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Abstract

A partition n = p1+po+- - +pr with 1 < p; < pg <--- < pg is non-
squashing if p1+- - -+p; < pjq1 for 1 < j < k—1. On their way towards
the solution of a certain box-stacking problem, Sloane and Sellers were
led to consider the number b(n) of non-squashing partitions of n into
distinct parts. Sloane and Sellers did briefly consider congruences for
b(n) modulo 2. In this paper we show that 2"~ is the exact power of
2 dividing the difference b(2""'n) — b(2"~1n) for n odd and r > 2.
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1 Introduction

We begin by considering the following combinatorial problem. Suppose we
have boxes with labels 1,2,3,... A box labeled 7 weighs ¢ pounds and can
support a total weight of ¢ pounds. We wish to build single stacks of boxes
with distinct labels in such a way that no box will be squashed by the weight
of the boxes above it. What is the number of different ways to build such a
single stack of boxes where the total weight of all the boxes in the stack is
exactly n pounds?

For the sake of precision, let us say that a partition of a natural number
n is non-squashing if, when the parts are arranged in nondecreasing order,
say

n=p+p+---+pewithl <p; <pp <--- < py,

we have
pr+-tp <pforl<j<k-1

If the boxes in a stack are labeled (from the top) pi, pe, ..., Dk, the stack will
not collapse if and only if the corresponding partition is non-squashing.

It was shown by Hirschhorn and Sellers [1] that the number of non-
squashing partitions of n is equal to the number of “binary partitions” of
n, a much studied partition function. In fact, Hirschhorn and Sellers proved
a more general result, and an alternative proof is given in [4].

Throughout this paper, we will denote the number of non-squashing par-
titions of n into distinct parts by b(n). So the question posed in the opening
paragraph is: What is b(n) for a given positive integer n?

As an example, we see that b(10) = 9 with the following stacks being

allowed:
0] (o] 8] [7] [7] [e] [6] [5] [5]

Note that the stack

—_

\]

[ Jleo] ][]

is not allowed even though the numbers 1, 2, 3, 4 are distinct and sum to 10.
The bottom box of this stack, which can withstand a combined weight of 4
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pounds, will be squashed by the weight of the boxes above it.

The first several values of the sequence {b(n)},>o can be found in Sloane’s
Online Encyclopedia of Integer Sequences [3, Sequence A088567]|. In their
recent work, Sloane and Sellers [4] extensively studied b(n). In particular,
they showed that the generating function B(q) = >~ b(n)q" satisfies the
functional equation

(1) B(q) = —B(¢*) — ——

and is given explicitly by

oo 3.2171

2 B = oyt e oy

An immediate consequence of (2) is that b(n), the number of non-squashing
partitions of n into distinct parts, is equal to the number of partitions of n
into non-decreasing powers of 2 such that either all parts are equal to 1 or,
if the largest part has size 2¢ > 1, then there is also at least one part of size
2=1 present in the partition.

Sloane and Sellers [4, Corollary 4] did briefly consider congruences for b(n)
modulo 2. Since b(n) can be viewed as a restricted binary partition func-
tion (given the interpretation above), we searched for congruence properties
of b(n) similar to those satisfied by some other restricted binary partition
functions, as studied by Rgdseth and Sellers [2], and discovered the following
result.

Theorem 1 For each integer r > 2, we have
(3) b(2"n) —b(27'n) =0 (mod 2772).
Moreover, no higher power of 2 divides the left hand side of (3) if n is odd.

We prove Theorem 1 using tools developed by Rgdseth and Sellers [2] as
well as the functional equation (1).

2 Auxiliaries

The power series in this paper will be elements of Z[[¢]], the ring of formal
power series in g with coefficients in Z. We define a Z-linear operator

U : Zl[q]] — Z[[q]]
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by

UZa(n)q" = Z a(2n)q".

n

Notice that if f(q), g(q) € Z[[¢]], then

(4) U(f(9)9(q®) = (Uf(9)g(q)-

Moreover, if f(q) = >_, a(n)q" € Z[[d]], g(q) = >_,, c(n)q" € Z[[g]], and M is
a positive integer, then we have

fl@)=g(q) (mod M)  (in Z[[]))
if and only if, for all n,
a(n) =c¢(n) (mod M) (in Z).
We shall use below the following identity for binomial coefficients:
2n+r—1 : . i n4+i—1
o ()RR e ()0
The truth of this relation follows by expanding both sides of the identity
1 1

(1—=g?* (1—-q2—q)"

and comparing the coefficient of ¢" on each side of the equation.
Let

q .
hi = hi(q) T i > 0.
Then
(m+i—1\ ,
(6) hi = Z( . )q :
n=1
so that

= (on+r—1 n
UhT:Z( . )q.

n—

—_



It follows from (5) and (6) that

) on= > (1

i=[r/2]

for r > 0.
Next, we recursively define K, = K,(q) by

1

(8) K2 = 23h2 and Ki—l—l = U(l—KZ>
—4q

for ¢ > 2. We have the following lemma regarding K.

Lemma 1 For 1 <i<r—1, there ezist (i) € Z such that

r—1
(9) Kr = Z ’Yr(i)hi+17
=1

where

(10) (i) =0 (mod 2"17).

Proof. This is a weak version of [2, Lemma 1]. m

Lemma 2 Forr > 2 and 1 < i <r, there exist 6,(i) € Z such that

(11) UK, = iér(z‘)hi,

where
(12) 5.(() =0 (mod 2"1).
Proof. This is a weak version of [2, Lemma 2]. m

Now we define
Ly = 2%hy + ha,
and, for ¢ > 2,
1



Lemma 3 Forr > 2, there exist \.(i) € Z such that

(14) L= A(i)h,

=1
where
(15) A(1)=2""% (mod 2"71)
and
(16) A(i) =0 (mod 2"772)  for2 <i<r.

Proof. We use induction on r. The lemma is true for » = 2. Suppose
that for some r > 3 there are integers \,_1(j) such that

r—1
(17) L,y = Z Ar—1(d)h;
j=1

where

(18) Aa(1) =272 (mod 272)

and

(19) A_1(j) =0 (mod 273 for2<j<r—1.

Then, by (17) and (7),
r—1
ULt = Y Aa(j)Uh
j=1
r—1 7 i
= ZAr—l(j) Z (—1)j_i22i_j<' ) hi

i=13/2] J=t

r—1 min(r—1,27) .
_ Z Z J i92i— J( t ))\T 1(5)hs.

j—Z



Moreover, by (13), (9), and (11),

1
L, = K’r—(UKr—l)l

+ ULr—l
r—1 r—1

= Z%(i)hiﬂ - Z Or—1(0)hiy1 + ULy
=1 =1

= Y (i —1hi =Y 61(i— 1)hi + ULy,
i=2 1=2

so that (14) holds with

(20) )\r(l) = _)‘r—1<2) + 2/\r—1(1)7
and, for 2 <1 <,
(1) AG) = i = 1) = beai—1)
min(r—1,2i) o
M P e

It follows that all the A.(i) are integers. Furthermore, by (19) with j = 2,
(18) and (20), we get (15). Finally, (16) follows from (21), (10), (12), and
(19). m

3 Proof of Theorem 1

Throughout this section, the element f(q) of Z|[[¢g]] will simply be written as
f. If the argument is not ¢, then we will, of course, include the argument in
the notation.

By (7), we have

(22) Uho - ho,
(23) Uhi = 2hy,
(24) Uhy, = 4hy — hy.
Also notice that

1 1
2 — = D ——
(25) U™ i



Using (1) and (4), we find that

UB =

1
B_ q
l—gq I—gq

- = (- ho<q2>)—ho

1—qg\1—gq

= OM+T%—>B@5 1_q%()—hu

Applying U once more, we get, using (4), (22), (23), and (25),

U’B =

Furthermore,

U’B— B

so that, using (22),

U’B—-UB

Thus
(26)

(Uh1+U—q) B — <U—q) ho — Uhyg

1
(Wh+———)B—hy—m.
I—gq

= (2h1 + ho)(B—1) + Iy

1
= (2hs + h1)B(q®) — (2h1 + hy) 1= + ha,
(23), (24), and (8),
1
= (2Uhy +Uln)B = (2Uhy + Uho)—— + Uy

- ShQB - 4h2 —+ hl
= Ky(B—1)+ L.

UMNB-U'B=K,(B-1)+L,

is true for r = 2. Suppose that (26) holds for some r > 2. Then we have

1 1
W“B—WIB::&<1 2>+L
1

_ @



and applying U we get by (8) and (13),

1
UT-i-?B—UTB = KT+1B_(UKT)1Tq+ULT
— KT+1<B — 1) —|_ LT+1'

Thus (26) holds for all r > 2.
For r > 2, we have, by Lemma 1,

K,=0 (mod 2",

and, by Lemma 3,
L,=2"2h; (mod 2" 1),

so that, by (26) and (6),

> (B2 ) = b2 )" =22 ng”  (mod 277).
n=1 n=1

Therefore,
b(2" ) —b(2"'n) =27 ?n (mod 2771,

and this completes the proof of Theorem 1.
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