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Abstract

A partition n = p1+p2+· · ·+pk with 1 ≤ p1 ≤ p2 ≤ · · · ≤ pk is non-
squashing if p1+· · ·+pj ≤ pj+1 for 1 ≤ j ≤ k−1. On their way towards
the solution of a certain box-stacking problem, Sloane and Sellers were
led to consider the number b(n) of non-squashing partitions of n into
distinct parts. Sloane and Sellers did briefly consider congruences for
b(n) modulo 2. In this paper we show that 2r−2 is the exact power of
2 dividing the difference b(2r+1n)− b(2r−1n) for n odd and r ≥ 2.
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1 Introduction

We begin by considering the following combinatorial problem. Suppose we
have boxes with labels 1, 2, 3, . . . A box labeled i weighs i pounds and can
support a total weight of i pounds. We wish to build single stacks of boxes
with distinct labels in such a way that no box will be squashed by the weight
of the boxes above it. What is the number of different ways to build such a
single stack of boxes where the total weight of all the boxes in the stack is
exactly n pounds?

For the sake of precision, let us say that a partition of a natural number
n is non-squashing if, when the parts are arranged in nondecreasing order,
say

n = p1 + p2 + · · ·+ pk with 1 ≤ p1 ≤ p2 ≤ · · · ≤ pk,

we have
p1 + · · ·+ pj ≤ pj+1 for 1 ≤ j ≤ k − 1.

If the boxes in a stack are labeled (from the top) p1, p2, . . . , pk, the stack will
not collapse if and only if the corresponding partition is non-squashing.

It was shown by Hirschhorn and Sellers [1] that the number of non-
squashing partitions of n is equal to the number of “binary partitions” of
n, a much studied partition function. In fact, Hirschhorn and Sellers proved
a more general result, and an alternative proof is given in [4].

Throughout this paper, we will denote the number of non-squashing par-
titions of n into distinct parts by b(n). So the question posed in the opening
paragraph is: What is b(n) for a given positive integer n?

As an example, we see that b(10) = 9 with the following stacks being
allowed:
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Note that the stack
1

2

3

4

is not allowed even though the numbers 1, 2, 3, 4 are distinct and sum to 10.
The bottom box of this stack, which can withstand a combined weight of 4
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pounds, will be squashed by the weight of the boxes above it.
The first several values of the sequence {b(n)}n≥0 can be found in Sloane’s

Online Encyclopedia of Integer Sequences [3, Sequence A088567]. In their
recent work, Sloane and Sellers [4] extensively studied b(n). In particular,
they showed that the generating function B(q) =

∑∞
n=0 b(n)qn satisfies the

functional equation

(1) B(q) =
1

1− q
B(q2)− q2

1− q2
,

and is given explicitly by

(2) B(q) =
1

1− q
+

∞∑
i=1

q3·2i−1∏i
j=0(1− q2j)

.

An immediate consequence of (2) is that b(n), the number of non-squashing
partitions of n into distinct parts, is equal to the number of partitions of n
into non-decreasing powers of 2 such that either all parts are equal to 1 or,
if the largest part has size 2i > 1, then there is also at least one part of size
2i−1 present in the partition.

Sloane and Sellers [4, Corollary 4] did briefly consider congruences for b(n)
modulo 2. Since b(n) can be viewed as a restricted binary partition func-
tion (given the interpretation above), we searched for congruence properties
of b(n) similar to those satisfied by some other restricted binary partition
functions, as studied by Rødseth and Sellers [2], and discovered the following
result.

Theorem 1 For each integer r ≥ 2, we have

(3) b(2r+1n)− b(2r−1n) ≡ 0 (mod 2r−2).

Moreover, no higher power of 2 divides the left hand side of (3) if n is odd.

We prove Theorem 1 using tools developed by Rødseth and Sellers [2] as
well as the functional equation (1).

2 Auxiliaries

The power series in this paper will be elements of Z[[q]], the ring of formal
power series in q with coefficients in Z. We define a Z-linear operator

U : Z[[q]] −→ Z[[q]]
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by

U
∑

n

a(n)qn =
∑

n

a(2n)qn.

Notice that if f(q), g(q) ∈ Z[[q]], then

(4) U(f(q)g(q2)) = (Uf(q))g(q).

Moreover, if f(q) =
∑

n a(n)qn ∈ Z[[q]], g(q) =
∑

n c(n)qn ∈ Z[[q]], and M is
a positive integer, then we have

f(q) ≡ g(q) (mod M) (in Z[[q]])

if and only if, for all n,

a(n) ≡ c(n) (mod M) (in Z).

We shall use below the following identity for binomial coefficients:

(5)

(
2n + r − 1

r

)
=

r∑
i=dr/2e

(−1)r−i22i−r

(
i

r − i

)(
n + i− 1

i

)
.

The truth of this relation follows by expanding both sides of the identity

1

(1− q)2n
=

1

(1− q(2− q))n

and comparing the coefficient of qr on each side of the equation.
Let

hi = hi(q) =
q

(1− q)i+1
, i ≥ 0.

Then

(6) hi =
∞∑

n=1

(
n + i− 1

i

)
qn,

so that

Uhr =
∞∑

n=1

(
2n + r − 1

r

)
qn.
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It follows from (5) and (6) that

(7) Uhr =
r∑

i=dr/2e

(−1)r−i22i−r

(
i

r − i

)
hi

for r ≥ 0.
Next, we recursively define Kr = Kr(q) by

(8) K2 = 23h2 and Ki+1 = U
( 1

1− q
Ki

)
for i ≥ 2. We have the following lemma regarding Kr.

Lemma 1 For 1 ≤ i ≤ r − 1, there exist γr(i) ∈ Z such that

(9) Kr =
r−1∑
i=1

γr(i)hi+1,

where

(10) γr(i) ≡ 0 (mod 2r+i).

Proof. This is a weak version of [2, Lemma 1].

Lemma 2 For r ≥ 2 and 1 ≤ i ≤ r, there exist δr(i) ∈ Z such that

(11) UKr =
r∑

i=1

δr(i)hi,

where

(12) δr(i) ≡ 0 (mod 2r+i).

Proof. This is a weak version of [2, Lemma 2].

Now we define
L2 = 22h2 + h1,

and, for i ≥ 2,

(13) Li+1 = Ki+1 − (UKi)
1

1− q
+ ULi.
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Lemma 3 For r ≥ 2, there exist λr(i) ∈ Z such that

(14) Lr =
r∑

i=1

λr(i)hi,

where

(15) λr(1) ≡ 2r−2 (mod 2r−1)

and

(16) λr(i) ≡ 0 (mod 2r+i−2) for 2 ≤ i ≤ r.

Proof. We use induction on r. The lemma is true for r = 2. Suppose
that for some r ≥ 3 there are integers λr−1(j) such that

(17) Lr−1 =
r−1∑
j=1

λr−1(j)hj,

where

(18) λr−1(1) ≡ 2r−3 (mod 2r−2)

and

(19) λr−1(j) ≡ 0 (mod 2r+j−3) for 2 ≤ j ≤ r − 1.

Then, by (17) and (7),

ULr−1 =
r−1∑
j=1

λr−1(j)Uhj

=
r−1∑
j=1

λr−1(j)

j∑
i=dj/2e

(−1)j−i22i−j

(
i

j − i

)
hi

=
r−1∑
i=1

min(r−1,2i)∑
j=i

(−1)j−i22i−j

(
i

j − i

)
λr−1(j)hi.
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Moreover, by (13), (9), and (11),

Lr = Kr − (UKr−1)
1

1− q
+ ULr−1

=
r−1∑
i=1

γr(i)hi+1 −
r−1∑
i=1

δr−1(i)hi+1 + ULr−1

=
r∑

i=2

γr(i− 1)hi −
r∑

i=2

δr−1(i− 1)hi + ULr−1,

so that (14) holds with

(20) λr(1) = −λr−1(2) + 2λr−1(1),

and, for 2 ≤ i ≤ r,

λr(i) = γr(i− 1)− δr−1(i− 1)(21)

+

min(r−1,2i)∑
j=i

(−1)j−i22i−j

(
i

j − i

)
λr−1(j).

It follows that all the λr(i) are integers. Furthermore, by (19) with j = 2,
(18) and (20), we get (15). Finally, (16) follows from (21), (10), (12), and
(19).

3 Proof of Theorem 1

Throughout this section, the element f(q) of Z[[q]] will simply be written as
f. If the argument is not q, then we will, of course, include the argument in
the notation.

By (7), we have

Uh0 = h0,(22)

Uh1 = 2h1,(23)

Uh2 = 4h2 − h1.(24)

Also notice that

(25) U
1

1− q
=

1

1− q
.
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Using (1) and (4), we find that

UB =
1

1− q
B − q

1− q

=
1

1− q

(
1

1− q
B(q2)− h0(q

2)

)
− h0

=

(
h1 +

1

1− q

)
B(q2)− 1

1− q
h0(q

2)− h0.

Applying U once more, we get, using (4), (22), (23), and (25),

U2B =

(
Uh1 + U

1

1− q

)
B −

(
U

1

1− q

)
h0 − Uh0

=

(
2h1 +

1

1− q

)
B − h1 − h0.

Furthermore,

U2B −B = (2h1 + h0)(B − 1) + h1

= (2h1 + h0)

(
1

1− q
B(q2)− 1

1− q2

)
+ h1

= (2h2 + h1)B(q2)− (2h1 + h0)
1

1− q2
+ h1,

so that, using (22), (23), (24), and (8),

U3B − UB = (2Uh2 + Uh1)B − (2Uh1 + Uh0)
1

1− q
+ Uh1

= 8h2B − 4h2 + h1

= K2(B − 1) + L2.

Thus

(26) U r+1B − U r−1B = Kr(B − 1) + Lr

is true for r = 2. Suppose that (26) holds for some r ≥ 2. Then we have

U r+1B − U r−1B = Kr

(
1

1− q
B(q2)− 1

1− q2

)
+ Lr

=

(
1

1− q
Kr

)
B(q2)−Kr

1

1− q2
+ Lr,
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and applying U we get by (8) and (13),

U r+2B − U rB = Kr+1B − (UKr)
1

1− q
+ ULr

= Kr+1(B − 1) + Lr+1.

Thus (26) holds for all r ≥ 2.
For r ≥ 2, we have, by Lemma 1,

Kr ≡ 0 (mod 2r+1),

and, by Lemma 3,
Lr ≡ 2r−2h1 (mod 2r−1),

so that, by (26) and (6),

∞∑
n=1

(b(2r+1n)− b(2r−1n))qn ≡ 2r−2

∞∑
n=1

nqn (mod 2r−1).

Therefore,
b(2r+1n)− b(2r−1n) ≡ 2r−2n (mod 2r−1),

and this completes the proof of Theorem 1.
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