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Abstract

In a recent paper, Calkin, Drake, James, Law, Lee, Penniston and Radder use

the theory of modular forms to examine 5–regular partitions modulo 2 and 13–

regular partitions modulo 2 and 3. They obtain and conjecture various results.

In this note, we use nothing more than Jacobi’s triple product identity to obtain

results for 5–regular partitions stronger than those obtained by Calkin and his

collaborators. We find infinitely many Ramanujan–type congruences for b5(n),

and we prove the striking result that the number of 5–regular partitions of the

number n is even for at least 75% of the positive integers n.

Introduction

In the seven–author paper [1], Calkin et al. examine the parity of 5–regular

partitions which are defined by

∑

n≥0

b5(n)qn =
(q5; q5)∞
(q; q)∞

.

Using the theory of modular forms, they prove results equivalent to the following:

b5(2n) is odd if and only if 12n + 1 is a square,
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and, for all n ≥ 0,

b5(20n + 5) is even and b5(20n + 13) is even.

Combining these two results, one can deduce that b5(n) is even for at least 60% of

the positive integers n.

In this note we use nothing more than Jacobi’s triple product identity to prove

their two results above.

We also prove infinitely many new Ramanujan–type congruences for b5(n), of

which the “smallest” is

b5(1156n + 65) ≡ 0 (mod 2),

and we prove that

b5(n) is even for at least 75% of the positive integers n.

This theorem is striking, because it is believed that the unrestricted partition

function, p(n), is even for half of the positive integers n.

2. The proofs

We begin with a fundamental theorem which provides the 2–dissection of the

generating function of b5(n).

Theorem 1:

∑

n≥0

b5(n)qn =
(q8; q8)∞(q20; q20)2∞
(q2; q2)2∞(q40; q40)∞

+ q
(q4; q4)3∞(q10; q10)∞(q40; q40)∞
(q2; q2)3∞(q8; q8)∞(q20; q20)∞

where (a; q)∞ = (1 − a)(1 − aq)(1 − aq2)(1 − aq3) . . .

Proof: We start by noting that

∑

n≥0

b5(n)qn =
(q5; q5)∞
(q; q)∞
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=
1

(q, q2, q3, q4; q5)∞

=
1

(q, q2, q3, q4, q6, q7, q8, q9; q10)∞

=
(−q,−q3,−q7,−q9, q10, q10; q10)∞

(q2, q2, q4, q6, q6, q8, q10, q10, q12, q14, q14, q16, q18, q18, q20, q20; q20)∞

=
(q4; q4)∞(−q,−q3,−q7,−q9, q10, q10; q10)∞

(q2; q2)2∞(q20; q20)∞

where (a1, a2, . . . , ak; q)∞ = (a1; q)∞(a2; q)∞ . . . (ak; q)∞.

Now,

(−q,−q3,−q7,−q9, q10, q10; q10)∞

=
∞
∑

m,n=−∞

q5m2
−4m+5n2

−2n by Jacobi’s triple product identity

=

∞
∑

r,s=−∞

q5(r+s)2−4(r+s)+5(r−s)2−2(r−s) +

∞
∑

r,s=−∞

q5(r+s+1)2−4(r+s+1)+5(r−s)2−2(r−s)

=

∞
∑

r,s=−∞

q10r2−6r+10s2−2s + q

∞
∑

r,s=−∞

q10r2+4r+10s2+8s

= (−q4,−q8,−q12,−q16, q20, q20; q20)∞ + q(−q2,−q6,−q14,−q18, q20, q20; q20)∞

=
(−q4; q4)∞(q20; q20)2∞

(−q20; q20)∞
+ q

(−q2; q2)∞(−q20; q20)∞(q20; q20)2∞
(−q4; q4)∞(−q10; q10)∞

=
(q8; q8)∞(q20; q20)3∞
(q4; q4)∞(q40; q40)∞

+ q
(q4; q4)2∞(q10; q10)∞(q40; q40)∞

(q2; q2)∞(q8; q8)∞
.

Therefore,

∑

n≥0

b5(n)qn =
(q8; q8)∞(q20; q20)2∞
(q2; q2)2∞(q40; q40)∞

+ q
(q4; q4)3∞(q10; q10)∞(q40; q40)∞
(q2; q2)3∞(q8; q8)∞(q20; q20)∞
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as claimed. �

Theorem 2 ([1, Theorem 1]): For all n ≥ 0, b5(2n) is odd if and only if 12n + 1 is

a perfect square.

Proof: Thanks to Theorem 1 above, we know

∑

n≥0

b5(2n)qn =
(q4; q4)∞(q10; q10)2∞
(q; q)2∞(q20; q20)∞

≡
(q4; q4)∞(q20; q20)∞
(q2; q2)∞(q20; q20)∞

(mod 2)

= (−q2; q2)∞

≡ (q2; q2)∞ (mod 2)

=
∞
∑

n=−∞

(−1)nq3n2+n

≡

∞
∑

n=−∞

q3n2+n (mod 2).

Thus,

∑

n≥0

b5(2n)q12n+1 ≡

∞
∑

n=−∞

q(6n+1)2 (mod 2)

from which the result follows. �

Theorem 3: For all n ≥ 0, b(4n + 1) is even unless 24n + 7 = 2x2 + 5y2 for some

integers x, y.

Proof: From Theorem 1, we know

∑

n≥0

b5(2n + 1)qn =
(q2; q2)3∞
(q; q)3∞

·
(q5; q5)∞(q20; q20)∞
(q4; q4)∞(q10; q10)∞

.
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Now,

(q2; q2)3∞
(q; q)3∞

=
∏

n≥1

(

1 − q2n

1 − qn

)3

=
∏

n≥1

(1 + qn)3

≡
∏

n≥1

(1 + qn + q2n + q3n) (mod 2)

=
∏

n≥1

1 − q4n

1 − qn

=
(q4; q4)∞
(q; q)∞

.

It follows that

∑

n≥0

b5(2n + 1)qn ≡
(q5; q5)∞(q20; q20)∞
(q; q)∞(q10; q10)∞

(mod 2)

=
∏

n≥1

(1 + q10n)
∑

n≥0

b5(n)qn

≡

∞
∑

n=−∞

q10(3n2+n)/2





∞
∑

n=−∞

q2(3n2+n) +
∑

n≥0

b5(2n + 1)q2n+1



 (mod 2).

This means

∑

n≥0

b5(4n + 1)qn ≡

∞
∑

m,n=−∞

q(3m2+m)+5(3n2+n)/2 (mod 2)

which implies

∑

n≥0

b5(4n + 1)q24n+7 ≡

∞
∑

m,n=−∞

q2(6m+1)2+5(6n+1)2 (mod 2).

The result follows. �
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Theorem 4 ([1, Theorem 3]): For all n ≥ 0,

b5(20n + 5) ≡ 0 (mod 2) and

b5(20n + 13) ≡ 0 (mod 2).

Proof: From Theorem 3, we know b(20n+5) is even unless 24(5n+1)+7 = 2x2+5y2

for some integers x, y. Consideration of this equation modulo 5 yields x2 ≡ 3

(mod 5). Since 3 is a quadratic non–residue modulo 5, we know that there can

be no such solutions. This proves the first congruence. A proof of the second

congruence is obtained based on the fact that 2 is the other quadratic non–residue

modulo 5. �

Theorem 5: If p is any prime greater than 3 such that −10 is a quadratic non–

residue modulo p, if u is the reciprocal of 24 modulo p2 and r 6≡ 0 (mod p), then

for all m,

b5(4p
2m + 4u(pr − 7) + 1) ≡ 0 (mod 2).

Proof: If we set n = p2m + u(pr − 7) then

24n + 7 ≡ 24p2m + pr = p(24pm + r) (mod p2)

is divisible by p but not by p2. If 24n+7 = 2x2 +5y2, then 2x2 +5y2 ≡ 0 (mod p)

but 2x2 + 5y2 6≡ 0 (mod p2). This is impossible, so by Theorem 3, b5(4n + 1) ≡ 0

(mod 2). �

Examples: With p = 17, we find that for r 6≡ 0 (mod 17) and all m,

b5(1156m + 340r + 337) ≡ 0 (mod 2).

In particular, with r = 6 (and m replaced by m − 2),

b5(1156m + 65) ≡ 0 (mod 2).

We close with one last observation about the parity of b5(n).

Theorem 6: b5(n) is even for at least 75% of the positive integers n.
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Proof: By Theorem 2, b5(2n) is almost always even, and by Theorem 3, b5(4n+1)

is almost always even.

The latter statement is true because in the prime factorisation of 24n + 7 = 2x2 +

5y2, primes congruent to

3, 17, 21, 27, 29, 31, 33 or 39 (mod 40),

those for which −10 is a quadratic non–residue, necessarily occur to an even power

(3 itself does not occur). The density of such numbers is

1
∏

such p>3

(

1 + 1
p

) = 0. �
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