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Abstract

In a recent work, M. Covington discusses the enumeration of two
different sets of alignments of two strings of symbols using elemen-
tary combinatorial techniques. He defines two functions a(m,n) and
A(m,n) to count the number of two–string alignments in his “small”
and “middle” sets of alignments (respectively). He provides a re-
currence for each of these functions which allows for the calculation
of values of a(m,n) and A(m,n). In this note, we obtain generating
functions for each of these functions. With the generating functions in
hand, we provide improvements on Covington’s recurrences, making
the calculation of a(m,n) and A(m,n) much more efficient.
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1 Introduction

In his recent work on distinct alignments of two strings, M. Covington [1]

defines two functions which count certain types of alignments. We briefly

describe the two functions here. Covington defines the function a(m, n) as

the number of distinct alignments of two strings of letters (one of length m

and the other of length n) such that alternating skips are not allowed. That

is, as we align the two strings, we are not allowed places in the alignment

where a skip in one string is immediately followed by a skip in the other

string.

In contrast, Covington defines the function A(m, n) to be the number of

distinct alignments of two strings of length m and n respectively such that

mismatches or double skips are allowed. In [1], he states that the set of

alignments enumerated by A(m, n) is “the best model of the search space for

string matching as generally conceived [2].”

After defining these functions, Covington states the following recurrences

that are satisfied by a(m, n) and A(m,n) respectively:

(1) a(m, n) = a(m− 1, n− 1) +
n−2∑
i=0

a(m− 1, i) +
m−2∑
i=0

a(i, n− 1)

with initial values a(0, n) = a(m, 0) = 1, and

(2) A(m, n) = 2

(
A(m− 1, n− 1) +

n−2∑
i=0

A(m− 1, i) +
m−2∑
i=0

A(i, n− 1)

)

with initial values A(0, n) = A(m, 0) = 1

While these recurrences certainly allow for the calculation of many values

of a(m, n) and A(m, n), they are by no means the most efficient recurrences

possible. Our goal in this work is to simplify these two recurrences. This will

provide dramatic improvements in the calculation of a(m, n) and A(m,n).

In order to find these simplified recurrences, generating functions for a(m, n)

and A(m, n) are developed.
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In Section 2, we determine a closed form for the generating function for

a(m, n) and obtain the following simplified recurrence: For all m,n ≥ 2,

a(m, n) = a(m− 1, n) + a(m,n− 1)− a(m− 2, n− 2)

with the initial conditions a(m, 0) = a(0, n) = 1 for all m, n ≥ 0, a(m, 1) = m

for m ≥ 1, and a(1, n) = n for n ≥ 1

In Section 3, we complete a similar analysis for A(m,n), ultimately prov-

ing the following recurrence: For all m,n ≥ 2,

A(m,n) = A(m− 1, n) + A(m, n− 1)

+ A(m− 1, n− 1)− 2A(m− 2, n− 2)

with the initial conditions A(m, 0) = A(0, n) = 1 for all m, n ≥ 0, A(m, 1) =

2m for m ≥ 1, and A(1, n) = 2n for n ≥ 1

These two simplified recurrences provide very rapid means for computing

the values of a(m,n) and A(m, n).

2 Covington’s “Small Set” and a(m, n)

We open this section with the well-known sum of an (infinite) geometric

sequence.

Lemma 1
∞∑

n=0

xn =
1

1− x
.

Remark. For those concerned about issues of convergence, Lemma 1 is true

only for those values of x such that |x| < 1. However, throughout this work,

we treat all power series as formal so that questions of convergence will not

be considered.

Proof. We have

(1− x)
∞∑

n=0

xn =
∞∑

n=0

xn −
∞∑

n=0

xn+1 =
∞∑

n=0

xn −
∞∑

n=1

xn = 1.
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As a consequence of Lemma 1 we see that

(3)
∞∑

n=0

n∑
i=0

b(i)xn =
∞∑

j=0

xj

∞∑
i=0

b(i)xi =
1

1− x

∞∑
i=0

b(i)xi

for any sequence b(0), b(1), . . . of real numbers.

Now to the generating function for a(m, n). The starting point is recur-

rence relation (1) above. We note in passing that a(m, n) is symmetric in m

and n, that is

(4) a(m, n) = a(n, m) for all m, n ≥ 0.

We can utilize (1) to determine the generating function f(x, y) of a(m, n).

The function f(x, y) is a formal power series in the two variables x and y,

and is defined as

f(x, y) =
∞∑

m=0

∞∑
n=0

a(m, n)xmyn.

Thanks to (4), we note that

f(x, y) = f(y, x).

We shall prefer to rewrite (1) in the form

(5) a(m,n) = −a(m− 1, n− 1) +
n−1∑
i=0

a(m− 1, i) +
m−1∑
i=0

a(i, n− 1)

and will use this version of the recurrence in the work below.

We now find a closed form for the generating function f(x, y). By (5),

we have

f(x, y) =
∞∑

m=0

∞∑
n=0

a(m, n)xmyn

= −a(0, 0) +
∞∑

m=0

a(m, 0)xm +
∞∑

n=0

a(0, n)yn

+
∞∑

m=1

∞∑
n=1

(
−a(m− 1, n− 1) +

n−1∑
i=0

a(m− 1, i) +
m−1∑
i=0

a(i, n− 1)

)
xmyn.
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Using the initial values a(m, 0) = a(0, n) = 1 and Lemma 1, we have

f(x, y) = −1 +
1

1− x
+

1

1− y

+
∞∑

m=0

∞∑
n=0

(
−a(m, n) +

n∑
i=0

a(m, i) +
m∑

i=0

a(i, n)

)
xm+1yn+1

= −1 +
1

1− x
+

1

1− y
− xy

∞∑
m=0

∞∑
n=0

a(m, n)xmyn

+ xy

∞∑
m=0

∞∑
n=0

n∑
i=0

a(m, i)xmyn + xy

∞∑
n=0

∞∑
m=0

m∑
i=0

a(i, n)xmyn.

Moreover, using (3), we obtain

f(x, y) = −1 +
1

1− x
+

1

1− y
− xyf(x, y)

+ xy
∞∑

m=0

1

1− y

∞∑
i=0

a(m, i)xmyi + xy
∞∑

n=0

1

1− x

∞∑
i=0

a(i, n)xiyn

= −1 +
1

1− x
+

1

1− y
− xyf(x, y) +

xy

1− y
f(x, y) +

xy

1− x
f(x, y).

Our task is almost complete. We now perform some routine algebraic sim-

plifications to obtain(
1 + xy − xy

1− x
− xy

1− y

)
f(x, y) = −1 +

1

1− x
+

1

1− y
,

and multiplying through by (1− x)(1− y) = 1− x− y + xy, we get

(1− x− y + x2y2)f(x, y) = 1− xy.

This leads to our desired generating function result for a(m, n).

Theorem 1 The generating function f(x, y) =
∞∑

m=0

∞∑
n=0

a(m, n)xmyn is given

by

f(x, y) =
1− xy

1− x− y + x2y2
.
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As was stated above, we clearly see from this closed form that f(x, y) is

symmetric in x and y; that is, f(x, y) = f(y, x).

Note that f(x, y) can be expanded via a computer algebra system in

order to determine the value of a(m,n) for various choices of m and n. For

example, using MAPLE, we can determine the values of a(10, n) for 0 ≤ n ≤ 49

as follows:

gf:=(1-x*y)/(1-x-y+x^2*y^2):

s1:=series(gf, x, 50):

series(coeff(s1, x, 10), y, 50);

The output generated by these commands looks like the following:

1 + 10 y + 47 y2 + 149 y3 + 386 y4 + 899 y5 + 1948 y6 + 3989 y7

+7804 y8 + 14698 y9 + 26797 y10 + 47491 y11 + 82081 y12 + 138709 y13

+229675 y14 + 373276 y15 + 596340 y16 + 937674 y17 + 1452700 y18

+2219618 y19 + 3347511 y20 + 4986895 y21 + 7343318 y22 + 10694727 y23

+15413452 y24 + 21993802 y25 + 31086431 y26 + 43540813 y27

+60457365 y28 + 83250977 y29 + 113727949 y30 + 154178598 y31

+207488084 y32 + 277268314 y33 + 368014118 y34 + 485287252 y35

+635932171 y36 + 828327931 y37 + 1072681024 y38 + 1381364425 y39

+1769308636 y40 + 2254451050 y41 + 2858250529 y42 + 3606274695 y43

+4528868073 y44 + 5661909901 y45 + 7047671135 y46 + 8735780928 y47

+10784313652 y48 + 13261008362 y49 + O(y50)

The coefficients of the terms y0 through y10 above correspond to the values

in the m = 10 row in Covington [1, Table 2].

Even so, a simplified version of (1) would be much preferred in calculating

a(m,n) for large values of m and n. With Theorem 1 in hand, we can obtain

such a simplified recurrence for a(m, n).
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Theorem 2 For all m,n ≥ 2,

(6) a(m, n) = a(m− 1, n) + a(m,n− 1)− a(m− 2, n− 2)

with the initial conditions a(m, 0) = a(0, n) = 1 for all m, n ≥ 0, a(m, 1) = m

for m ≥ 1, and a(1, n) = n for n ≥ 1.

Proof. By Theorem 1, we know

(1− x− y + x2y2)
∞∑

m=0

∞∑
n=0

a(m,n)xmyn = 1 − xy,

and it follows that

∞∑
m=0

∞∑
n=0

a(m, n)xmyn −
∞∑

m=1

∞∑
n=0

a(m− 1, n)xmyn

−
∞∑

m=0

∞∑
n=1

a(m,n− 1)xmyn +
∞∑

m=2

∞∑
n=2

a(m− 2, n− 2)xmyn

= 1 − xy.

Comparing coefficients of the monomial xmyn for m, n ≥ 2 on both sides

of the above equation yields (6). The conditions a(m, 0) = a(0, n) = 1 are

known from above. Comparing coefficients of xy, we get a(1, 1) = 1. Looking

at xmy for m ≥ 2, we get a(m, 1) = a(m− 1, 1) + a(m, 0) = a(m− 1, 1) + 1,

and induction gives a(m, 1) = m for m ≥ 1. By symmetry, a(1, n) = n for

n ≥ 1.

Next, we find a closed formula for a(m, n). We define the function

µ(m, n) = min{bm/2c, bn/2c},

where bkc equals the largest integer less than or equal to k (and is sometimes

called the floor function). We then apply Lemma 1 to

f(x, y) =
1− xy

1− (x + y − x2y2)
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and find

f(x, y) = (1− xy)
∞∑

r=0

(x + y − x2y2)r

= (1− xy)
∞∑

r=0

∑
i+j+k=r

i,j,k≥0

(−1)k r!

i!j!k!
xi+2kyj+2k

= (1− xy)
∞∑

m=0

∞∑
n=0

µ(m,n)∑
k=0

(−1)k (m + n− 3k)!

k!(m− 2k)!(n− 2k)!
xmyn

=
∞∑

m=0

∞∑
n=0

µ(m,n)∑
k=0

(−1)k (m + n− 3k)!

k!(m− 2k)!(n− 2k)!
xmyn

−
∞∑

m=1

∞∑
n=1

µ(m−1,n−1)∑
k=0

(−1)k (m + n− 2− 3k)!

k!(m− 1− 2k)!(n− 1− 2k)!
xmyn.

Thus we have

(7) a(m, n) =

µ(m,n)∑
k=0

(−1)k (m + n− 3k)!

k!(m− 2k)!(n− 2k)!

−
µ(m−1,n−1)∑

k=0

(−1)k (m + n− 2− 3k)!

k!(m− 1− 2k)!(n− 1− 2k)!
,

where, as usual, an empty sum is taken as zero. This formula is not prac-

tical from a computational perspective, but it does serve as an analogue of

Covington’s formula for A(m,n), the function which enumerates the distinct

alignments in what he calls the “large set” [1, p. 176].

3 Covington’s “Middle Set” and A(m,n)

We next turn our attention to the generating function for A(m, n). We start

with recurrence relation (2) above. We note, as in the case of a(m,n), the

obvious symmetry A(m, n) = A(n, m). Putting

F (x, y) =
∞∑

m=0

∞∑
n=0

A(m, n)xmyn,
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we thus have the generating function symmetry in x and y:

F (x, y) = F (y, x)

We shall prefer to rewrite (2) in the form

(8) A(m,n) = 2

(
−A(m− 1, n− 1) +

n−1∑
i=0

A(m− 1, i) +
m−1∑
i=0

A(i, n− 1)

)
.

We now find a closed form for F (x, y). By (8), we have

F (x, y) = −A(0, 0) +
∞∑

m=0

A(m, 0)xm +
∞∑

n=0

A(0, n)yn

+
∞∑

m=1

∞∑
n=1

2

(
−A(m− 1, n− 1) +

n−1∑
i=0

A(m− 1, i) +
m−1∑
i=0

A(i, n− 1)

)
xmyn.

Using the initial values A(m, 0) = A(0, n) = 1 and Lemma 1, we have

F (x, y) = −1 +
1

1− x
+

1

1− y
− 2

∞∑
m=0

∞∑
n=0

A(m, n)xm+1yn+1

+ 2
∞∑

m=0

∞∑
n=0

n∑
i=0

A(m, i)xm+1yn+1 + 2
∞∑

n=0

∞∑
m=0

m∑
i=0

A(i, n)xm+1yn+1.

Moreover, using (3), we obtain

F (x, y) = −1 +
1

1− x
+

1

1− y
− 2xyF (x, y)

+ 2
∞∑

m=0

1

1− y

∞∑
i=0

A(m, i)xm+1yi+1 + 2
∞∑

n=0

1

1− x

∞∑
i=0

A(i, n)xi+1yn+1

= −1 +
1

1− x
+

1

1− y
− 2xyF (x, y) +

2xy

1− y
F (x, y) +

2xy

1− x
F (x, y).

Thus we have(
1 + 2xy − 2xy

1− x
− 2xy

1− y

)
F (x, y) = −1 +

1

1− x
+

1

1− y
,

and multiplying through by (1− x)(1− y) = 1− x− y + xy, we have

(1− x− y − xy + 2x2y2)F (x, y) = 1− xy.

This leads to the following result.
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Theorem 3 The generating function F (x, y) =
∞∑

m=0

∞∑
n=0

A(m, n)xmyn satis-

fies

F (x, y) =
1− xy

1− x− y − xy + 2x2y2
.

As noted above, it is clear from this result that F (x, y) = F (y, x).

With this closed form of F (x, y) in hand, we can prove the following

simplified recurrence for A(m, n) :

Theorem 4 For all m,n ≥ 2,

A(m,n) = A(m− 1, n) + A(m, n− 1)

+ A(m− 1, n− 1)− 2A(m− 2, n− 2)

with the initial conditions A(m, 0) = A(0, n) = 1 for all m, n ≥ 0, A(m, 1) =

2m for m ≥ 1, and A(1, n) = 2n for n ≥ 1.

Proof. By Theorem 3, we have

(1− x− y − xy + 2x2y2)
∞∑

m=0

∞∑
n=0

A(m, n)xmyn = 1 − xy

and it follows that

∞∑
m=0

∞∑
n=0

A(m,n)xmyn −
∞∑

m=1

∞∑
n=0

A(m− 1, n)xmyn −
∞∑

m=0

∞∑
n=1

A(m, n− 1)xmyn

−
∞∑

m=1

∞∑
n=1

A(m− 1, n− 1)xmyn + 2
∞∑

m=2

∞∑
n=2

A(m− 2, n− 2)xmyn

= 1 − xy.

Comparing coefficients of the monomial xmyn for m,n ≥ 2 gives the recur-

rence relation stated in the theorem. The conditions A(m, 0) = A(0, n) = 1

are known from above. Comparing coefficients of xy, we get A(1, 1) = 2.

Looking at xmy for m ≥ 2, we have A(m, 1) = A(m−1, 1)+A(m, 0)+A(m−
1, 0) = A(m − 1, 1) + 2, and induction gives A(m, 1) = 2m for m ≥ 1. By

symmetry, A(1, n) = 2n for n ≥ 1.
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Although it is true that we can obtain a closed formula for A(m, n) anal-

ogous to (7), we note that such a closed formula is more complicated than

that in (7) and so is omitted here.
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