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Abstract. In a recent work, the authors provided the first-ever characteri-

zation of the values bm(n) modulo m where bm(n) is the number of (unre-
stricted) m-ary partitions of the integer n and m ≥ 2 is a fixed integer. That

characterization proved to be quite elegant and relied only on the base m rep-

resentation of n. Since then, the authors have been motivated to consider a
specific restricted m-ary partition function, namely cm(n), the number of m-

ary partitions of n where there are no “gaps” in the parts. (That is to say,

if mi is a part in a partition counted by cm(n), and i is a positive integer,
then mi−1 must also be a part in the partition.) Using tools similar to those

utilized in the aforementioned work on bm(n), we prove the first-ever charac-

terization of cm(n) modulo m. As with the work related to bm(n) modulo m,
this characterization of cm(n) modulo m is also based solely on the base m

representation of n.
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1. Introduction

In this note, we will focus our attention on congruence properties for the partition
functions which enumerate restricted integer partitions known as m-ary partitions.
These are partitions of an integer n wherein each part is a power of a fixed inte-
ger m ≥ 2. Throughout this note, we will let bm(n) denote the number of m-ary
partitions of n.

As an example, note that there are five 3-ary partitions of n = 9 :

9, 3 + 3 + 3, 3 + 3 + 1 + 1 + 1,

3 + 1 + 1 + 1 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1

Thus, b3(9) = 5.
In the late 1960s, Churchhouse [5, 6] initiated the study of congruence properties

of binary partitions (m-ary partitions with m = 2). Within months, other math-
ematicians proved Churchhouse’s conjectures and proved natural extensions of his
results. These included Rødseth [9] who extended Churchhouse’s results to include
the functions bp(n) where p is any prime as well as Andrews [2] and Gupta [7, 8]
who proved that corresponding results also held for bm(n) where m could be any
integer greater than 1. As part of an infinite family of results, these authors proved
that, for any m ≥ 2 and any nonnegative integer n, bm(m(mn− 1)) ≡ 0 (mod m).

Quite recently, the authors [3] provided the following mod m characterization of
bm(mn) relying solely on the base m representation of n:
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Theorem 1.1. If m ≥ 2 is a fixed integer and

n = α0 + α1m+ · · ·+ αjm
j

is the base m representation of n (so that 0 ≤ αi ≤ m− 1 for each i), then

bm(mn) ≡
j∏

i=0

(αi + 1) (mod m).

In this note, we provide a similar mod m result for the values cm(mn), where
cm(n) is the number of m–ary partitions of n with “no gaps” in the parts. More
specifically, cm(n) counts the number of partitions of n into powers of m such that,
if mi is a part in a partition counted by cm(n), and i is a positive integer, then
mi−1 must also be a part in the partition. For example, there are six such partitions
counted by c3(15) :

9 + 3 + 1 + 1 + 1, 3 + 3 + 3 + 3 + 1 + 1 + 1, 3 + 3 + 3 + 1 + 1 + 1 + 1 + 1 + 1,

3+3+1+1+1+1+1+1+1+1+1, 3+1+1+1+1+1+1+1+1+1+1+1+1,

1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1

Note, in particular, that 9 + 1 + 1 + 1 + 1 + 1 + 1 does not appear in the above list
because it does not contain the part 3, and 3 + 3 + 3 + 3 + 3 is missing from the
list because it does not contain the part 1.

This family of functions cm(n) is motivated by a recent work of Bessenrodt,
Olsson, and Sellers [4] in which the function c2(n) plays a critical role.

2. The Main Result

The following theorem provides a complete characterization of cm(mn) modulo
m:

Theorem 2.1. Let m ≥ 2 be a fixed integer and let

n =

∞∑
i=j

αim
i

be the base m representation of n where 1 ≤ αj < m and 0 ≤ αi < m for i > j.

(1) If j is even, then

cm(mn) ≡ αj + (αj − 1)

∞∑
i=j+1

αj+1 . . . αi (mod m).

(2) If j is odd, then

cm(mn) ≡ 1− αj − (αj − 1)

∞∑
i=j+1

αj+1 . . . αi (mod m).

Remark 2.2. Note that Lemma 2.7 (which appears below) implies that Theorem
2.1 tells us the congruence class of cm(n) modulo m for all n, not just those values
of n which are divisible by m.

In order to prove Theorem 2.1, we need a few elementary tools. We describe
these tools here.

First, it is important to note the generating function for cm(n).
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Lemma 2.3.

Cm(q) := 1 +

∞∑
n=0

q1+m+m2+···+mn

(1− q)(1− qm) . . . (1− qmn)
.

Proof. The proof follows from a standard argument from [1, Chapter 1].

Next, we wish to find the generating function for cm(mn).

Lemma 2.4.

(1)

∞∑
n=0

cm(mn)qn = 1 +
q

1− q
Cm(q)

Proof. Note that Cm(q) can be rewritten as

Cm(q) = 1 +

∞∑
n=0

qm+m2+···+mn

(1− qm) . . . (1− qmn)

q

1− q

= 1 +
q

1− q
+

∞∑
n=1

qm+m2+···+mn

(1− qm) . . . (1− qmn)
·
∞∑
j=1

qj .

Hence,

∞∑
n=0

cm(mn)qmn =
1

1− qm
+

∞∑
n=1

qm+m2+···+mn

(1− qm) . . . (1− qmn)
·
∞∑
j=1

qjm

=
1

1− qm
+

qm

1− qm
·
∞∑

n=1

qm+m2+···+mn

(1− qm) . . . (1− qmn)

=
1

1− qm
+

qm

1− qm
(Cm(qm)− 1)

= 1 +
qm

1− qm
+

qm

1− qm
Cm(qm).

The proof follows by replacing qm by q.

From Lemma 2.4, we have the following recurrence satisfied by cm(mn).

Lemma 2.5. For n ≥ 1,

cm(mn) = cm(0) + cm(1) + · · ·+ cm(n− 1).

Proof. Compare coefficients of qn on both sides of the identity in Lemma 2.4.

Lemma 2.6.

Cm(q) = −q−1 − q−2 − · · · − q−(m−1) + (1 + q−1 + · · ·+ q−(m−1))

∞∑
n=0

cm(mn)qmn

Proof. By Lemma 2.4,

∞∑
n=0

cm(mn)qmn = 1 +
qm

1− qm
Cm(qm).
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On the other hand,

Cm(q) = 1 +
q

1− q
+

∞∑
n=1

qm+···+mn

(1− qm) . . . (1− qmn)
· q

1− q

=
1

1− q
+

q

1− q

∞∑
n=0

qm(1+m+···+mn)

(1− qm) . . . (1− qm·mn)
)

=
1

1− q
+

q

1− q
Cm(qm).

Therefore,

Cm(qm) = q−1(Cm(q)(1− q)− 1)

and so
∞∑

n=0

cm(mn)qmn = 1 +
qm−1

1− qm
(Cm(q)(1− q)− 1).

Solving for Cm(q) gives the desired result.

Lemma 2.6 can now be used to prove that the values of the function cm(n) come
in m–tuples as described in the next lemma.

Lemma 2.7. For all n ≥ 1,

cm(mn) = cm(mn− 1) = cm(mn− 2) = · · · = cm(mn− (m− 1)).

Proof. Compare coefficients of qn on both sides of the identity in Lemma 2.6.

We now begin the consideration of cm(mn) modulo m by proving the following
lemma:

Lemma 2.8. If n ≡ k (mod m) where 1 ≤ k ≤ m, then for all n ≥ 1,

cm(mn) ≡ 1 + (k − 1)cm(n) (mod m).

Proof. By Lemma 2.5,

cm(mn) = cm(0) + cm(1) · · ·+ cm(n− 1).

Next, we write n = jm+ k for some integer j. Then

cm(mn) = cm(0) + cm(1) + · · ·+ cm(m)

+cm(m+ 1) + · · ·+ cm(2m)

...

+cm((j − 1)m+ 1) + · · ·+ cm((j − 1)m+m)

+cm(jm+ 1) + · · ·+ cm(jm+ k − 1)

≡ 1 + cm(jm+ 1) + · · ·+ cm(jm+ k − 1) (mod m)

by Lemma 2.7

≡ 1 + (k − 1)cm(jm+ k) (mod m)

by Lemma 2.7

= 1 + (k − 1)cm(n).
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Next, we prove an additional lemma involving an “internal” congruence satisfied
by cm modulo m. It is interesting to note that a similar result holds for bm(n), the
unrestricted m-ary partition function studied in [3, 5, 6].

Lemma 2.9. For all n ≥ 0,

cm(m3n) ≡ cm(mn) (mod m).

Proof. By Lemma 2.8, we know

cm(m3n) = cm(m(m2n))

≡ 1 + (m− 1)cm(m2n) (mod m)

= 1 + (m− 1)cm(m(mn))

≡ 1 + (m− 1)(1 + (m− 1)cm(mn)) (mod m)

≡ cm(mn) (mod m).

Lemma 2.9 enables a significant reduction in the number of cases which will need
to be checked when we prove Theorem 2.1. This is because of the following. Given
n written in m-ary notation as

n = αmj + βmk + · · ·+ γmr,

we see immediately that

mn = αmj+1 + βmk+1 + · · ·+ γmr+1,

where α, β, . . . , γ ∈ {1, 2, . . . ,m − 1} and j < k < · · · < r. Thus, we can divide by
m2 for as many times as we wish if j ≥ 2 (because j + 1 ≥ 3). Therefore, we only
need to consider the cases j = 0 and j = 1 in what follows.

We are now in a position to prove Theorem 2.1 which provides a characterization
of cm(mn) modulo m simply based on the m–ary representation of n.

Proof. By Lemma 2.9, we see that if j ≥ 2, then m3 | mn. This means cm(mn) ≡
cm
(
n
m

)
(mod m). Thus, we may assume j = 0 or j = 1 without loss of generality.

Now we consider two cases (based on the parity of j).

• Case 1: j is even, so we can assume j = 0. Hence,

cm(mn) ≡ 1 + (α0 − 1)cm(n) (mod m)

= 1 + (α0 − 1)cm(α0 + α1m+ α2m
2 + . . . ).

Now since m > α0 ≥ 1, we may replace α0 by m (thanks to Lemma 2.7).
Then the above becomes

cm(mn) ≡ 1 + (α0 − 1)cm((α1 + 1)m+ α2m
2 + . . . ) (mod m)

= 1 + (α0 − 1)cm(m((α1 + 1) + α2m+ α3m
2 + . . . ))

≡ 1 + (α0 − 1)(1 + α1cm((α1 + 1) + α2m+ α3m
2 + . . . )) (mod m).

Now 1 ≤ α1 + 1 ≤ m, so by Lemma 2.7 we may replace α1 + 1 by m in the
above to obtain

cm(mn) ≡ 1 + (α0 − 1)(1 + α1cm(m(α2 + 1) + α3m+ . . . )) (mod m).
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Now 1 ≤ α2 + 1 ≤ m, so we may apply Lemma 2.7 again, and the process
continues until we hit some αi = 0 at which time the process terminates.
The result is

cm(mn) ≡ 1 + (α0 − 1)(1 + α1(1 + α2(1 + α3 + . . . ))) (mod m)

= α0 + (α0 − 1)

∞∑
i=1

α1α2 . . . αi

which is equivalent to the first case of Theorem 2.1.
• Case 2: j is odd, so we can assume j = 1. Hence, n ≡ m (mod m), and by

Lemma 2.8,

cm(mn) ≡ 1− cm(n) (mod m)

= 1− cm

m ∞∑
j=0

αj+1m
j

 .

Now Case 1 above is applicable to n′ =
∑∞

j=0 αj+1m
j because 1 ≤ α1 < m.

Hence, the desired result follows.

With the goal of demonstrating the applicability of Theorem 2.1, we compute a
few examples.

• Let m = 4, n = 123 = 3 + 2 · 4 + 3 · 42 + 1 · 43. Then

c4(4 · 123) = c4(492) = 5843 ≡ 3 (mod 4).

This is an example of the case j = 0. Theorem 2.1 asserts that

c4(4 · 123) ≡ 3 + (3− 1)(2 + 2 · 3 + 2 · 3 · 1) (mod 4)

= 3 + 2 · 14

≡ 3 (mod 4)

as computed above.
• Let m = 5, n = 485 = 2 · 5 + 4 · 52 + 3 · 53. Then

c5(5 · 485) = c5(2425) = 230358 ≡ 3 (mod 5).

This is an example of the case j = 1. Theorem 2.1 asserts that

c5(5 · 485) ≡ 1− 2− (2− 1)(4 + 4 · 3) (mod 5)

= 1− 2− 16

= −17

≡ 3 (mod 5)

as computed above.
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