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Abstract

Recently, Sloane and Sellers solved a certain box stacking problem related to non–
squashing partitions. These are defined as partitions n = p1 + p2 + · · · + pk with
1 ≤ p1 ≤ p2 ≤ · · · ≤ pk wherein p1 + · · · + pj ≤ pj+1 for 1 ≤ j ≤ k − 1. Sloane has
also hinted at a generalized box stacking problem which is closely related to gener-
alized non–squashing partitions. We solve this generalized box stacking problem by
obtaining a generating function for the number of such stacks and discuss partition
functions which arise via this generating function.
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1 Introduction

In a recent paper, Sloane and Sellers [8] considered the following combinatorial
problem and provided its solution:

We are given n boxes, labeled 1, 2, . . . , n. For i = 1, . . . , n, box i weighs i
grams and can support a total weight of i grams. What is the number a2(n)
of different ways to build a single stack of boxes in which no box will be
squashed by the weight of the boxes above it?

For example, a2(4) = 14 where the allowable stacks of boxes are as follows:
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The other two possible stacks,
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3
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1
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are excluded since 2 + 3 > 4 and the box labeled 4 would collapse in both
cases. More recently, Sloane suggested a generalization to this problem:

We are given n boxes, labeled 1, 2, . . . , n. For i = 1, . . . , n, box i weighs
(m − 1)i grams (where m ≥ 2 is a fixed integer) and box i can support a
total weight of i grams. What is the number am(n) of different ways to build
a single stack of boxes in which no box will be squashed by the weight of
the boxes above it?

See, for example, sequences A090631 and A090632 in Sloane’s Online Ency-
clopedia of Integer Sequences [7] which give the first several values of a3(n)
and a4(n) respectively. Our goal in this work is to answer the general question
above by proving the following generating function identity:

Theorem 1.1 For m ≥ 3,

∞∑
n=0

am(n)qn =
1

(1− q)2
∏∞

i=0(1− q(m−1)mi)
.

We note in passing that the m = 2 case of the above problem, which Sloane
and Sellers considered in detail, is fundamentally different from the cases when
m ≥ 3. In particular, we note that the right–hand side of the identity in
Theorem 1.1 is representable as one infinite product. The generating function
found by Sloane and Sellers for a2(n) [8, Corollary 9] does not seem to be
representable as one infinite product.

The reader may also wish to see a recent work by Rødseth and Sellers [5].
Although the problem considered in [5] is related, it is nevertheless different
and the proof technique used is quite dissimilar from that given below.
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Before closing this introduction, a comment is in order regarding a corollary
of Theorem 1.1 above.

Corollary 1.2 For fixed m ≥ 3 and n ≥ 0, let cm(n) be the number of parti-
tions of n whose parts are taken from the set

{1, 2, 2(m− 1), 2(m− 1)m, 2(m− 1)m2, 2(m− 1)m3, . . . }.

Then am(n) = cm(2n).

The proof of this corollary follows from straightforward generating function
dissection. While Corollary 1.2 may seem a bit artificial, it is the case that
the original motivation for considering this problem arose from a conjecture
that the values of a4(n) equal f(2n) where f(n) is the number of partitions
of n whose parts are factorial numbers [7, A064986]. While the conjecture
ultimately proved to be false, it did lead us to pursue the problem and so
served as an excellent motivation.

In Section 2, we provide a brief amount of necessary mathematical background,
especially as it relates to partition analysis, a proof technique initially devel-
oped by MacMahon [4] and more recently utilized by a variety of authors.
(See, for example, [1], [2], and [6].) In Section 3, we prove Theorem 1.1. We
then close the paper in Section 4 by proving an infinite family of congruences
modulo powers of 2 satisfied by am(n) for certain values of m.

2 Mathematical Background

In order to make our work below more precise, we say that a partition

n = p1 + p2 + · · ·+ pj, 1 ≤ p1 ≤ p2 ≤ · · · ≤ pj (1)

of a natural number n into j parts is m–non–squashing if

(m− 1)(p1 + · · ·+ pr) ≤ pr+1 for 1 ≤ r ≤ j − 1 (2)

where m is some fixed integer greater than 1. In the context of our box stacking
problem, we see that the boxes in the stack will not collapse if and only
if the corresponding partition is m–non–squashing. We note in passing that
Hirschhorn and Sellers [3] as well as Sloane and Sellers [8] have proven that
the number of m–non–squashing partitions of n equals the number of m–ary
partitions of n, the number of partitions of n wherein each part is a power of
m.

In the box stacking problem as stated above, the boxes must have distinct
labels and the sum of their weights cannot exceed

(
n+1

2

)
. Therefore am(n) is
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equal to the total number of m–non–squashing partitions of numbers from 0
to
(

n+1
2

)
which have distinct parts each of which must be less than or equal

to n.

Before turning to the proof of Theorem 1.1, we briefly mention a few key items
from MacMahon’s partition analysis. First, we define the Omega operator Ω

≥
.

Definition 2.1 The operator Ω
≥

is given by

Ω
≥

∞∑
s1=−∞

· · ·
∞∑

sj=−∞
As1,...,sj

λs1
1 . . . λ

sj

j :=
∞∑

s1=0

· · ·
∞∑

sj=0

As1,...,sj
,

where the domain of the As1,...,sj
is the field of rational functions over C in

several complex variables restricted to a small neighborhood of the origin and
the λi are restricted to annuli of the form 1− ε < |λi| < 1 + ε.

Finally, we need the following two lemmas involving the Omega operator.

Lemma 2.2 For nonnegative integers s1, s2, . . . , sr,

Ω
≥

1

(1− λx)
(
1− y1

λs1

) (
1− y2

λs2

)
· · ·

(
1− yr

λsr

)
=

1

(1− x)(1− xs1y1)(1− xs2y2) · · · (1− xsryr)
.

Remark: Note that MacMahon [4, pp. 1147–1148] proves Lemma 2.2 in the
cases r = 1, s1 = 1, 2, 3.

Proof:

Ω
≥

1

(1− λx)
(
1− y1

λs1

) (
1− y2

λs2

)
· · ·

(
1− yr

λsr

)
= Ω
≥

∑
n0,n1,...nr≥0

xn0 yn1
1 yn2

2 · · · ynr
r λn0−n1s1−n2s2−···−nrsr

=
∑

n0,n1,···nr≥0
n0≥n1s1+n2s2+···nrsr

xn0 yn1
1 yn2

2 · · · ynr
r

=
∑

n0,n1,···nr≥0

xn0+n1s1+n2s2+···nrsr yn1
1 yn2

2 · · · ynr
r

=
1

(1− x)(1− xs1y1)(1− xs2yr) · · · (1− xsryr)
.

�
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Lemma 2.3

Ω
≥

1

(1− λx)
(
1− y

λ

) =
1

(1− x)(1− xy)
.

Proof: This is the case r = s = 1 of Lemma 2.2 above. �

3 A Proof Of Theorem 1.1 Via Partition Analysis

We are now prepared to prove Theorem 1.1.

Proof: We fix an integer m ≥ 3. Note that the generating function for am(n)
can be written as

∞∑
n=0

am(n)qn = lim
j→∞

Fm,j(q)

where

Fm,j(q) = Ω
≥

∞∑
n=0

qn
∑

p1,p2,...,pj≥0

λ
n−pj

j+1

j∏
k=2

λ
pk−(m−1)(p1+p2+···+pk−1)
k .

The exponents on the λ–parameters “encode” the inequalities inherent in the
problem (namely, that the largest part in any partition is to be at most n and
that the partitions are to be m–non–squashing). Next, we rewrite Fm,j(q) in
terms of products rather than sums via geometric series:

Fm,j(q)

= Ω
≥

1

(1− qλj+1)
(
1− λj

λj+1

) [j−1∏
k=2

(
1− λk∏j

`=k+1
λm−1

`

)](
1− 1∏j

k=2
λm−1

k

)

We now proceed with the annihilation of the λ–parameters, beginning with
λj+1.

Fm,j(q)

= Ω
≥

1

(1− qλj+1)
(
1− λj

λj+1

) [j−1∏
k=2

(
1− λk∏j

`=k+1
λm−1

`

)](
1− 1∏j

k=2
λm−1

k

)
=

1

(1− q)
Ω
≥

1

(1− qλj)

[
j−1∏
k=2

(
1− λk∏j

`=k+1
λm−1

`

)](
1− 1∏j

k=2
λm−1

k

)
using Lemma 2.3
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=
1

(1− q)2 Ω
≥

1

(1− qm−1λj−1)

[
j−2∏
k=2

(
1− qm−1λk∏j−1

`=k+1
λm−1

`

)](
1− qm−1∏j−1

k=2
λm−1

k

)
using Lemma 2.2

=
1

(1− q)2 (1− qm−1)
×

×Ω
≥

1

(1− q(m−1)mλj−2)

[
j−3∏
k=2

(
1− q(m−1)mλk∏j−2

`=k+1
λm−1

`

)](
1− q(m−1)m∏j−2

k=2
λm−1

k

)
=

1

(1− q)2 (1− qm−1) (1− q(m−1)m)
×

× Ω
≥

1

(1− q(m−1)m2λj−3)

[
j−4∏
k=2

(
1− q(m−1)m2

λk∏j−3

`=k+1
λm−1

`

)](
1− q(m−1)m2∏j−3

k=2
λm−1

k

)
=

1

(1− q)2 (1− qm−1) (1− q(m−1)m) (1− q(m−1)m2)
×

× Ω
≥

1

(1− q(m−1)m3λj−4)

[
j−5∏
k=2

(
1− q(m−1)m3

λk∏j−4

`=k+1
λm−1

`

)](
1− q(m−1)m3∏j−4

k=2
λm−1

k

)
...

=
1

(1− q)2(1− qm−1)(1− q(m−1)m)(1− q(m−1)m2) . . . (1− q(m−1)mj−2)

after annihilation of all λ–parameters. Therefore,

∞∑
n=0

am(n)qn = lim
j→∞

Fm,j(q) = lim
j→∞

1

(1− q)2
∏j−2

i=0 (1− q(m−1)mi)

and the result of the theorem follows. �

4 Closing Thoughts

As was the case in [5] and [8], a natural question to ask is whether am(n) sat-
isfies any special arithmetic properties (due to its clear relationship to m–ary
partition functions and the many properties that such functions satisfy). We
answer this question affirmatively by proving an infinite family of congruence
properties satisfied by am(n).

Theorem 4.1 Assume t is the largest positive integer such that m ≡ 1 (mod 2t).
Then, for each j, 1 ≤ j ≤ t, and for all n ≥ 0,

am(2jn + 2j − 1) ≡ 0 (mod 2j).
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Proof: Let

A(c, q) =
1

(1− q)2
∏∞

i=0(1− qcmi)

for some positive integer c. Then we see that

∞∑
n=0

am(n)qn = A(m− 1, q).

Next, assume t is the largest positive integer such that m ≡ 1 (mod 2t) as in
the statement of the theorem. Then

∞∑
n=0

am(2n + 1)q2n+1 =
1

2

1∏∞
i=0 1− q(m−1)mi

[
1

(1− q)2
− 1

(1 + q)2

]

=
1

2

1∏∞
i=0 1− q(m−1)mi

[
4q

(1− q2)2

]

=
2q

(1− q2)2

1∏∞
i=0 1− q(m−1)mi .

Therefore,

∞∑
n=0

am(2n + 1)qn =
2

(1− q)2
∏∞

i=0 1− q((m−1)/2)mi = 2A((m− 1)/2, q).

This process of generating function dissection, which in effect involves replac-
ing n by 2n + 1, can then be iterated to yield

∞∑
n=0

am(2(2n + 1) + 1)qn = 2(2A((m− 1)/4, q))

or
∞∑

n=0

am(4n + 3)qn = 4A((m− 1)/4, q)

followed by
∞∑

n=0

am(8n + 7)qn = 8A((m− 1)/8, q)

and so on. This iterative process terminates once the power ((m − 1)/2j)mk

becomes odd. Since m is known to be odd, this power becomes odd exactly
when j = t. The result follows.

�

Based on computational experimentation, it appears that am(n) satisfies many
other congruence properties. A fuller treatment of these properties will be the
subject of a future work.
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