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Abstract. In a recent work, Baxter and Pudwell mentioned the
following identity for the Fibonacci numbers Fn and noted that it
can be proven via induction: For all n ≥ 1,

F2n = 1 · F2n−2 + 2 · F2n−4 + · · · + (n− 1) · F2 + n.

We give a combinatorial proof of this identity and a companion
identity. This leads to an infinite family of identities, which are
also given combinatorial proofs.
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1. Introduction

In a recent paper, Baxter and Pudwell [1] featured the following
identity. For n ≥ 1,

(1) F2n = F2n−2 + 2F2n−4 + · · · + (n− 1)F2 + n.

The authors note that (1) can be proven by induction. Our initial
goal is to prove (1) combinatorially with tilings and then extend our
arguments to prove related identities. Recall (as in [2]) that fn = Fn+1

counts the ways to tile a 1 × n board using 1 × 1 squares and 1 × 2
dominoes. With this in mind, we rewrite (1) as follows. For n ≥ 1,

(2) f2n−1 = f2n−3 + 2f2n−5 + · · · + (n− 1)f1 + n.

Once we prove (2) combinatorially, it is easy to identify the following
“companion” identity: For n ≥ 1,

(3) f2n = f2n−2 + 2f2n−4 + · · · + nf0 + 1.

In the next section, we provide tiling proofs of (2) and (3) and then
generalize our results to a pair of infinite families of Fibonacci identities
in a natural and unified manner. In the closing section, we highlight
further generalizations of these results.
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2. Tiling Proofs

We begin by providing a detailed proof of (2) which will motivate
many of the proofs in the remainder of this note.

Proof. (of (2)) We identify a set of tilings that is counted in different
ways by each side of the equality. The left–hand side of (2) clearly
counts the number of tilings of a 1 × (2n− 1) board.

For the right side, we focus on the location of the second square in
a given tiling of a 1× (2n− 1) board. Note that the possible locations
of the second square in such a tiling are the cells 2, 4, 6, . . . , 2n − 2.
Now let 2j be the location of the second square in the tiling. To the
right of this cell, the remaining spaces are tiled in f2n−1−2j ways (by
definition). To the left of position 2j, we have exactly one square and
j − 1 dominoes, which can be arranged in j ways. Thus, the number
of such tilings is jf2n−1−2j. Summing over all possible values of j gives
us most of the right–hand side of (2), namely

f2n−3 + 2f2n−5 + · · · + (n− 1)f1.

Finally, the “non–homogeneous” term of n in the right–hand side of
(2) counts the tilings consisting of a single square, located in an odd
numbered cell along with n− 1 dominoes.

A similar argument establishes (3). The only difference is that there
is only one tiling of length 2n that does not contain a second square,
namely the all-domino tiling.

The previous argument can be generalized in multiple directions.
We begin by noting that there is nothing special about focusing on the
second square in a given tiling; we could focus on the location of the first
square, the third square, and so on. With this in mind, we now count
tilings of a board with a focus on the location of the pth square in the
tiling where p ≥ 1. This leads us to the following natural generalization
of (2) and (3), which can be expressed in a single theorem:

Theorem 2.1. For p ≥ 1 and m ≥ 1,

fm =
m∑

k=p

(
(k + p− 2)/2

p− 1

)
fm−k +

p−1∑
t=0

(
(m + t)/2

t

)
,

where we define the binomial coefficient
(
n
r

)
to be zero when n is not an

integer. In particular, the nonzero summands of the first summation
are those where k has the same parity as p, and the nonzero summands
of the second summation are those where t has the same parity as m.
Notice that when p = 2 and m = 2n − 1 or 2n, then we obtain the
previous two identities.
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Proof. (of Theorem 2.1) Like before, the left side counts tilings of length
m. We argue that the right side also counts such tilings, by considering
the location of the pth square, if it exists. Suppose the pth square is
located at cell k for some k between p and m. To the right of that
square, the board can be tiled in exactly fm−k ways. Before that, we
have exactly p− 1 squares and (k− p)/2 dominos, provided that k and
p have the same parity (otherwise no such tilings exist). Altogether we
have (p− 1) + (k− p)/2 = (k+ p− 2)/2 tiles, which can be arranged in(
(k+p−2)/2

p−1

)
ways, as desired. The second summand counts tilings with t

squares where t ≤ p−1. Such tilings have (m− t)/2 dominos, provided
that t and m have the same parity, and those (m + t)/2 tiles can be

arranged in
(
(m+t)/2

t

)
ways, and the proof is complete.

If we enumerate our tilings based on the location of the pth domino,
then we obtain an even simpler expression, since we don’t have parity
issues to navigate, and we obtain the following result.

Theorem 2.2. For p ≥ 1 and m ≥ 1,

fm =
m∑

k=2p

(
k − p− 1

p− 1

)
fm−k +

p−1∑
t=0

(
m− t

t

)
.

Proof. The left–hand side of the equation counts the number of ways
to tile a 1 ×m board. Now consider such a tiling and suppose the pth
domino (if it exists) covers cells k − 1 and k, where k ≥ 2p. Then, as
before there are fm−k ways to tile the cells to the right of cell k. Prior
to cell k we arrange p − 1 dominos and k − 2p squares, which can be
done in

(
k−p−1
p−1

)
ways, which explains the first summation. The second

summation counts those tilings with t ≤ p − 1 dominos and m − 2t
squares, which can be done in

(
m−t
t

)
ways, as desired.

3. Closing Thoughts

We close with two sets of thoughts on ways in which these ideas can
be extended.

First, results of a form similar to those in Theorems 2.1–2.2 can be
obtained for the Lucas numbers by considering tiling circular boards
rather than linear boards. We leave the details to the reader.

Secondly, we can easily generalize Theorems 2.1–2.2 by allowing a
different colors of square tiles and b different colors of domino tiles to be
used in our tilings. In this context, we define a two-parameter family
of sequences, which we will denote by un as follows:

un = aun−1 + bun−2
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where u0 = 1 and u1 = a. In the colored tiling interpretation, we think
of a and b as positive integers, but using a weighted tiling approach,
a and b can be negative numbers, complex numbers, or polynomials.
Theorems 2.1–2.2 can be easily generalized by keeping track of how
many squares and dominoes appear on each side of the pth object in
question. We then have the following new theorems:

Theorem 3.1. For p ≥ 1 and m ≥ 1,

um =
m∑

k=p

apb(k−p)/2

(
(k + p− 2)/2

p− 1

)
um−k +

p−1∑
t=0

atb(m−t)/2

(
(m + t)/2

t

)
,

Theorem 3.2. For p ≥ 1 and m ≥ 1,

um =
m∑

k=2p

ak−2pbp
(
k − p− 1

p− 1

)
um−k +

p−1∑
t=0

am−2tbt
(
m− t

t

)
.

It is difficult to imagine discovering and proving Theorems 3.1–3.2
without the insights developed in this note.
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