM 1.5. Let n, a be nonnegative integers and let p be a prime with
p=1 (mod 3) and (%) =—1.

) If p=1 (mod 9), then p(3p'8**T8n) =0 (mod 9).
) If p=4 (mod 9), then p(3p'8**+14n) =0 (mod 9).
) If p=7 (mod 9), then p(3p'8**T2n) =0 (mod 9).
THEOREM 1.6. Let p be a prime with p =1 (mod 3). For n,a, 3 > 0, if
p|(3n+2) and p* 1 (3n +2), then
(1.10) p(3%°2p%t4(3n 4 2)) = 0 (mod 9).
THEOREM 1.7. Let p be a prime with p =1 (mod 3). For a, f,n > 0, if

(9”?%6) = —1, then

(1.11) p(3%F2p59F2(3n 4 2)) = 0 (mod 9).

(1
(2
(3

2. Proof of Theorem In this section, we establish the generating
function for p(5n).
Replacing ¢ by —¢q in (|1.1) and using the fact that

(6% ¢H)3

21) (56 =0 = (¢ )oo(q% Yoo’
we have

AT R
(2.2) 7;)(1) P = o,

where ¢(q) is defined by

B R Ul
Ha)= D a (9% (5 dha

n=—oo

Let w = €2™/5. We rewrite (2.2)) as

25
23 Y = s = jggf,)é¢<wq>¢<w2q>¢<w3q>¢<w4q>.
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The 5-dissection of ¢(q) is |10}, (36.3.2)]
(2.4) ¢(q) = 6(¢*) +2¢B(q°) + 24" C(¢),
where
B(q) = (4% 4")o(=4"4"")00(¢"% ¢") 0,
C(q) = (=44 oo (=6 4" 0 (¢"%5 ¢'") o0
Substituting (2.4) into (2.3) and employing the fact that w® = 1 we get

= \ne n ¢(¢*°) 25 4 A 5
(2.5) > (=1)"p(n)g" = =(6(q%°) + 2wgB(¢°) + 2%¢* C(¢))

2 o)

X (¢(q*) + 20°B(q°) + 2w°¢*C(¢"))

x (6(¢*) +2w%¢B(¢°) + 20" C ("))

x (6(q” )+2w 4B(q°) + 2wq'C(q”)).
Extracting the terms of the form ¢°" and then replacing ¢° by ¢, we

obtain

S (1) B(sn)g" = ;ﬁggjg (6()* — 1206(¢"’ B@)C(a) + 164°B(0)C(a)%).
n=0

The following identity can be found in Andrews and Berndt’s book [1, (1.6.6)]
and Hirschhorn’s book [10, (34.1.20)]:

(2.6) $(q)* — ¢(¢°)* = 4¢B(q)C(q).
Therefore, by ,

[e.9]

27) Y (-1)"p(n)g"
n=0
_¢(q5) 5\4 512 2 512 2 512\2
= 5()F (¢(a*)* = 3¢6(¢°)*(8(a)” — d(a°)?) + (8(0)* — b(¢°)*)?)
5
= 28)2 (¢(a)* —56(0)°d(q°)* + 56(¢°)*).-

Replacing ¢ by —¢ in (2.7) and then applying the fact that
(49%
b(~q) = o
-9 (4% 6%)oo

we arrive at ((1.8)). =

3. Proofs of Theorems and We first prove the following

lemma.
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LEMMA 3.1. Let p be an odd prime. Then
_ pr=1__ 5 p—p
3.1 5p°On) = 5
(3.1) p(5p**n) p_lp(pn%%p_l
Proof. 1t is easy to check that (3.1]) is true for & = 0 and o = 1. Suppose
(3.1)) holds for two consecutive values, m and m + 1 (m > 0), that is,

(&7

p(5n) (mod 5).

mo_ 1 _am
(3.2) p(5p>n) = L= p(5p*n) + L—L_p(5n) (mod 5),
p—1 p—1
m—+1 m—+1
_ e om P —1_ p—Dp _
(3.3) M®2“ME—;jT#@ﬁm+—ngm6m0md&

where p is an odd prime. In their nice paper [4], Chen, Sun, Wang and Zhang
proved that if p is an odd prime, then

_ —-n _ _(5n
(3.4) p(5p°n) = <p +1- <p>>p(5n) —p- p<p2) (mod 5).
Replacing n by p*™*2n (m > 0) in (3.4) and employing (3.2) and (3.3) yields
(35)  pBp* ) = (p+ 1)p(5p*" ?n) = p - p(5p*"n)

pm+l_17 ) p_pm+17
= 1) —————— _
(p+)< p— p(5p°n) + p— p(5n)

mo_q _m
- p<p p(5p*n) + P2 p<5n>>
p p

pm+2 -1 5 _
=—p(5 ——p(5 db
p— p(5p p— p(5n) (mod 5),
which implies that (3.1)) is true when o = m + 2. =

Now, we are ready to prove Theorems and
In view of (3.1) and (3.4), we see that if p > 3 is a prime, then for
n,a > 0,

s pern =L ((pe1- (22) )ow - sl

n) +

p—p”

+ p— p(5n)
= A (o) — "L (s (mod 5),
where
at+l _ (=n),a _ —-_n
(3.7) Apanm = P = G 1+ (5

p—1
Note that if p > 3 is a prime with p # 5 and (_Tfl) = —1, then 5n/p and
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5n/p? are not integers and

(3.8) p@’;) 0.

If p=1 (mod 5), then
p5a+3 + p5a+2 —9 p5a+3 -1 p5oz+2 -1

(3.9) A(p,5a+2,n) p— p— + p—
5a+2‘ 5a+1‘
:2p7+zpﬂz5a+3+5a+2zo(mod5).
j=0 j=0

If p=2 (mod 5), then
4do+3 do+2 4do+3 do+2
P +p -2 _p -1 p -1
3.10 A(p, 4 2 = =
4o+2 4a+1 4o+2 4a+1

SRS LD D3
=0 j=0 j=0 =0
= 2dat3 4 94aF2 _ 9 — () (mod 5).
If p =3 (mod 5), then

p4oc+2 +p4a+l -9 _ p4oz+2 -1 N p4oc+1 -1
— 1 N — 1 p—1
4a+1 4a+1

Zp’+2p’ Z3J+Zsﬂ

34a+2 _ 1 34a+1 -1

(3.11)  Ap,4da+1,n) =

= ) + 5 =0 (mod 5).
Combining 7, we deduce that
(3.12) )\(p, ’Y(Qp)a + X(ZQ),n) =0 (mod 5),
where the pair (v(p), x(p)) is defined by
(10,4) ifp=1 (mod 5),

(
(v(p): x(p)) :== ¢ (8,4) if p=2 (mod 5),
(8,2) if p=3 (mod 5).

Replacing o by 7(p 1)y 4 X(q) in (3.6) and using (3.12)) yields

(3.13) ﬁ(5pv(q)a+x(q)n) = _p(p—11)ﬁ<5121) (mod 5).
- p

Combining (3.8) and (3.13), we see that if p = 1,2, 3 (mod 5) and (7") = -1,
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then

(3.14) p(5pY DX D) = 0 (mod 5).
Chen, Sun, Wang and Zhang [4] proved that for n > 0,
(3.15) p(20n) = (—1)"p(5n) (mod 5).
By and induction, we see that for n, k > 0,

(3.16) (5 x 4Fn) = (=1)®) 5(5n) (mod 5),

where g(0) = 0 and g(k) = 1 for £ > 1. Formulas (3.14)) and (3.16)) complete
the proof of Theorem .

We now prove Theorem Replacing n by pn in (3.6) yields
a+1 a
_ prrt -1 p(p® —1)_(5n
3.17 p(5p*“tn) = ——5(5pn) — =——5( — | (mod 5).
1) pr ) = P ) - P2 () (mod 5)
If p=4 (mod 5), then

p2a+2 1 2a+1 ' 2a+1
7=0 7=0
Replacing « by 2ac 4+ 1 in (3.17) and employing (3.18]), we see that
2041 _ 1 5
(3.19) p(5p*3n) = —Mﬁ n (mod 5).
p—1 p
By (3.19) and the fact that 15(57”) = 0 when p { n, we get
(3.20) p(5p3n) = 0 (mod 5).

It follows from ([3.16)) and (3.20) that ((1.9) holds. =

4. Proof of Theorem Assume that p > 3 is a prime and « is a
nonnegative integer in this section. If p =1 (mod 5), then

(41) pipf)a-l—l _ p— 141 7p504+1 o p5a+1 -1
p—1 p—1 p—1
Sa
zl—ijzl—(5a—|—1)EO(mod5).
j=0

If p=2 (mod 5), then
_pda+l 141 — platl

(42 PP _p-itlop 7 P —d
p—1 p—1 p—1

4o 4o
:1_2131'51—Z2j51—(24°‘+1—1)50 (mod 5).
=0 j=0
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If p=3 (mod 5), then

(43) p_p4a+1:p_1_|_1_p4oc+1:1_p
' p—1 p—1 p—1

34a+1 -1

4o 4o
:1—z%p751—203j51—250(m0d5).
j= i=

If p=4 (mod 5), then

_ 2a+1 —1 1— 2041 200+1 __ 1
(4.4) pmpm _poitiop g P
p—1 p—1 p—1
2a ) 2a '
=1-> pP=1-) (~1)) =0 (mod 5).
§=0 §=0
If p =5, then
_ o+l
(4.5) % =0 (mod 5).

Based on (4.1)—(4.5), we get
(4.6) L (mod 5),

where v(p) is defined by

10 if p=1 (mod 5),
8 if p=+2 (mod 5),

VPN g i = 4 (mod 5),
2 ifp=5.
Replacing « by v(p)a/2 in (3.6) and using (4.6) yields
(4.7) p(5p"P*n) = A(p, v(p)r/2,n)p(5n) (mod 5).

Replacing n by 4¥(8n 4 7) in (7)) and using (I.6)), we arrive at the congru-
ences stated in Theorem [[.4l w

5. Proof of Theorem We begin with the following lemma.
LEMMA 5.1. Let p be an odd prime and let r5(n) denote the number of

representations of n as the sum of five squares. For n,a > 0,

3a 3 3a
Pt -1 p’—p
5.1 R e — T
Proof. We use induction on «. It is easy to check that (5.1)) is true when
a =0 and a = 1. Assume that (5.1) is true when o = m and « = m + 1

(p*n) + r5(n).
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(m > 0), that is,

3m 3 3m
P -1 p’—p
(5.2) rs(p*™n) = 357_17"5(192”) + 1)57_17“5@);
3m—+3 __ 1 3 _ ,3m+3
(5.3) rs5(p*™?n) = Zﬁ%(ﬁn) + ppg%ns(n),

where p is an odd prime. Cooper [6] proved that

(5.4) r5(p*n) = <p3 - p(n> + 1>r5(n) —p3rs (712)
p p
Replacing n by p?n in (5.4) yields
(5.5) rs(p'n) = (p* + Drs(p*n) — p’rs(n).
Replacing n by p*™n in and employing and yields
rs(P*"n) = (p° + )rs(p*"F2n) — pPrs(p®n)

3m+3 3 3m+3
P —1 p°—p
=0t ) (T )+ P (o))

3m 3 3m
s(p?™ =1 5 p>—p
- P <p3_1 T5(p n>+ p3_1 7’5(”))

3m+6

P’ —p

o

=g ——rs5(p"n) +
which implies (5.1)) when o = m + 2. =

Now, we are ready to prove Theorem By (5.1) and (5.4)),

(5.6)  r5(p*n) = p;:__ll <<p3 ‘p<z> * 1)””(") P (;))

3 3o
p’—p
o
3 3a_1
= dalpaniran) - P (1),
where
3a+3 3a+1(n n
P —p p) Tp) —1
(5.7) Aa(p,a,m) = ()7 2(5) :

p?—1

If (%) = —1 and p =k (mod 9) with k € {1,4,7}, then k* = 1 (mod 9) and



Infinite families of congruences modulo 5 and 9 11

for a > 0,
C(p) p27a+3c(p)/2+3 + p27a+3c(p)/2+1 —p—1
(58) AQ (p, Yo + T, n) = p3 1
_ p27a+36(p)/2+3 1 N pp27oz+3c(p)/2 —1
pP—1 pP—1
9a+c(p)/2 9a+c(p)/2—-1 '
— Z p31 +p Z pSz
i=0
9a+c(p)/2 ‘ 9a+c(p)/2—1 '
= ) K4k D K
i=0 i=0
=9a+ (2)+1+k< (2p)>50(m0d9),
where ¢(p) is defined by
8 ifp=1(mod9),
c(p) :=<¢14 if p=4 (mod 9),
2 ifp=7(mod9).
Replacing o by 9a + ¢(p)/2 in (5.6) and using (5.8]), we get
3(p2Ta+3c(p)/2 _ 1
(59) 7,,5(plféac—i-C(P)n) = _p (p p3 — )’1“5 (;) (mod 9)
Moreover, (%) = —1 implies that n/p? is not an integer and
n
5.10 rs| = | =0.
(510) ’ <p2>

Combining (5.9) and (5.10]), we see that if p = k (mod 9) with k € {1,4,7}
and (%) = —1, then

(5.11) r5(p'3Te®)p) = 0 (mod 9).
Fortin, Jacob and Mathieu [9] and Hirschhorn and Sellers [12] also proved
that

(0% a*)2 (6% 4)5,
(5.12) Zp?m T (@ 0% (% )%

By the binomial theorem,

(5.13) (4:0)% = (6% ¢*)%, (mod 9).
Based on ((5.12)) and (| -, we deduce

( )10
5.14 p(3n)¢" = mod 9).
(5.14) Z @) ( )
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It should be noted that the generating function of r5(n) is

9] 2. ,2)25
(.15 I g

Replacing ¢ by —¢ in (5.15) and using (2.1]), we get

n=0

S (1) (g — (@050
5.16 —1)"r5(n)q" = ———=%—.
(516) ;‘6( R
It follows from (/5.14)) and (5.16) that for n > 0,
(5.17) p(3n) = (—=1)"r5(n) (mod 9).

As observed by Lovejoy and Osburn [16], the second and third authors [13]
proved that for n > 0,

p(3n) = (—=1)"r5(n) (mod 3).

Replacing n by p'8+e(®)p in (5.17) and using (5.11)), we get the congruences
stated in Theorem [L5 =

6. Proofs of Theorems and In this section, we assume that p
is a prime with p =1 (mod 3). By (1.2 and (5.17)), we see that for n, 8 > 0,

(6.1) r5(9°(9n 4 6)) = 0 (mod 3).
Replacing n by 9%(9n + 6) in yields
(6.2) 5(9°p% (90 + 6)) = Xa(p, r, 9°(9n + 6))r5(9° (9n + 6))
P’ —1) (9°(9n+6)
P-1 TE’( P’ )
where Ao (p, o, n) is defined by (5.7). If p| (3n + 2), then

9a+9 _q  Sod?
=) p* =3a+3=0(mod3).
1=0

p

5 _
(6:3) Aa(p,3a+2,9(9n+6)) = =—5——

If p? t (3n + 2), then 9%(9n + 6)/p? is not an integer and
B
(6.4) rs (9(9”2+6)> —0.
b

Replacing a by 3a 4+ 2 in (6.2)) and utilizing (6.1]), (6.3)) and (6.4)), we find
that if p| (3n + 2) and p? { (3n + 2), then

(6.5) 75(9°p5+4(9n 4 6)) = 0 (mod 9).

Replacing n by 99p52+4(9n + 6) in (5.17) and employing (6.5)), we obtain
(1.10). This completes the proof of Theorem "
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We now turn to the proof of Theorem [I.7] It is easy to check that if

9 6
p
then (W) — 1 and
9a+6 9a+4
p +Dp —-p—1
(6.7) A2(p,3a +1,97(9n + 6)) = —
p9oc+6 -1 p9a+3 _1
pd—1 p3—1
3o+1 A 3o A
= rpy ¥
1=0 i=0

=3a+2+3a+1=0 (mod 3).
Note that also implies that 9°(9n + 6)/p? is not an integer and

9%(9n + 6
(6.8) r5<(;+)> —0.
Replacing a by 3a + 1 in (6.2) and employing (6.1), (6.7) and , we
deduce that if holds, then

(6.9) r5(9°p%*2(9n +6)) = 0 (mod 9).
Replacing n by 99p52+2(9n +6) in (5.17) and utilizing (6.9), we get (T.11). =
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