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Abstract

In a recent work, M. Covington discusses the enumeration of two
different sets of alignments of two strings of symbols using elemen-
tary combinatorial techniques. He defines two functions a(m,n) and
A(m,n) to count the number of two—string alignments in his “small”
and “middle” sets of alignments (respectively). He provides a re-
currence for each of these functions which allows for the calculation
of values of a(m,n) and A(m,n). In this note, we obtain generating
functions for each of these functions. With the generating functions in
hand, we provide improvements on Covington’s recurrences, making

the calculation of a(m,n) and A(m,n) much more efficient.
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1 Introduction

In his recent work on distinct alignments of two strings, M. Covington [1]
defines two functions which count certain types of alignments. We briefly
describe the two functions here. Covington defines the function a(m,n) as
the number of distinct alignments of two strings of letters (one of length m
and the other of length n) such that alternating skips are not allowed. That
is, as we align the two strings, we are not allowed places in the alignment
where a skip in one string is immediately followed by a skip in the other
string.

In contrast, Covington defines the function A(m,n) to be the number of
distinct alignments of two strings of length m and n respectively such that
mismatches or double skips are allowed. In [1], he states that the set of
alignments enumerated by A(m,n) is “the best model of the search space for
string matching as generally conceived [2].”

After defining these functions, Covington states the following recurrences

that are satisfied by a(m,n) and A(m,n) respectively:
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(1) a(m,n):a(m—l,n—l)—k' a(m—l,i)—i—A a(i,n —1)

(2) A(m,n)zQ(A(m—l,n—l)%—nz_: —1z—|—mz:Azn—1)

with initial values A(0,n) = A(m,0) =1

While these recurrences certainly allow for the calculation of many values
of a(m,n) and A(m,n), they are by no means the most efficient recurrences
possible. Our goal in this work is to simplify these two recurrences. This will
provide dramatic improvements in the calculation of a(m,n) and A(m,n).
In order to find these simplified recurrences, generating functions for a(m, n)

and A(m,n) are developed.



In Section 2, we determine a closed form for the generating function for

a(m,n) and obtain the following simplified recurrence: For all m,n > 2,
a(m,n) =a(m—1,n)+a(m,n—1) —a(m—2,n — 2)

with the initial conditions a(m,0) = a(0,n) = 1 for allm,n > 0, a(m,1) =m
form > 1, and a(1,n) =n forn > 1
In Section 3, we complete a similar analysis for A(m,n), ultimately prov-

ing the following recurrence: For all m,n > 2,

A(m,n) =A(m—1,n) + A(m,n — 1)
+Am—1,n—1)—2A(m—2,n—2)
with the initial conditions A(m,0) = A(0,n) =1 for all m,n > 0, A(m, 1) =
2m for m > 1, and A(1,n) =2n forn > 1

These two simplified recurrences provide very rapid means for computing

the values of a(m,n) and A(m,n).

2 Covington’s “Small Set” and a(m,n)

We open this section with the well-known sum of an (infinite) geometric

sequence.

Lemma 1

o N 1
nz:%x T 1z

Remark. For those concerned about issues of convergence, Lemma 1 is true
only for those values of = such that |z| < 1. However, throughout this work,
we treat all power series as formal so that questions of convergence will not
be considered.

Proof. We have

o0 o oo oo [e.9]
(1—x)§ x":E m"—g x”“zg x"—g =1 =
n=0 n=0 =0 =0 et
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As a consequence of Lemma 1 we see that

N\t J Nt — N\
(3) D2 bt =3 @ty bt = 1= bi)
n=0 =0 7=0 1=0 =0
for any sequence b(0),b(1), ... of real numbers.

Now to the generating function for a(m,n). The starting point is recur-
rence relation (1) above. We note in passing that a(m,n) is symmetric in m

and n, that is
(4) a(m,n) = a(n,m) for all m,n > 0.

We can utilize (1) to determine the generating function f(x,y) of a(m,n).
The function f(x,y) is a formal power series in the two variables z and y,
and is defined as

flay) =Y almn)z"y".

m=0 n=0

Thanks to (4), we note that

flz,y) = fly, z).

We shall prefer to rewrite (1) in the form

n—1

(5) a(m,n):—a(m—1,n—1)+2a(m—1,2’)—|—Za(i,n—1)

i=0
and will use this version of the recurrence in the work below.
We now find a closed form for the generating function f(z,y). By (5),

we have
fley) =Y a(m,n)a™y"
m=0 n=0
= —a(0,0) + Z a(m,0)z™ + » a(0,n)y"
m=0 n=0
0o o0 n—1 m—1
+ZZ —a(m—l,n—1)+2a(m—1,z)+ a(z,n—l))xmy”
m=1 n=1 =0 =0



Using the initial values a(m,0) = a(0,n) = 1 and Lemma 1, we have

1 1
S -
+ Z Z (—a(m, n) + Za(m, i)+ a(z,n)) gyt
m=0 n=0 =0 =0
= -1+ - + T —xy;;a(m,n)xmy"
tay) D D alm ey ay) DY alin)amy"
m=0 n=0 =0 n=0 m=0 i=0
Moreover, using (3), we obtain
flo,) = 1+ T+ (e.0)
T,y) = — —— —ayf(x
Y e it ZAC
—l—xymzzoﬂ;a(m,z)x Yy —l—xynZ_OlT;a(z,n)xy
1 1 Ty Ty
-l - o Y ,
Mg xyf(fv,y)Jr1_yf(x,y)+1_xf(x,y)

Our task is almost complete. We now perform some routine algebraic sim-
plifications to obtain
1 1

1—x+1—y’

Ly ry
l—2z 11—y

<1+33y— )f(.r,y):—1+

and multiplying through by (1 —z)(1 —y) =1 — 2 — y + 2y, we get

(I—az—y+2°y)f(z,y) =1 —ay.

This leads to our desired generating function result for a(m,n).

[e.e] (o)

Theorem 1 The generating function f(x,y) = > Y. a(m,n)x™y™ is given
m=0n=0

by

1 -2y




As was stated above, we clearly see from this closed form that f(z,y) is
symmetric in z and y; that is, f(z,y) = f(y, z).

Note that f(x,y) can be expanded via a computer algebra system in
order to determine the value of a(m,n) for various choices of m and n. For
example, using MAPLE, we can determine the values of a(10,n) for 0 < n < 49
as follows:

gf :=(1-xxy) /(1-x-y+x"2%y~2) :

sl:=series(gf, x, 50):

series(coeff(sl, x, 10), y, 50);

The output generated by these commands looks like the following:

1+10y +47y* + 149y 4+ 386 y* + 8999 + 1948 4/° + 398937

+7804 1 4 14698 y” + 26797 ' + 47491 ' + 82081 yy'? + 138709 y**
+229675 y'* + 373276 y'® + 596340 y*¢ 4+ 937674 y'" + 1452700 y'®
+2219618 y'? + 3347511 y*° 4 4986895 y2* + 7343318 y*2 + 10694727 y*
+15413452 y** + 21993802 y*° + 31086431 y*0 + 43540813 3/*7
+60457365 y* 4 83250977 y*° + 113727949 430 4 154178598 ¢3!
4207488084 32 4 277268314 4> + 368014118 y** + 485287252 4/*°
+635932171 3¢ 4 828327931 *" + 1072681024 1y>® + 1381364425
41769308636 3™ + 2254451050 y*! 4 2858250529 y** + 3606274695 y**
+4528868073 y** + 5661909901 y*® 4 7047671135 y* + 8735780928 y*7
+10784313652 3% + 13261008362 y** + O(y°)

The coefficients of the terms 3° through y!'° above correspond to the values
in the m = 10 row in Covington [1, Table 2.

Even so, a simplified version of (1) would be much preferred in calculating
a(m,n) for large values of m and n. With Theorem 1 in hand, we can obtain

such a simplified recurrence for a(m,n).



Theorem 2 For all m,n > 2,
(6) a(m,n) =a(m—1,n)+a(m,n—1) —a(m—2,n — 2)

with the initial conditions a(m,0) = a(0,n) =1 for allm,n >0, a(m, 1) =
form >1, and a(1,n) =n forn > 1.

Proof. By Theorem 1, we know

(1—x—y+x2y2)iia Tyt =1 —zy,

m=0 n=0

and it follows that

ZZamnxy—ZZa —1,n)z™y"

m=0 n=0 m=1 n=0
—ZZamn—l +§:§:a(m—2,n—2)azmy"
m=0 n=1 m=2 n=2
=1-—uay.

Comparing coefficients of the monomial x™y™ for m,n > 2 on both sides
of the above equation yields (6). The conditions a(m,0) = a(0,n) = 1 are
known from above. Comparing coefficients of xy, we get a(1,1) = 1. Looking
at ™y for m > 2, we get a(m,1) = a(m —1,1) + a(m,0) = a(m —1,1) + 1,
and induction gives a(m,1) = m for m > 1. By symmetry, a(1,n) = n for
n > 1. [

Next, we find a closed formula for a(m,n). We define the function

p(m,n) = min{[m/2], [n/2]},

where | k] equals the largest integer less than or equal to & (and is sometimes
called the floor function). We then apply Lemma 1 to

1—ay

T =y =)




and find

o0

flay) =1 —ay)) (x+y—2"P)

r=0

d rl .
_ (1 _ ny) Z Z (_1)kwx +2ky]+2k

r=0 i+j+k=r
1,5,k>0

0o oo p(mn)

(m+n — 3k)! "o
(_1Vkan—2kﬂhz—2kﬂx Y
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p(m,n)
. (m—+n—3k)!
D = 200 = 28)

|xmyn

1)k (m+n—2—3k)!
-1 kl(m —1—2k)l(n— 1 — 2k)

—~

Thus we have

— r (m+n—3k)!
. = =0 = k'(m — 2k)!(n — 2k)!
wim—1,n—1)
K (m+n—2— 3k)!
= Y G 12— 1 2hy

where, as usual, an empty sum is taken as zero. This formula is not prac-
tical from a computational perspective, but it does serve as an analogue of
Covington’s formula for A(m,n), the function which enumerates the distinct

alignments in what he calls the “large set” [1, p. 176].

3 Covington’s “Middle Set” and a(m,n)

We next turn our attention to the generating function for A(m,n). We start
with recurrence relation (2) above. We note, as in the case of a(m,n), the

obvious symmetry A(m,n) = A(n,m). Putting

Fla,y) =) Y Alm,n)a"y",

m=0 n=0
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we thus have the generating function symmetry in = and y:

F(a,y) = F(y, )
We shall prefer to rewrite (2) in the form
n m—1
(8) A(m,n) =2 <—A(m— Ln=1)+> Alm—14)+ Y Ali,n— 1)) .

-1
(
i=0
We now find a closed form for F'(z,y). By (8), we have

F(z,y) = —A(0,0) + > _ A(m,0)2™ + > A(0,n)y

+§:§:2 (—A(m—1,n—1)+§:A(m—1,i)+n§:A(i,n—l)> ™y,

m=1n=1

Using the initial values A(m,0) = A(0,n) = 1 and Lemma 1, we have

1
F(x,y):—l—i—l_x—l———QZZAmn gyt
m=0 n=0

oo 0o m

—i-ZZZZAm i)zt "H—i-ZZZZAZ n)x™Hy" T

m=0 n=0 =0 n=0 m=0 =0
Moreover, using (3), we obtain
1

F(z,y) = oty (,y)
+ 2;::0 ﬁ g(; A(m,i)a"y 42 i 0 i ” Z A(i,n)a Tyt
— ot (x, y>+f—yF< y>+f_—xF<x,y>.
Thus we have
(1 + 2xy — ffyx - ffyy) F(z,y) = . i . i 5

and multiplying through by (1 —z)(1 —y) =1 — 2 — y + zy, we have
(1—2—y—ay+22%°)F(r,y) =1—zy.

This leads to the following result.



Theorem 3 The generating function F(x,y) = > > A(m,n)z™y" satis-
m=0

n=0
fies
1—=zy
F(z,y) =

l—2—y—ay+ 222>
As noted above, it is clear from this result that F(x,y) = F(y, z).
With this closed form of F(z,y) in hand, we can prove the following

simplified recurrence for A(m,n) :

Theorem 4 For all m,n > 2,

A(m,n) =A(m —1,n) +A(m,n —1)
+Am—1,n—1)—2A(m—2,n—2)

with the initial conditions A(m,0) = A(0,n) =1 for all m,n >0, A(m,1) =
2m for m > 1, and A(1,n) = 2n forn > 1.

Proof. By Theorem 3, we have

(1—x—y—xy+2x2y2)ZZAmnx y'=1—ay

m=0 n=0

and it follows that

ZZA(m,n)xmy"—ZZA( —1,n)x™y" —ZZA ,n—1xmy"

m=0 n=0 m=1 n=0 =0 n—=1
S A= L ey 2303 Alm =200 — 2027y
m=1n=1 m=2 n=2
=1-—uay.

Comparing coefficients of the monomial z™y" for m,n > 2 gives the recur-
rence relation stated in the theorem. The conditions A(m,0) = A(0,n) =1
are known from above. Comparing coefficients of zy, we get A(1,1) = 2.
Looking at ™y for m > 2, we have A(m,1) = A(m—1,1)+A(m,0)+A(m —
1,0) = A(m — 1,1) + 2, and induction gives A(m,1) = 2m for m > 1. By
symmetry, A(1,n) =2nforn>1. =

10



Although it is true that we can obtain a closed formula for A(m,n) anal-
ogous to (7), we note that such a closed formula is more complicated than
that in (7) and so is omitted here.
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