
ELEMENTARY PROOFS OF INFINITELY MANY

CONGRUENCES FOR k-ELONGATED PARTITION DIAMONDS

ROBSON DA SILVA, MICHAEL D. HIRSCHHORN, AND JAMES A. SELLERS

Abstract. In 2007, Andrews and Paule published the eleventh paper in their

series on MacMahon’s partition analysis, with a particular focus on broken k-
diamond partitions. On the way to broken k-diamond partitions, Andrews and

Paule introduced the idea of k-elongated partition diamonds. Recently, An-

drews and Paule revisited the topic of k–elongated partition diamonds. Using
partition analysis and the Omega operator, they proved that the generating

function for the partition numbers dk(n) produced by summing the links of

k–elongated plane partition diamonds of length n is given by
(q2;q2)k∞
(q;q)3k+1

∞
for

each k ≥ 1. A significant portion of their recent paper involves proving several
congruence properties satisfied by d1, d2 and d3, using modular forms as their

primary proof tool. In this work, our goal is to extend some of the results

proven by Andrews and Paule in their recent paper by proving infinitely many
congruence properties satisfied by the functions dk for an infinite set of values

of k. The proof techniques employed are all elementary, relying on generating
function manipulations and classical q-series results.

1. Introduction

In 2007, Andrews and Paule [1] published the eleventh paper in their series on
MacMahon’s partition analysis, with a particular focus on the combinatorial objects
that they called broken k-diamond partitions. In that paper, Andrews and Paule
introduced the idea of k-elongated partition diamonds. Recently, Andrews and
Paule [2] revisited the topic of k–elongated partition diamonds. Using partition
analysis and the Omega operator, they proved an elegant representation for the
generating function for the partition numbers dk(n) produced by summing the
links of k–elongated plane partition diamonds of length n. They then proceeded to
prove several congruence properties satisfied by d1, d2 and d3 using modular forms
as their primary proof tool.

More recently, Smoot [8] extended the congruence work of Andrews and Paule,
refining a conjectured infinite family of congruences that appears in [2] and proving
the following via modular forms:

Theorem 1.1. For all α ≥ 0 and for all n ≥ 0 such that 8n ≡ 1 (mod 3α),

d2(n) ≡ 0 (mod 32⌊α/2⌋+1).

In this work, our goal is to extend some of the results proven by Andrews and
Paule in [2] by proving infinitely many congruence properties satisfied by the func-
tions dk for an infinite set of values of k. The proof techniques employed below are
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all elementary, relying on generating function manipulations and classical q-series
results.

As noted in Andrews and Paule [2], we know that the generating functions in
question are of the form

(1)

∞∑
n=0

dk(n)q
n =

fk
2

f3k+1
1

where fr = (1−qr)(1−q2r)(1−q3r)(1−q4r) . . . is the usual q–Pochhammer symbol.
In order to provide the elementary proofs that we desire, we will require a few

well–known q–series results. These results include the following:

Lemma 1.2.
f2
2

f1
=
∑
m≥0

qm(m+1)/2

Proof. This result appears as (1.5.3) in Hirschhorn [6]. □

Lemma 1.3.

f3
1 =

∑
m≥0

(−1)m(2m+ 1)qm(m+1)/2.

Proof. This result appears as (1.7.1) in Hirschhorn [6]. □

Lemma 1.4.

f1 =

∞∑
m=−∞

(−1)mqm(3m−1)/2.

Proof. This result appears as (1.6.1) in Hirschhorn [6]. □

Lemma 1.5.
f5
1

f2
2

=

∞∑
m=−∞

(6m+ 1)qm(3m+1)/2.

Proof. See Berndt [4], Corollary 1.3.21 as well as Hirschhorn [6], (10.7.3). □

Lemma 1.6.

f2
1

f2
=

∞∑
j=−∞

(−1)jqj
2

,(2)

=
f5
8

f2
4 f

2
16

− 2q
f2
16

f8
,(3)

=
f2
9

f18
− 2q

f3f
2
18

f6f9
.(4)

Proof. Identity (2) is equation (22.4) in Berndt [3]; see also Hirschhorn [6], (1.5.8).
The 2-dissection (3) follows immediately from (1.9.4) in Hirschhorn [6]. For a proof
of (4) see [6, (14.3.4)]. □

Lemma 1.7.

f1f2 =
f6f

4
9

f3f2
18

− qf9f18 − 2q2
f3f

4
18

f6f2
9

.

Proof. See Hirschhorn and Sellers [7]. □
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Lemma 1.8.
1

f4
1

=
f14
4

f14
2 f4

8

+ 4q
f2
4 f

4
8

f10
2

.

Proof. This identity is (18) in Brietzke, da Silva, and Sellers [5]. □

Lemma 1.9.
f2
1 f

2
4

f2
=

∞∑
m=−∞

(3m+ 1)q3m
2+2m.

Proof. This result appears as (10.7.6) in Hirschhorn [6]. □

Lemma 1.10.
f5
2

f2
1

=

∞∑
m=−∞

(−1)m(3m+ 1)q3m
2+2m.

Proof. This result appears as (10.7.7) in Hirschhorn [6]. □

Lastly, we close with a well–known result which follows immediately from the
Binomial Theorem and divisibility properties of binomial coefficients.

Lemma 1.11. For all primes p and integers k ≥ 1,

fpk

1 ≡ fpk−1

p (mod pk).

2. Elementary Proofs of Several Congruences from Andrews and
Paule

In their work [2], Andrews and Paule used significant tools based on the work
of Smoot, which are derived from modular forms, in order to prove a number of
congruences for the functions d2 and d3. In this section, we wish to prove the
majority of those results from Andrews and Paule using very elementary tools.

Theorem 2.1 (Corollary 5, [2]). For all n ≥ 0, d2(3n+ 2) ≡ 0 (mod 3).

Proof. We have the following:
∞∑

n=0

d2(n)q
n =

f2
2

f7
1

=
f2
2

f1

1

f6
1

≡ 1

f2
3

∑
m≥0

qm(m+1)/2

 (mod 3)

using Lemma 1.2. Now we simply need to determine whether 3n+2 = m(m+1)/2
for some m and n. Completing the square means this is equivalent to determining
whether

8(3n+ 2) + 1 = (2m+ 1)2

or

24n+ 17 = (2m+ 1)2

or

2 ≡ (2m+ 1)2 (mod 3).
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This congruence never holds because 2 is a quadratic nonresidue modulo 3. Our
result follows. □

Theorem 2.2 (Corollary 10, [2]). For all n ≥ 0, d3(2n+ 1) ≡ 0 (mod 2).

Proof. Note that

∞∑
n=0

d3(n)q
n =

f3
2

f10
1

≡ f3
2

f5
2

(mod 2)

≡ 1

f2
2

(mod 2).

Since 1
f2
2
is an even function of q, the result follows. □

Theorem 2.3 (Corollary 12, [2]). For all n ≥ 0, d3(4n+ 2) ≡ 0 (mod 2).

Proof. Thanks to the proof of Theorem 2.2, we know

∞∑
n=0

d3(n)q
n ≡ 1

f2
2

(mod 2)

≡ 1

f4
(mod 2)

Since 1
f4

is a function of q4, the result follows. □

Theorem 2.4 (Corollary 13, [2]). For all n ≥ 0, d3(4n+ 3) ≡ 0 (mod 4).

Proof. Using the generating function for d3, we have

∞∑
n=0

d3(n)q
n =

f3
2

f10
1

=
f4
2

f12
1

f2
1

f2

≡ f4
2

f6
2

f2
1

f2
(mod 4)

=
1

f2
2

(
f5
8

f2
4 f

2
16

− 2q
f2
16

f8

)
using (3) in Lemma 1.6 above. Extracting the odd parts, dividing by q and replacing
q2 by q, we are left with

∞∑
n=0

d3(2n+ 1)qn ≡ 2
f2
8

f2
1 f4

≡ 2f5
2 (mod 4).

Since f2 is a function of q2 the result follows. □

Theorem 2.5 (Corollary 14, [2]). For all n ≥ 0, d3(5n+ 1) ≡ 0 (mod 5).
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Proof. Using the generating function for d3 which we have seen above, we have

∞∑
n=0

d3(n)q
n =

f3
2

f10
1

≡ f3
2

f2
5

(mod 5)

=
1

f2
5

( ∞∑
m=0

(−1)m(2m+ 1)qm(m+1)

)

using Lemma 1.3 above. We now need to ask whether 5n + 1 can be represented
as m(m+ 1), and this is equivalent to asking whether 4(5n+ 1)+ 1 or 20n+ 5 can
be represented as (2m+ 1)2. If this is the case, then we know

(2m+ 1)2 = 20n+ 5 ≡ 0 (mod 5)

which implies that 2m + 1 ≡ 0 (mod 5). Thanks to the presence of the coefficient
of 2m + 1 in front of the term qm(m+1) in the series above, and the fact that this
2m+ 1 must be divisible by 5, we know that our result follows. □

Theorem 2.6 (Corollary 15, [2]). For all n ≥ 0,

d3(5n+ 3) ≡ 0 (mod 5),

d3(5n+ 4) ≡ 0 (mod 5).

Proof. In the proof of Theorem 2.5, we noted that

∞∑
n=0

d3(n)q
n ≡ 1

f5
2

( ∞∑
m=0

(−1)m(2m+ 1)qm(m+1)

)
(mod 5).

We now need to ask whether 5n + 3 can be represented as m(m + 1), and this
is equivalent to asking whether 4(5n + 3) + 1 or 20n + 13 can be represented as
(2m + 1)2. This would mean that (2m + 1)2 ≡ 3 (mod 5). However, since 3 is a
quadratic nonresidue modulo 5, we know that this cannot be the case. Similarly,
note that

4(5n+ 4) + 1 = 20n+ 17 ≡ 2 (mod 5)

and 2 is the other quadratic nonresidue modulo 5. The two congruences which
appear in the statement of the theorem follow. □

3. New individual Congruences

In this section, we state and prove a set of new individual congruences. We begin
with an extremely unexpected congruence modulo 11 satisfied by the function d2
(one of the functions which received a great deal of attention in Andrews and Paule
[2] and was the primary focus in Smoot’s recent work [8]).

Theorem 3.1. For all n ≥ 0, d2(11n+ 7) ≡ 0 (mod 11).
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Proof. We begin by noting that
∞∑

n=0

d2(n)q
n =

f2
2

f7
1

=
f4
1 f

2
2

f11
1

≡ f4
1 f

2
2

f11
(mod 11).

Replacing q by q2 yields
∞∑

n=0

d2(n)q
2n ≡ f4

2 f
2
4

f22
(mod 11).

Hence, in order to prove our result, we simply need to focus on f4
2 f

2
4 mod 11.

Thanks to Lemma 1.9 and Lemma 1.10, we know

f4
2 f

2
4 =

f5
2

f2
1

f2
1 f

2
4

f2

=

∞∑
j=−∞

(−1)j(3j + 1)q3j
2+2j

∞∑
k=−∞

(3k + 1)q3k
2+2k.

Thus, at this point, we need to ask whether 2(11n+ 7) can be represented as

2(11n+ 7) = 3j2 + 2j + 3k2 + 2k.

This is equivalent to

24(11n+ 7) + 8 = (6j + 2)2 + (6k + 2)2

which implies

(6j + 2)2 + (6k + 2)2 ≡ 0 (mod 11)

and this implies

(3j + 1)2 + (3k + 1)2 ≡ 0 (mod 11).

Thus, if there is a representation of 2(11n+7) as 3j2+2j+3k2+2k, then we know
that 11 divides 3j+1 and 11 divides 3k+1. (Assume this is not true. Then neither
3j + 1 nor 3k + 1 is divisible by 11. However, we know that the quadratic residues
modulo 11 are 1, 3, 4, 5, and 9. So, (3j + 1)2 + (3k + 1)2 ̸≡ 0 (mod 11), which is

a contradiction.) Thus, we now know that the coefficient of q3j
2+2j+3k2+2k in the

series representation for f4
2 f

2
4 , which is (−1)j(3j + 1)(3k + 1), must be congruent

to 0 modulo 11. □

We next prove a theorem which provides congruences for d5, d7, and d11 which
are closely related to Ramanujan’s congruences for p(n) where p(n) denotes the
number of unrestricted partitions of n.

Theorem 3.2. For all n ≥ 0,

d5(5n+ 4) ≡ 0 (mod 5),

d7(7n+ 5) ≡ 0 (mod 7),

d11(11n+ 6) ≡ 0 (mod 11).
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Proof. For prime ℓ, the generating function for dℓ(n) satisfies
∞∑

n=0

dℓ(n)q
n =

f ℓ
2

f3ℓ+1
1

≡ f2ℓ
f3
ℓ

1

f1
(mod ℓ)

=
f2ℓ
f3
ℓ

∞∑
n=0

p(n)qn.

Since f2ℓ/f
3
ℓ is a function of qℓ and p(ℓn + r) ≡ 0 (mod ℓ) for all n ≥ 0 and

(ℓ, r) = (5, 4), (7, 5), and (11, 6), the result follows. □

Next, we focus our attention specifically on the function d7(n).

Theorem 3.3. For all n ≥ 0,

d7(4n+ 2) ≡ 0 (mod 4),(5)

d7(8n+ 5) ≡ 0 (mod 4),(6)

d7(16n+ 9) ≡ 0 (mod 4),(7)

d7(4n+ 3) ≡ 0 (mod 8),(8)

d7(8n+ 4) ≡ 0 (mod 8).(9)

Proof. Using the generating function for d7(n) and (3), it follows that
∞∑

n=0

d7(n)q
n =

f7
2

f22
1

=
f8
2

f24
1

f2
1

f2
(10)

≡ 1

f2
4

(
f5
8

f2
4 f

2
16

− 2q
f2
16

f8

)
(mod 4).(11)

Extracting the even parts from (11) and replacing q2 by q, we are left with
∞∑

n=0

d7(2n)q
n ≡ f5

4

f4
2 f

2
8

≡ 1

f4
(mod 4),

from which (5) follows since 1/f4 is a function of q4.
Extracting the odd parts of (11), dividing by q and replacing q2 by q, we obtain

(12)

∞∑
n=0

d7(2n+ 1)qn ≡ 2
f2
8

f2
2 f4

≡ 2f8 (mod 4).

This means

(13)

∞∑
n=0

d7(4n+ 1)qn ≡ 2f4 (mod 4),

from which (6) follows since f4 is a function of q4.
In a similar way, (13) implies

∞∑
n=0

d7(8n+ 1)qn ≡ 2f2 (mod 4).

Since f2 is a function of q2, (7) follows.
In order to prove (8) and (9), we take (10) modulo 8:

(14)

∞∑
n=0

d7(n)q
n ≡ 1

f4
2

f2
1

f2
(mod 8).
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Thanks to (3) in Lemma 1.6, we see that the odd part of (14) is
∞∑

n=0

d7(2n+ 1)qn ≡ −2
f2
8

f4
1 f4

(mod 8)

= −2
f2
8

f4

(
f14
4

f14
2 f4

8

+ 4q
f2
4 f

4
8

f10
2

)
using Lemma 1.8. It follows that

∞∑
n=0

d7(4n+ 3)qn ≡ 0 (mod 8),

which proves (8).
Using (3), we can extract the even part of (14):

∞∑
n=0

d7(2n)q
n ≡ f5

4

f4
1 f

2
2 f

2
8

(mod 8).

Now, using Lemma 1.8 we extract the even part of the last expression to obtain
∞∑

n=0

d7(4n)q
n ≡ f19

2

f16
1 f6

4

≡ f11
2

f6
4

(mod 8),

from which (9) follows. □

Theorem 3.4. Let p ≥ 5 be a prime and let r, 1 ≤ r ≤ p− 1, be such that 3r + 1
is a quadratic nonresidue modulo p. Then, for all n ≥ 0,

d7(2pn+ 2r + 1) ≡ 0 (mod 4).

Proof. Thanks to Lemma 1.4, we can rewrite (12) as

(15)

∞∑
n=0

d7(2n+ 1)qn ≡ 2

∞∑
m=−∞

q4m(3m−1) (mod 4).

If pn + r = 4m(3m − 1), completing square we obtain 3pn + 3r + 1 = (6m − 1)2,
from which it follows that 3r+1 ≡ (6m− 1)2 (mod p). Since 3r+1 is a quadratic
nonresidue modulo p, there is no m such that pn + r = 4m(3m − 1). Thus, the
coefficient of qpn+r on the right-hand side of (15) is 0 modulo 4, which implies
d7(2(pn+ r) + 1) ≡ 0 (mod 4). □

We next consider a pair of congruences satisfied by the function d8(n).

Theorem 3.5. For all n ≥ 0,

d8(3n+ 2) ≡ 0 (mod 9),(16)

d8(9n+ 3) ≡ 0 (mod 9).(17)

Proof. Using the generating function for d8(n) and (4) in Lemma 1.6, we obtain
∞∑

n=0

d8(n)q
n =

f8
2

f25
1

=
f9
2

f27
1

f2
1

f2

≡ f3
6

f9
3

(
f2
9

f18
− 2q

f3f
2
18

f6f9

)
(mod 9)

=
f3
6 f

2
9

f9
3 f18

− 2q
f2
6 f

2
18

f8
3 f9

,(18)
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from which we immediately deduce (16).
We now extract the terms of the form q3n from both sides of (18) to obtain

∞∑
n=0

d8(3n)q
3n ≡ f3

6 f
2
9

f9
3 f18

(mod 9).

Replacing q3 by q, we are left with

∞∑
n=0

d8(3n)q
n ≡ f3

2 f
2
3

f9
1 f6

≡ f3
2

f3f6
(mod 9)

=
1

f3f6

∑
m≥0

(−1)m(2m+ 1)qm(m+1),

using Lemma 1.3. Since 1/f3f6 is a function of q3 and m(m+ 1) ̸≡ 1 (mod 3), we
see that the coefficient of q3n+1 on the right-hand side of the congruence above is
0 modulo 9. Thus, (17) follows. □

4. New Infinite Families of Congruences

In this section, we provide multiple extensions of the results of Andrews and
Paule above which, in turn, provide new infinite families of congruences satisfied
by the functions dk(n).

The next result is rather surprising, primarily because the moduli in question
range across all primes p ≥ 5. The proof of this theorem follows easily via elemen-
tary generating function manipulations along with a q–series identity (Lemma 1.5
above) of Ramanujan.

Theorem 4.1. Let p ≥ 5 be a prime and let r, 1 ≤ r ≤ p− 1, be such that 24r+1
is a quadratic nonresidue modulo p. Then, for all n ≥ 0 and N ≥ 1,

dpN−2(pn+ r) ≡ 0 (mod pN ).

Proof. The generating function for dpN−2(n) is

∞∑
n=0

dpN−2(n)q
n =

fpN−2
2

f3pN−5
1

=
f5
1

f2
2

fpN

2

f3pN

1

≡ f5
1

f2
2

fpN−1

2p

f3pN−1

p

(mod pN )

using Lemma 1.11. Thanks to Lemma 1.5, we have

(19)

∞∑
n=0

dpN−2(n)q
n ≡

fpN−1

2p

f3pN−1

p

( ∞∑
m=−∞

(6m+ 1)qm(3m+1)/2

)
(mod pN ).

We want to know whether m(3m + 1)/2 = pn + r, for some m and n. This is
equivalent to asking whether 24pn+ 24r+ 1 = (6m+ 1)2, which implies 24r+ 1 ≡
(6m+1)2 (mod p). However 24r+1 is a quadratic nonresidue modulo p. Therefore
dpN−2(pn+ r) ≡ 0 (mod pN ). □

The theorem above is a fairly standard and classic result, providing exactly
(p−1)/2 congruences for each prime p in the case whenN = 1. Interestingly enough,
numerical evidence indicates that there are actually (p− 1)/2+ 1 or (p+1)/2 such
congruences for each prime p when N = 1. We explain this additional “special”
congruence for each prime p ≥ 5 here.
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Theorem 4.2. Let p ≥ 5 be a prime and let t, 1 ≤ t ≤ p− 1, be the unique value
such that 24t+ 1 ≡ 0 (mod p). Then, for all n ≥ 0,

dp−2(pn+ t) ≡ 0 (mod p).

Proof. Thanks to Lemma 1.5 and (19) above, we need to ask whether pn + t =
m(3m + 1)/2 for some integers m and n. Completing the square and considering
the result modulo p yields (6m+1)2 ≡ 24t+1 ≡ 0 (mod p). So p divides (6m+1)2,
which implies that p divides 6m + 1. Since the coefficient of qm(3m+1)/2 in the
series that appears in Lemma 1.5 is exactly 6m + 1, it follows that the coefficient
in question is congruent to 0 modulo p. □

Theorem 4.3. Let p ≥ 5 be a prime and let r, 1 ≤ r ≤ p − 1, be a quadratic
nonresidue modulo p. Then, for all n ≥ 0 and N ≥ 1,

dpN−1(pn+ r) ≡ 0 (mod pN ).

Proof. Using (1), we know that, for prime p ≥ 5,

∞∑
n=0

dpN−1(n)q
n =

fpN−1
2

f3pN−2
1

=
fpN

2

f3pN

1

f2
1

f2

≡
fpN−1

2p

f3pN−1

p

f2
1

f2
(mod pN ) using Lemma 1.11

=
fpN−1

2p

f3pN−1

p

 ∞∑
j=−∞

qj
2


using Lemma 1.6 above. The result immediately follows by recognizing that

fpN−1

2p

f3pN−1
p

is a function of qp and that r has been defined to be a quadratic nonresidue modulo
p. □

We next provide an overarching result which allows us to naturally generalize
Theorems 2.1–2.6 above as well as Theorems 4.1, 4.2, and 4.3.

Theorem 4.4. Let p be a prime, k ≥ 1, j ≥ 0, N ≥ 1, and r be an integer such
that 1 ≤ r ≤ p− 1. If, for all n ≥ 0,

dk(pn+ r) ≡ 0 (mod pN ),

then for all n ≥ 0,

dpN j+k(pn+ r) ≡ 0 (mod pN ).

Proof. Replacing k by pN j + k in (1) we obtain

∞∑
n=0

dpN j+k(n)q
n =

fpN j+k
2

f3pN j+3k+1
1

=
fk
2

f3k+1
1

fpN j
2

f3pN j
1

≡
fpN−1j
2p

f3pN−1j
p

∞∑
m=0

dk(m)qm (mod pN )
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using Lemma 1.11. Note that
fpN−1j
2p

f3pN−1j
p

is a function of qp. Since dk(pn + r) ≡ 0

(mod pN ), it follows that dpN j+k(pn+ r) ≡ 0 (mod pN ). □

Theorem 4.4 provides a tool for writing down infinitely many new congruences
with ease. We exhibit such a list of new congruences below, using a shorthand
notation to consolidate the statement of the results. In what follows, the notation

An+B1, B2, . . . , Bt

means we are considering the set of arithmetic progressions

An+B1, An+B2, . . . , An+Bt.

Corollary 4.5. For all j ≥ 0 and n ≥ 0,

d2j+1(2n+ 1) ≡ 0 (mod 2),(20)

d3j+2(3n+ 2) ≡ 0 (mod 3),(21)

d5j+3(5n+ 1, 3, 4) ≡ 0 (mod 5),(22)

d5j+4(5n+ 2, 3) ≡ 0 (mod 5),(23)

d5j+5(5n+ 4) ≡ 0 (mod 5),(24)

d7j+5(7n+ 2, 3, 4, 6) ≡ 0 (mod 7),(25)

d7j+6(7n+ 3, 5, 6) ≡ 0 (mod 7),(26)

d7j+7(7n+ 5) ≡ 0 (mod 7),(27)

d11j+2(11n+ 7) ≡ 0 (mod 11),(28)

d11j+9(11n+ 3, 5, 6, 8, 9, 10) ≡ 0 (mod 11),(29)

d11j+10(11n+ 2, 6, 7, 8, 10) ≡ 0 (mod 11),(30)

d11j+11(11n+ 6) ≡ 0 (mod 11),(31)

d13j+11(13n+ 3, 4, 6, 7, 8, 10, 11) ≡ 0 (mod 13),(32)

d13j+12(13n+ 2, 5, 6, 7, 8, 11) ≡ 0 (mod 13).(33)

Remark 4.6. The corollary above does not provide an exhaustive list of congru-
ences satisfied by these functions. Our goal in writing these here is to provide the
reader with a representative set of the kinds of congruences that arise within this
family of partition functions.

Proof. (of Corollary 4.5) Thanks to Theorem 4.4, we only have to check the basis
case, j = 0, for all of the above results. To prove (20), we note that taking k = 1
in (1) we are left with

∞∑
n=0

d1(m)qm =
f2
f4
1

≡ 1

f2
(mod 2),

from which we see that d1(2n+ 1) ≡ 0 (mod 2) and then (20) follows.
The basis case for (21) is proven in Theorem 2.1.
The basis cases for the congruences listed in (22) are proven in Theorems 2.5

and 2.6.
The basis cases for (23) and (26) follow from the p = 5 and p = 7 cases of

Theorem 4.3 above, respectively.
The basis cases for (24), (27), and (31) follow from Corollary 3.2 above.
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The basis cases for (25)–(33) follow immediately from Theorems 4.1, 4.2, and
4.3.

The basis case for (28) follows from Theorem 3.1 above.
□

We close this section with two infinite families of congruences modulo 9 which
are closely related to congruences that appear in Andrews and Paule [2].

Theorem 4.7. For all j ≥ 0 and n ≥ 0,

d9j+2(9n+ 5) ≡ 0 (mod 9),

d9j+2(9n+ 8) ≡ 0 (mod 9).

Proof. Using the generating function for d2, we have

∞∑
n=0

d2(n)q
n =

f2
2

f7
1

=
1

f9
1

f2
1 f

2
2

≡ 1

f3
3

f2
1 f

2
2 (mod 9)

≡ 1

f3
3

(
f6f

4
9

f3f2
18

− qf9f18 − 2q2
f3f

4
18

f6f2
9

)2

(mod 9)

using Lemma 1.7 above. Extracting the terms involving q3n+2, dividing by q2 and
replacing q3 by q, we obtain

∞∑
n=0

d2(3n+ 2)qn ≡ −3
f2
3 f

2
6

f3
1

≡ −3
f2
3 f

2
6

f3
≡ −3f3f

2
6 (mod 9).

Since f3 and f6 are functions of q3 it follows that

d2(9n+ 5) ≡ 0 (mod 9),

d2(9n+ 8) ≡ 0 (mod 9),

which provides the basis case for an inductive proof. Thus, let us assume that
d9j+2(9n+ 5) ≡ 0 (mod 9) and d9j+2(9n+ 8) ≡ 0 (mod 9) for some j. In order to
complete the proof, we note that

∞∑
n=0

d9(j+1)+2(n)q
n =

f
9(j+1)+2
2

f
27(j+1)+7
1

=
f9
2

f27
1

f9j+2
2

f27j+7
1

=
f9
2

f27
1

∞∑
m=0

d9j+2(m)qm

≡ f3
6

f3
9

∞∑
m=0

d9j+2(m)qm (mod 9).(34)

Using Lemma 1.3, we have

f3
6 =

∑
k≥0

(−1)k(2k + 1)q3k(k+1).

For all k ≥ 0, we know that 3k(k + 1) ≡ 0, 6 (mod 9), with 3k(k + 1) ≡ 6 (mod 9)
if and only if k ≡ 1, 4, 7 (mod 9), which is equivalent to 2k + 1 ≡ 3, 9, 15 (mod 9).
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Thus, modulo 9, f3
6 becomes

f3
6 ≡

∑
k≥0

akq
9k + 3

∑
k≥0

bkq
9k+6 (mod 9),

for certain integer coefficients ak and bk. Hence, using (34) we obtain

∞∑
n=0

d9(j+1)+2(n)q
n ≡ 1

f3
9

∑
k≥0

akq
9k

∞∑
m=0

d9j+2(m)qm

+3
∑
k≥0

bkq
9k+6

∞∑
m=0

d9j+2(m)qm

 (mod 9).

By the hypothesis, we see that the coefficients of q9n+5 and q9n+8 in the first term
of the congruence above are congruent to 0 modulo 9. For the second term in the
congruence above, namely

(35)
∑

m,k≥0

3bkd9j+2(m)q9k+m+6,

we note that 9k + m + 6 ≡ 5 (mod 9) if and only if m ≡ 8 (mod 9). In this
case, we know that m = 9M + 8 for some M . By (21) in Corollary 4.5, we have
d9j+2(9n+ 8) ≡ 0 (mod 3), for all n, which yields 3bkd9j+2(9M + 8) ≡ 0 (mod 9).
Thus the coefficients of q9n+5 in (35) are congruent to 0 modulo 9. Analogously, we
see that 9k+m+6 ≡ 8 (mod 9) if and only if m ≡ 2 (mod 9). So, m = 9M +2 for
some M . However, we also know from (21) in Corollary 4.5 that d9j+2(9n+2) ≡ 0
(mod 3), for all n. Thus, 3bkd9j+2(9M + 2) ≡ 0 (mod 9), from which we conclude
that the coefficients of q9n+8 in (35) are congruent to 0 modulo 9. □

5. Concluding Remarks

We readily admit that the above results are not an exhaustive list of all of the
congruences satisfied by the functions dk(n). Indeed, there are many other congru-
ences to consider. For example, computational evidence hints at the possibility of
infinite families of congruences modulo arbitrarily high powers of 3 for the function
d11(n) as well as the possibility of infinite families of congruences modulo powers of
2 for d7(n) and d15(n) (in the spirit of the work completed by Smoot for d2 modulo
powers of 3). Indeed, for k = 2j − 1 for some j, it is clear that the generating func-
tion for dk(n) will have a structure that allows for a number of congruences to hold
for small moduli. One must wonder whether an infinite family of congruences,
modulo powers of 2, like the family in Theorem 1.1 holds for these special values
of k. We leave such an investigation to the interested reader.
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