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Abstract. We consider new properties of the combinatorial objects known

as overpartitions (which are natural generalizations of integer partitions). In

particular, we establish an infinite set of Ramanujan-type congruences for the
restricted overpartitions known as `-regular overpartitions. This significantly

extends the recent work of Shen which focused solely on 3–regular overparti-

tions and 4–regular overpartitions.
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1. Introduction

An overpartition of a positive integer n is a nonincreasing sequence of positive
integers that sum to n, where the first occurrence of parts of each size may be
overlined. An extensive study of overpartitions can be found in the work of Corteel
and Lovejoy [4]. We denote the number of overpartitions of n by p(n), with p(0) = 1.
For example, p(3) = 8 enumerates the following overpartitions:

3, 3, 2 + 1, 2 + 1, 2 + 1, 2 + 1, 1 + 1 + 1, 1 + 1 + 1

The three overpartitions with no overlined parts are the ordinary partitions of 3.
Given a positive integer ` a partition λ is called `-regular if no part of λ is a multiple
of `.

In 2003, Lovejoy [10] considered the functions A`(n) which enumerate the over-
partitions of n which are `-regular; in other words, A`(n) counts the number of
overpartitions of n which have no parts which are a multiple of `. Andrews [1]
extended this idea by considering the enumeration of singular overpartitions of n
which correspond to `-regular overpartitions of n in which the parts satisfy pre-
scribed congruences. In particular, Andrews [1] noted that one of his functions is
the same as A3(n), and he proved that, for all n ≥ 0,

(1) A3(9n+ 3) ≡ A3(9n+ 6) ≡ 0 (mod 3)

using elementary generating function manipulations. Motivated by this congruence
result, Chen, Hirschhorn and Sellers [3] extensively studied the arithmetic proper-
ties of these singular overpartition functions.

In recent days, Shen [13] returned to the functions of Lovejoy and proved a finite
set of congruences satisfied by A3 and A4. In particular, Shen proved the following
eight congruence results:
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Theorem 1. For all n ≥ 0,

A3(4n+ 1) ≡ 0 (mod 2),

A3(4n+ 3) ≡ 0 (mod 6),

A3(9n+ 3) ≡ 0 (mod 6), and

A3(9n+ 6) ≡ 0 (mod 24).

Theorem 2. For all n ≥ 0,

A4(12n+ 4) ≡ 0 (mod 3),

A4(12n+ 8) ≡ 0 (mod 3),

A4(12n+ 7) ≡ 0 (mod 24), and

A4(12n+ 11) ≡ 0 (mod 24).

Our primary goal in this paper is to prove families of congruences satisfied by
the functions A` for infinitely many values of `. The proof techniques used are
classical, involving elementary generating function manipulation techniques as well
as Ramanujan’s theta functions.

Throughout this work, we will utilize the following standard generating functions:
∞∑
n=0

p(n) =
∏
n≥1

1 + qn

1 − qn
.

(2)

∞∑
n=0

A`(n) =

∞∏
n=1

(1 − q`n)(1 + qn)

(1 − qn)(1 + q`n)
.

We will also make use of Ramanujan’s theta function

(3) ϕ(q) =

∞∑
n=−∞

qn
2

=

∞∏
n=1

(1 + q2n−1)2(1 − q2n).

(See Berndt’s book [2] for a detailed discussion of the function ϕ(q) and its relatives.)

2. New Congruence Results

Motivated by Andrews’ congruences (1), Chen, Hirschhorn, and Sellers [3] have
already provided an infinite family of congruences satisfied by A3(n) modulo 3 and
small powers of 2. Our first goal in this paper is to show that A` satisfies at least
one congruence modulo 3 for an infinite set of values `.

Theorem 3. For all n ≥ 0 and all j ≥ 3, A3j (27n+ 18) ≡ 0 (mod 3).

Proof. From recent work of Munagi and Sellers [12], we define the function R`(n)
to be the number of overpartitions of n in which only parts not divisible by ` may
be overlined. (In [12], the function R`(n) is denoted A`(n).) We find from [12] that,
for all n ≥ 0 and all j ≥ 3, R3j (27n+ 18) ≡ 0 (mod 3) where

(4)
∑
n≥0

R3j (n)qn =
∏
n≥1

(1 − q3
jn)

(1 − q2·3jn)

∏
n≥1

(1 − q2n)

(1 − qn)2
.
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Next, note that

(5)
∑
n≥0

A3j (n)qn =
∏
n≥1

(1 − q3
jn)

(1 + q3jn)

∏
n≥1

(1 − q2n)

(1 − qn)2
.

Via elementary manipulations, it is then clear from (4) and (5) that

∑
n≥0

A3j (n)qn =

∏
n≥1

(1 − q3
jn)

∑
n≥0

R3j (n)qn.

Moreover, ∏
n≥1

(1 − q3
jn)

is a function of q27, which means that A3j (27n+ 18) is simply a linear combination
of values of R3j (27n+ 18) (no other terms can enter this sum). Therefore, thanks
to the corresponding congruence result for R3j from [12], the theorem follows.

Interestingly enough, it is also the case that A9(n) satisfies congruences modulo
3. However, they appear to be of a different nature than those satisfied by A3 (as
stated in [3]) and A3j for j ≥ 3 (as given in Theorem 3). Thus we need to discuss
A9(n) separately.

In order to consider A9(n) modulo 3, we will utilize a number of results of
Hirschhorn and Sellers [7]. In particular, we will consider the two functions

D(q) =

∞∑
n=−∞

(−1)nqn
2

=
(q)2∞
(q2)∞

and

Y (q) =

∞∑
n=−∞

(−1)nq3n
2−2n =

(q)∞(q6)2∞
(q2)∞(q3)∞

,

where the q-Pochhammer symbol is defined by (a; q)∞ = (1−a)(1−aq)(1−aq2) · · ·
with the shortened notation (q; q)∞ = (q)∞.

It is worth noting that D(q) = ϕ(−q) where ϕ(q) is defined in (3).
In [7, Lemma 3.1] the following three identities are proved (where ω = e2πi/3):

D(q) = D(q9) − 2qY (q3),

D(q)D(ωq)D(ω2q) =
D(q3)4

D(q9)
, and

D(q3)3 − 8qY (q)3 =
D(q)4

D(q3)
.

Now note the following:
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∑
n≥0

A9(n)qn =
D(q9)

D(q)

=
D(q9)

D(q)

D(ωq)

D(ωq)

D(ω2q)

D(ω2q)

=
D(q9)

D(q3)4
(D(q81) − 2q9Y (q27))(D(q9) − 2ωqY (q3))(D(q9) − 2ω2qY (q3))

=
D(q9)

D(q3)4
(D(q81) − 2q9Y (q27))(D(q9)2 + 2qD(q9)Y (q3) + 4q2Y (q3)2).

Thus, we can 3–dissect the generating function for A9 to obtain∑
n≥0

A9(3n+ 2)qn =
D(q3)

D(q)4
(D(q27) − 2q3Y (q9))(4Y (q)2).

Next, we simplify this generating function modulo 3, utilizing the three identities
mentioned above:

∑
n≥0

A9(3n+ 2)qn =
D(q3)

D(q)4
(D(q27) − 2q3Y (q9))(4Y (q)2)

≡ D(q3)

D(q)4
(D(q9)3 − 2q3Y (q3)3)(4Y (q)2) (mod 3)

=
D(q3)

D(q)4
D(q3)4

D(q9)
4Y (q)2

=
D(q3)5

D(q)4D(q9)
4Y (q)2

≡ D(q3)5

D(q3)D(q)D(q3)3
Y (q)2 (mod 3)

=
D(q3)

D(q)
Y (q)2

=
(q3; q3)2∞
(q6; q6)∞

(q2; q2)∞
(q; q)2∞

(q; q)2∞(q6; q6)4∞
(q2; q2)2∞(q3; q3)2∞

=
(q6; q6)3∞
(q2; q2)∞

Therefore, we know that∑
n≥0

A9(3n+ 2)qn ≡
∑
n≥0

a3(n)q2n (mod 3)

where a3(n) is the number of 3–cores of n. This leads to two congruence results for
A9.

Theorem 4. For all n ≥ 0, A9(6n+ 5) ≡ 0 (mod 3).

Proof. This result follows immediately from the fact that∑
n≥0

A9(3n+ 2)qn ≡
∑
n≥0

a3(n)q2n (mod 3)
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and the fact that the series on the right–hand side is an even function of q. Therefore,
for all n ≥ 0,

A9(3(2n+ 1) + 2) = A9(6n+ 5) ≡ 0 (mod 3).

In a similar vein, the generating function work above also proves that, for all
n ≥ 0,

(6) A9(6n+ 2) ≡ a3(n) (mod 3).

This is truly significant as it provides infinitely many Ramanujan–like congruences
modulo 3 satisfied by A9. One way to see this is to note that a3(n) is infinitely
often identical to zero (see the work of Hirschhorn and Sellers [8] for elementary
proofs of some of the arithmetic properties of a3(n)). Indeed, we can easily prove
the following result.

Theorem 5. Let p ≡ 2 (mod 3) be prime. For each 1 ≤ k ≤ p − 1, let r be the
least nonnegative integer such that

r ≡ p2 − 1

3
+ kp (mod p2).

Then, for all n ≥ 0,

A9(6(p2n+ r) + 2) ≡ 0 (mod 3).

Proof. The proof relies on a result found in Hirschhorn and Sellers [8]. Namely,
under the hypothesis of this theorem, it is the case that a3(p2n + r) = 0. Thanks
to this fact and (6), the proof is complete.

We now turn our attention to congruences satisfied by A` modulo small powers
of 2. As with numerous other overpartition functions, it is clear that, for each `,
A`(n) satisfies many congruences modulo small powers of 2. (See, for example,
[5, 6, 7, 9, 11] where this phenomenon is also noted.)

With the goal of proving such congruences modulo small powers of 2, we develop
an extremely beneficial way to rewrite the generating function for A`(n) in terms
of Ramanujan’s theta function ϕ(q).

We state the following lemmas, the proofs of which may be found in [12]:

Lemma 1.

ϕ(−q2)2 = ϕ(q)ϕ(−q)

Lemma 2.
1

ϕ(−q)
= ϕ(q)ϕ(q2)2ϕ(q4)4 . . .

Combining (2) with Lemma 2, we have

(7)
∑
n≥0

A`(n)qn =
ϕ(q)ϕ(q2)2ϕ(q4)4 . . .

ϕ(q`)ϕ(q2`)2ϕ(q4`)4 . . .
.

Corollary 1. For all n ≥ 1, A`(n) ≡ 0 (mod 2).

Proof. Since ϕ(q) = 1 + 2
∑
n≥1 q

n2

, we know that

ϕ(q) ≡ 1 (mod 2).
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So (7) gives ∑
n≥0

A`(n)qn ≡ 1 · 1 · 1 . . .

1 · 1 · 1 . . .
≡ 1 (mod 2).

Corollary 2. For all n ≥ 1 and an integer k > 0,

A`(n) ≡

{
2 (mod 4) if n = k2 or n = `k2, where ` is not a square;

0 (mod 4) otherwise,

Proof. Thanks to (7), we know∑
n≥0

A`(n)qn ≡ ϕ(q)

ϕ(q`)
(mod 4)

since ϕ(qi)j ≡ 1 (mod 4) for any j ≥ 2. Next, we know, in view of Lemma 1, that

ϕ(q) =
ϕ(−q2)2

ϕ(−q)
.

Thus, ∑
n≥0

A`(n)qn ≡ ϕ(q)

ϕ(q`)
(mod 4)

≡ ϕ(q)ϕ(−q`)
ϕ(−q2`)2

(mod 4)

≡ ϕ(q)ϕ(−q`) (mod 4)

since ϕ(−q2`)2 ≡ 1 (mod 4).
Therefore,∑

n≥0

A`(n)qn ≡ ϕ(q)ϕ(−q`) (mod 4)

= (1 + 2
∑
n≥1

qn
2

)(1 + 2
∑
n≥1

(−q`)n
2

)

≡ 1 + 2
∑
n≥1

qn
2

+ 2
∑
n≥1

(−q`)n
2

(mod 4)

≡ 1 + 2
∑
n≥1

qn
2

+ 2
∑
n≥1

q`n
2

(mod 4).

The result follows.

It is clear that Corollary 2 provides a framework from which we can write down
infinitely many congruences modulo 4 satisfied by A` for certain values of `. We
provide such an infinite family of results here.

Corollary 3. Let ` be a square, p be a prime, and let r be a quadratic nonresidue
modulo p. Then, for all n ≥ 0, A`(pn+ r) ≡ 0 (mod 4).

Proof. Assume ` is a square. Thanks to Corollary 2, we know that A`(n) is
divisible by 4 unless n is a square. Thus, in order for this result to be false, we
must have pn+ r = k2 for some k. But this implies that r ≡ k2 (mod p), and this
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cannot occur because r is assumed to be a quadratic nonresidue modulo p. The
result follows.

Clearly, Corollary 3 provides p−1
2 congruences modulo 4 for each prime p for

each square value of `. Thus, we have demonstrated infinitely many congruences
modulo 4 which are satisfied by A` (for a specific set of values of `).

It is worth noting that the proof technique used in Corollary 2 could be extended
to write down similar results for moduli which are higher powers of 2. However, the
results will undoubtedly be less elegant as those above, so we refrain from doing so
here.

We close by acknowledging that the results above do not provide an exhaustive
list of congruences of this form for A`. Even so, it is the case that we have greatly
extended the set of congruences proven by Shen [13].
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