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Abstract

In this paper, our goal is to significantly extend the list of proven
arithmetic properties satisfied by the function that enumerates cubic
partitions which are also 3-cores, namely C3(n), which was studied
extensively by Gireesh in 2017. Our proof techniques are elementary,
including classical generating function manipulations and dissections.
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1 Introduction

A partition of an integer n ≥ 0 is a non-increasing sequence of positive integers,
λ1 ≥ · · · ≥ λs, such that n = λ1 + · · · + λs. The λis are called the parts of
the partition. The number of partitions of n is denoted by p(n), where p(0) is
defined as 1. The study of arithmetic properties of p(n) emerged as a vibrant
area of research since Ramanujan [23] proved a set of congruences for p(n),
including:

p(5n+ 4) ≡ 0 (mod 5),
p(7n+ 5) ≡ 0 (mod 7),
p(11n+ 6) ≡ 0 (mod 11).
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After Ramanujan, significant contributions were given by Watson [25], Atkin
[4], Dyson [14], Andrews and Garvan [2], Ono [22] and Mahlburg [21], among
others. One of the most impressive achievements in the study of arithmetic
properties of p(n) is the following result of Ono [22]: given a prime p ≥ 5, there
exist infinitely many congruences of the type p(An + B) ≡ 0 (mod p). In a
subsequent paper, Ahlgren [1] generalized this result for composite moduli M
that are coprime to 6.

Recently, many authors have extended this study to other partition
functions, see for example [3, 7–13]. Chen [9], for instance, proved many con-
gruences for at(n), the number of t-core partitions of n. We recall that a t-core
partition of n is a partition having none of the hook numbers in its Ferrers
graph divisible by t. As noted in [9], the generating function for the number
of t-core partitions is given by

∞∑
n=0

at(n)qn =
(qt; qt)t∞
(q; q)∞

,

where we use the standard q-series notation (for q < 1)

(a; q)∞ =

∞∏
k=0

(1− aqk).

There are many beautiful congruences for at(n). For example, Garvan, Kim
and Stanton [15] proved that if α is a positive integer and ` = 5, 7, 11, then for
all n ≥ 0,

a`

(
`αn− `2 − 1

24

)
≡ 0 (mod `α).

In 2010, Hei-Chi Chan [7, 8] introduced the cubic partition function, a(n),
in connection with Ramanujan’s cubic continued fraction. In doing so, he noted
that the generating function for a(n) is given by

∞∑
n=0

a(n)qn =
1

(q; q)∞(q2; q2)∞
. (1)

Thanks to (1), we see that cubic partitions of an integer n can be interpreted
as pairs consisting of two partitions whose parts sum to n, with the added
property that all of the parts in the second partition must be even.

A number of authors have since considered arithmetic properties of the
cubic partition function along with similar properties of a number of related
functions. For example, in 2017, Gireesh [16] considered the function, denoted
by C3(n), which gives the number of 3-core cubic partitions. Thus, C3(n)
counts the number of cubic partitions, as described above, where none of the
hook numbers in the Ferrers graph of either of the partitions in question is
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divisible by 3. As noted in [16, Eq. (6)], the generating function for the number
of 3-core cubic partitions is given by

∞∑
n=0

C3(n)qn =
(q3; q3)3∞(q6; q6)3∞
(q; q)∞(q2; q2)∞

, (2)

In [16], the author proved a number of arithmetic properties satisfied by C3(n),
including the fact that C3(3n+ 2) = 3C3(n) for all n. In this paper, our goal
is to significantly extend the list of proven arithmetic properties satisfied by
C3(n) using elementary generating function manipulations and well–known
q–series identities.

This paper is organized as follows. In Section 2, we establish some notation
and recall some useful identities. The 2-, 3-, 4-, and 6-dissections for C3(n) are
the content of Section 3. Section 4 is devoted to presenting and proving the
main results of this paper.

2 Preliminaries

Throughout the remainder of this paper, we define

fk := (qk; qk)∞

in order to shorten the notation. So, we can rewrite (2) as

∞∑
n=0

C3(n)qn =
f33 f

3
6

f1f2
. (3)

We recall Ramanujan’s theta functions

f(a, b) :=

∞∑
n=−∞

a
n(n+1)

2 b
n(n−1)

2 , for ab < 1,

φ(q) := f(q, q) =

∞∑
n=−∞

qn
2

=
f52
f21 f

2
4

, (4)

ψ(q) := f(q, q3) =

∞∑
n=0

qn(n+1)/2 =
f22
f1
. (5)

We recall the classical Jacobi’s identity (see [6, Theorem 1.3.9])

f31 =

∞∑
n=0

(−1)n(2n+ 1)qn(n+1)/2 (6)
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and Euler’s identity (see [19, Eq. (1.6.1)])

f1 =

∞∑
n=−∞

(−1)nqn(3n−1)/2. (7)

We will also require the following 2– and 3–dissections of certain q–series:

Lemma 1 The following identities hold:

f41 =
f104
f22 f

4
8

− 4q
f22 f

4
8

f24
, (8)

f33
f1

=
f34 f

2
6

f22 f12
+ q

f312
f4

, (9)

f23
f21

=
f44 f6f

2
12

f52 f8f24
+ 2q

f4f
2
6 f8f24
f42 f12

, (10)

f3
f31

=
f64 f

3
6

f92 f
2
12

+ 3q
f24 f6f

2
12

f72
, (11)

1

f1f3
=

f28 f
5
12

f22 f4f
4
6 f

2
24

+ q
f54 f

2
24

f42 f
2
6 f

2
8 f12

. (12)

Proof By items (v) and (vi) of [5, Entry 25, p.40] we have φ(−q)2 = φ(q2)2 −
4qψ(q4)2. Using (4) and (5) it follows that

f102
(−q; −q)4∞f44

=
f104
f42 f

4
8

− 4q
f48
f24
.

Using the fact that

(−q; −q)∞ =
f32
f1f4

,

we obtain (8) after simplifications.
Identities (9) and (10) are equivalent to Eq. (22.7.5) and (30.9.9) of [19], respec-

tively. Replacing q by −q in [19, (27.7.3)] yields (11). Finally, identity (12) is [19,
(30.12.3)]. �

Lemma 2 The following identities hold:

1

f1f2
=

f99
f63 f

2
6 f

3
18

+ q
f69
f53 f

3
6

+ 3q2
f39 f

3
18

f43 f
4
6

− 2q3
f618
f33 f

5
6

+ 4q4
f918

f23 f
6
6 f

3
9

, (13)

f32
f31

=
f6
f3

+ 3q
f46 f

5
9

f83 f18
+ 6q2

f36 f
2
9 f

2
18

f73
+ 12q3

f26 f
5
18

f63 f9
. (14)

Proof Identity (13) is equivalent to Eq. (39) of [20]. Identity (14) is Eq. (3.1) in [24].
�
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3 Dissections for C3(n)

We begin by providing an extremely elementary proof of the 2-dissection of
(2).

Theorem 3 We have
∞∑
n=0

C3(2n)qn =
f32 f

5
3

f31 f6
, and (15)

∞∑
n=0

C3(2n+ 1)qn =
f33 f

3
6

f1f2
. (16)

Proof Substituting (9) into (3), we obtain

∞∑
n=0

C3(n)qn =
f34 f

5
6

f32 f12
+ q

f36 f
3
12

f2f4
.

Extracting the even and the odd parts from this identity, we obtain

∞∑
n=0

C3(2n)q2n =
f34 f

5
6

f32 f12
,

∞∑
n=0

C3(2n+ 1)q2n+1 = q
f36 f

3
12

f2f4
.

After dividing the last expression by q and replacing q2 by q in both identities, we
arrive at (15) and (16). �

Remark 1 As noted in [16, Eq. (41)], it follows from (3) and (16) that

C3(2n+ 1) = C3(n).

Now we 3-dissect (3).

Theorem 4 We have
∞∑
n=0

C3(3n)qn =
f2f

9
3

f31 f
3
6

− 2q
f66
f22
, (17)

∞∑
n=0

C3(3n+ 1)qn =
f63
f21

+ 4q
f1f

9
6

f32 f
3
3

, and (18)

∞∑
n=0

C3(3n+ 2)qn = 3
f33 f

3
6

f1f2
. (19)
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Proof Substituting (13) into (3) yields
∞∑
n=0

C3(n)qn =
f6f

9
9

f33 f
3
18

+ q
f69
f23

+ 3q2
f39 f

3
18

f3f6
− 2q3

f618
f26

+ 4q4
f3f

9
18

f36 f
3
9

.

Extracting the terms of the form q3n, q3n+1, and q3n+2 we obtain
∞∑
n=0

C3(3n)q3n =
f6f

9
9

f33 f
3
18

− 2q3
f618
f26

,

∞∑
n=0

C3(3n+ 1)q3n+1 = q
f69
f23

+ 4q4
f3f

9
18

f36 f
3
9

,

∞∑
n=0

C3(3n+ 2)q3n+2 = 3q2
f39 f

3
18

f3f6
.

Dividing these three identities, respectively, by q0, q, and q2 and, then, replacing in
the resulting identities q3 by q, we obtain (17), (18), and (19). �

Remark 2 As noted in [16, Eq. (39)], it follows from (19) that

C3(3n+ 2) = 3C3(n).

The next theorem yields the 4-dissection of (3).

Theorem 5 We have
∞∑
n=0

C3(4n)qn =
f62 f

8
6

f61 f
4
12

− 12q2
f22 f

2
3 f

4
12

f41
, (20)

∞∑
n=0

C3(4n+ 1)qn =
f32 f

5
3

f31 f6
, (21)

∞∑
n=0

C3(4n+ 2)qn = 3
f22 f

12
6

f41 f
2
3 f

4
12

− 4q
f62 f

4
3 f

4
12

f61 f
4
6

, and (22)

∞∑
n=0

C3(4n+ 3)qn =
f33 f

3
6

f1f2
. (23)

Proof Using (8) and (11), we can rewrite (15) as
∞∑
n=0

C3(2n)qn =
f32
f6
f43
f3
f31

=
f32
f6

(
f1012
f26 f

4
24

− 4q3
f26 f

4
24

f212

)(
f64 f

3
6

f92 f
2
12

+ 3q
f24 f6f

2
12

f72

)
. (24)

Expanding the product on the right hand side of (24) and extracting the even and
the odd parts, we obtain

∞∑
n=0

C3(4n)q2n =
f64 f

8
12

f62 f
4
24

− 12q4
f24 f

2
6 f

4
24

f42
, (25)
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∞∑
n=0

C3(4n+ 2)q2n+1 = 3q
f24 f

12
12

f42 f
2
6 f

4
24

− 4q3
f64 f

4
6 f

4
24

f62 f
4
12

. (26)

Thus, (20) follows from (25) after replacing q2 by q. In order to obtain (22), we divide
(26) by q and, then, replace q2 by q.

Identities (21) and (23) follow directly from (15) and (16), respectively, and the
fact that C3(2n+ 1) = C3(n). �

We close this section with the 6-dissection of (3).

Theorem 6 We have
∞∑
n=0

C3(6n)qn = f41 + 12q
f2f

5
6

f1f3
, (27)

∞∑
n=0

C3(6n+ 1)qn =
f2f

9
3

f31 f
3
6

− 2q
f66
f22
, (28)

∞∑
n=0

C3(6n+ 2)qn = 3
f32 f

5
3

f31 f6
, (29)

∞∑
n=0

C3(6n+ 3)qn =
f63
f21

+ 4q
f1f

9
6

f32 f
3
3

, (30)

∞∑
n=0

C3(6n+ 4)qn = 6
f22 f

2
3 f

2
6

f21
, (31)

∞∑
n=0

C3(6n+ 5)qn = 3
f33 f

3
6

f1f2
. (32)

Proof Substituting (14) into (15), we obtain

∞∑
n=0

C3(2n)qn =
f53
f6

(
f6
f3

+ 3q
f46 f

5
9

f83 f18
+ 6q2

f36 f
2
9 f

2
18

f73
+ 12q3

f26 f
5
18

f63 f9

)
.

Now we extract the terms involving q3n and q3n+2, being left respectively with

∞∑
n=0

C3(6n)q3n = f43 + 12q3
f6f

5
18

f3f9
,

∞∑
n=0

C3(6n+ 4)q3n+2 = 6q2
f26 f

2
9 f

2
18

f23
.

After simplifications, we arrive at (27) and (31).
Identities (28) and (30) follow from the fact that C3(2n+ 1) = C3(n) and using

(17) and (18), respectively. Similarly (29) and (32) are direct consequences of the
fact that C3(3n+ 2) = 3C3(n) and the identities (15) and (16), respectively. �
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4 Arithmetic properties of C3(n)

We let dr,m(n) denote the number of divisors d of n with d ≡ r (mod m). In
what follows, we let r{4 + 34}(n) be the number of representations of n as
the sum of a triangular number and three times a triangular number. We know
(see [17, Eq. (1.8)]) that

r{4+ 34}(n) = d1,3(2n+ 1)− d2,3(2n+ 1).

We begin this section with a complete parity characterization of C3(2n).

Theorem 7 For all n ≥ 0, we have

C3(2n) ≡ r{4+ 34}(n) (mod 2).

Proof Using (6) it follows from (15) that

∞∑
n=0

C3(2n)qn ≡ f31 f33 ≡
∞∑

k,l=0

qk(k+1)/2+3l(l+1)/2 (mod 2), (33)

from which the result follows. �

This theorem yields the following infinite family of Ramanujan–like con-
gruences modulo 2.

Corollary 8 Let p be a prime such that p ≡ 5 or 11 (mod 12). Then for all k,m ≥ 0
with p - m, we have

C3

(
2p2k+1m+ p2k+2 − 1

)
≡ 0 (mod 2).

Proof From (33) we have

∞∑
n=0

C3(2n)q8n+4 ≡
∞∑
j,l=0

q(2j+1)2+3(2l+1)2 (mod 2).

Thus C3(2n) ≡ 0 (mod 2) if 8n + 4 is not of the form x2 + 3y2. Since p ≡ 5 or 11

(mod 12) it follows that

(
−3

p

)
= −1, which implies that νp(N) is even if N is of

the form x2 + 3y2.
Since n = p2k+1m+ (p2k+2 − 1)/2, we have

8n+ 4 = 8p2k+1m+ 4p2k+2 = p2k+1(8m+ 4p).

Therefore νp(8n+ 4) is odd and the result follows. �
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Thus, for example, the following congruences hold for all n ≥ 0 thanks to
the above:

C3(50n+ 24 + 10r) ≡ 0 (mod 2), for r ∈ {1, 2, 3, 4},
C3(242n+ 120 + 22r) ≡ 0 (mod 2), for r ∈ {1, 2, . . . , 10},
C3(578n+ 288 + 34r) ≡ 0 (mod 2), for r ∈ {1, 2, . . . , 16}.

The next theorem exhibits a complete parity characterization of C3(3n).

Theorem 9 For all n ≥ 0, we have

C3(3n) ≡

{
1 (mod 2), if n = k(3k + 2),

0 (mod 2), otherwise.

Proof We recall the identity (see [19, p. 273])

Ω(q) =

∞∑
k=−∞

qk(3k+2) =
f22 f3f12
f1f4f6

,

which yields
∞∑

k=−∞
qk(3k+2) ≡ f3f6

f1
≡ f33
f1

(mod 2). (34)

Thus, using (17), we have

∞∑
n=0

C3(3n)qn ≡ f2f
3
3

f31
≡ f33
f1
≡

∞∑
k=−∞

qk(3k+2) (mod 2),

which completes the proof. �

Corollary 10 For all n ≥ 0,

C3(12n+ 6) ≡ 0 (mod 2), and

C3(12n+ 9) ≡ 0 (mod 2).

Proof Since 12n+ 6 = 3(4n+ 2), Theorem 9 implies that we need to know whether
4n + 2 can be written as k(3k + 2) for some integer k. This is equivalent to asking
whether

3(4n+ 2) + 1 = 9k2 + 6k + 1 = (3k + 1)2

for some k. If so, then 12n + 7 would have to be a square. However, 12n + 7 ≡ 3
(mod 4), and there are no squares congruent to 3 modulo 4. Therefore, 4n + 2 can
never be written as k(3k + 2) for any k, which implies the first congruence in this
corollary.
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Similarly, since 12n + 9 = 3(4n + 3), Theorem 9 implies that we need to know
whether 4n+ 3 can be written as k(3k + 2) for some integer k. This is equivalent to
asking whether

3(4n+ 3) + 1 = 9k2 + 6k + 1 = (3k + 1)2

for some k. If so, then 12n + 10 would have to be a square. However, 12n + 10 ≡ 2
(mod 4), and there are no squares congruent to 2 modulo 4. Therefore, 4n + 3 can
never be written as k(3k+ 2) for any k, which implies the second congruence in this
corollary. �

Corollary 11 For all primes p > 3 and all n ≥ 0, we have

C3(3(pn+ r)) ≡ 0 (mod 2),

if 3r + 1 is a quadratic nonresidue modulo p.

Proof Let p > 3 be a prime and 3r+ 1 a quadratic nonresidue modulo p. If pn+ r =
k(3k+2), then r ≡ 3k2+2k (mod p), which implies that 3r+1 ≡ (3k+1)2 (mod p),
a contradiction. Therefore the result follows from Theorem 9. �

Thus, for example, we know that, for all n ≥ 0, the following congruences
hold:

C3(15n+ 6) ≡ 0 (mod 2), C3(33n+ 6) ≡ 0 (mod 2),

C3(15n+ 12) ≡ 0 (mod 2), C3(33n+ 9) ≡ 0 (mod 2),

C3(21n+ 9) ≡ 0 (mod 2), C3(33n+ 12) ≡ 0 (mod 2),

C3(21n+ 12) ≡ 0 (mod 2), C3(33n+ 18) ≡ 0 (mod 2),

C3(21n+ 18) ≡ 0 (mod 2), C3(33n+ 27) ≡ 0 (mod 2).

Now we present a characterization result for the parity of C3(3n+ 1).

Theorem 12 For all n ≥ 0, we have

C3(3n+ 1) ≡

{
1 (mod 2), if n = 2k(3k − 2),

0 (mod 2), otherwise.

Proof By (18) and (34), we have

∞∑
n=0

C3(3n+ 1)qn ≡ f63
f21
≡ f36
f2
≡

∞∑
k=−∞

q2k(3k−2) (mod 2),

from which the result follows. �
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Corollary 13 For all primes p > 3 and all n ≥ 0, we have

C3(3(pn+ r) + 1) ≡ 0 (mod 2),

if (3r + 2)(p+ 1)/2 is a quadratic nonresidue modulo p.

Proof If we had pn+ r = 2k(3k−2), then r ≡ 6k2−4k (mod p), which would imply
that 3r + 2 ≡ 2(3k − 1)2 (mod p). Thus, (3r + 2)(p + 1)/2 ≡ (3k − 1)2 (mod p).
However (3r + 2)(p+ 1)/2 is a quadratic nonresidue modulo p. Therefore the result
follows from Theorem 12. �

Among the infinitely many Ramanujan–Like congruences that the corollary
above yields we have, for example, for all n ≥ 0, the following congruences:

C3(15n+ 10) ≡ 0 (mod 2), C3(33n+ 4) ≡ 0 (mod 2),

C3(15n+ 13) ≡ 0 (mod 2), C3(33n+ 13) ≡ 0 (mod 2),

C3(21n+ 4) ≡ 0 (mod 2), C3(33n+ 19) ≡ 0 (mod 2),

C3(21n+ 16) ≡ 0 (mod 2), C3(33n+ 22) ≡ 0 (mod 2),

C3(21n+ 19) ≡ 0 (mod 2), C3(33n+ 25) ≡ 0 (mod 2).

We next consider parity results for the arithmetic progressions 4n and
4n + 2. We first prove a specific result for C3(4n) which provides additional
Ramanujan–like congruences modulo 2.

Theorem 14 For all n ≥ 0, we have

C3(4n) ≡

{
1 (mod 2), if n = k(k + 1),

0 (mod 2), otherwise.

Proof From Theorem 5 we know
∞∑
n=0

C3(4n)qn =
f62 f

8
6

f61 f
4
12

− 12q2
f22 f

2
3 f

4
12

f41

Thus, we know
∞∑
n=0

C3(4n)qn ≡ f62 f
8
6

f61 f
4
12

≡ f62 f
8
6

f32 f
8
6

≡ f32 (mod 2). (35)

Finally, thanks to (6), we obtain
∞∑
n=0

C3(4n)qn ≡
∞∑
k=0

qk(k+1) (mod 2),

which completes the proof. �

Corollary 15 For all n ≥ 0,

C3(8n+ 4) ≡ 0 (mod 2).
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Proof By (35) and the fact that f32 is an even function of q, we know that C3(4(2n+
1)) = C3(8n+ 4) ≡ 0 (mod 2) for all n ≥ 0. �

Corollary 16 Let p > 2 be a prime. Then, for all n ≥ 0,

C3(4(pn+ r)) ≡ 0 (mod 2),

if 4r + 1 is a quadratic nonresidue modulo p.

Proof If pn+r = k(k+1), then r ≡ k2+k (mod p). Thus, 4r+1 ≡ (2k+1)2 (mod p),
which is impossible since 4r + 1 is a quadratic nonresidue modulo p. Therefore the
result follows from Theorem 14. �

Thus, for example, the following congruences hold for all n ≥ 0 thanks to
the above:

C3(20n+ 4r) ≡ 0 (mod 2), for r ∈ {3, 4},
C3(28n+ 4r) ≡ 0 (mod 2), for r ∈ {1, 3, 4}, and

C3(44n+ 4r) ≡ 0 (mod 2), for r ∈ {3, 4, 5, 7, 10}.

We next turn our attention to the arithmetic progression 4n + 2 to yield
an additional infinite family of congruences.

Theorem 17 For all n ≥ 0, we have

C3(4n+ 2) ≡

{
1 (mod 2), if n = 3k(k + 1),

0 (mod 2), otherwise.

Proof Taking (22) modulo 2 yields

∞∑
n=0

C3(4n+ 2)qn ≡ f22 f
12
6

f41 f
2
3 f

4
12

≡ f36 (mod 2).

Thus, using (6), we obtain

∞∑
n=0

C3(4n+ 2)qn ≡
∞∑
k=0

q3k(k+1) (mod 2),

which completes the proof. �

Corollary 18 For all n ≥ 0,

C3(8n+ 6) ≡ 0 (mod 2),

C3(12n+ 6) ≡ 0 (mod 2), and

C3(12n+ 10) ≡ 0 (mod 2).
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Proof Note that n = 3k(k + 1) is an integer multiple of 6 (because 3k(k + 1) is six
times a triangular number). Therefore, for all n ≥ 0,

C3(4(2n+ 1) + 2) = C3(8n+ 6) ≡ 0 (mod 2),

C3(4(3n+ 1) + 2) = C3(12n+ 6) ≡ 0 (mod 2), and

C3(4(3n+ 2) + 2) = C3(12n+ 10) ≡ 0 (mod 2)

thanks to Theorem 17. �

Corollary 19 Let p > 3 be a prime and let 3−1 be the inverse of 3 modulo p (that
is, 3−1 = (2p+ 1)/3 if p ≡ 1 (mod 3) and 3−1 = (p+ 1)/3 if p ≡ 2 (mod 3)). Then,
for all n ≥ 0,

C3(4(pn+ r) + 2) ≡ 0 (mod 2),

if 3−1(4r + 3) is a quadratic nonresidue modulo p.

Proof If pn + r = 3k(k + 1), then r ≡ 3k2 + 3k (mod p), which implies 4r + 3 ≡
3(2k + 1)2 (mod p). Thus, 3−1(4r + 3) ≡ (2k + 1)2 (mod p) which is not possible
since 3−1(4r+ 3) is a quadratic nonresidue modulo p. Therefore pn+ r is not of the
form 3k(k + 1) and the result follows thanks to Theorem 17. �

Thus, for example, we know the following specific congruences hold thanks
to the above corollary:

C3(20n+ 4r + 2) ≡ 0 (mod 2), for r ∈ {2, 4},
C3(28n+ 4r + 2) ≡ 0 (mod 2), for r ∈ {2, 3, 5}, and

C3(44n+ 4r + 2) ≡ 0 (mod 2), for r ∈ {1, 4, 8, 9, 10}.

The next result presents a complete characterization of C3(2n) modulo 3,
from which we derive an infinite family of congruences modulo 3.

In what follows, given an integer j, we let Dj denote the pentagonal number
j(3j − 1)/2. Given two positive integers α and β, we also define

s{αD+ βD}(n) =
∑
k,l∈Z

αDk+βDl=n

(−1)k+l.

Theorem 20 For all n ≥ 0, we have

C3(2n) ≡ s{6D+ 18D}(n) (mod 3).
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Proof The following congruence follows directly from (15):

∞∑
n=0

C3(2n)qn =
f32 f

5
3

f31 f6
≡ f43 ≡ f3f9 (mod 3).

Thanks to (7) it follows that

∞∑
n=0

C3(2n)qn ≡
∞∑

k,l=−∞
(−1)k+lq3k(3k−1)/2+9l(3l−1)/2 (mod 3), (36)

which completes the proof. �

Corollary 21 For all n ≥ 0,

C3(6n+ 2) ≡ 0 (mod 3), and

C3(6n+ 4) ≡ 0 (mod 3).

Proof Note that n = 3k(3k− 1)/2 + 9l(3l− 1)/2 is clearly a multiple of 3. Therefore,
for all n ≥ 0,

C3(2(3n+ 1)) = C3(6n+ 2) ≡ 0 (mod 3)

and
C3(2(3n+ 2)) = C3(6n+ 4) ≡ 0 (mod 3)

thanks to Theorem 20. �

Of course, the above congruence results also follow immediately from
Theorem 6.

As mentioned before, Theorem 20 yields an infinite family of congruences
modulo 3.

Corollary 22 Let p > 3 be a prime such that p ≡ 5 or 11 (mod 12). Then for all
k,m ≥ 0 with p - m, we have

C3

(
2p2k+1m+ p2k+2 − 1

)
≡ 0 (mod 3).

Proof From (36) we have

∞∑
n=0

C3(2n)q8n+4 ≡
∞∑

k,l=−∞
(−1)k+lq(6k−1)

2+3(6l−1)2 (mod 3).

Thus C3(2n) ≡ 0 (mod 3) if 8n+ 4 is not of the form x2 + 3y2. The rest of the proof
follows the same steps as in the proof of Corollary 8. �

now turn our attention to characterizing C3(αn + β), for some values of
α and β, for higher moduli. We begin with the complete characterization of
C3(4n+ 2) modulo 4.
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Theorem 23 For all n ≥ 0, we have

C3(4n+ 2) ≡ 3 r{34+ 34}(n) (mod 4).

Proof Taking (22) modulo 4 yields

∞∑
n=0

C3(4n+ 2)qn ≡ 3
f22 f

12
6

f41 f
2
3 f

4
12

≡ 3
f126
f23 f

8
6

≡ 3
f46
f23

= 3ψ(q3)2 (mod 4).

Now, using (5), we obtain

∞∑
n=0

C3(4n+ 2)qn ≡ 3

∞∑
k,l=0

q3k(k+1)/2+3l(l+1)/2 (mod 4), (37)

which completes the proof. �

We note that two congruences follow immediately from the proof of
Theorem 23.

Corollary 24 For all n ≥ 0,

C3(12n+ 6) ≡ 0 (mod 4) and

C3(12n+ 10) ≡ 0 (mod 4).

Proof Note from the proof of Theorem 23 that

∞∑
n=0

C3(4n+ 2)qn ≡ 3ψ(q3)2 (mod 4)

so that, modulo 4, the generating function is a function of q3. Therefore, for all n ≥ 0,

C3(4(3n+ 1) + 2) = C3(12n+ 6) ≡ 0 (mod 4)

and
C3(4(3n+ 2) + 2) = C3(12n+ 10) ≡ 0 (mod 4).

�

Theorem 23 yields an infinite family of congruences modulo 4.

Corollary 25 Let p > 3 be a prime. Then, for all k,m ≥ 0 with p - m,

C3(12p2k+1m+ 3p2k+2 − 1) ≡ 0 (mod 4).
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Proof We start by noting that if n = 3k(k + 1)/2 + 3l(l + 1)/2, then 8n + 6 =
3(2k + 1)2 + 3(2l + 1)2. Thus, it follows from (37) that

∞∑
n=0

C3(4n+ 2)q8n+6 ≡ 3

∞∑
k,l=0

q3(2k+1)2+3(2l+1)2 (mod 4).

So, C3(4n+ 2) ≡ 0 (mod 4) if 8n+ 6 is not of the form 3(x2 + y2).
We have n = 3p2k+1m + 3((p2k+2 − 1))/4, which implies that 8n + 6 =

3p2k+1(8m + 2p). Thus, νp(8n + 6) is odd. Therefore 8n + 6 is not of the form
3(x2 + y2) and the result follows. �

In what follows, D represents a pentagonal number. Thus, r{34 + D}(n)
is the number of representations of n as the sum of three times a triangular
number and a pentagonal number. Thanks to [18, Eq. (1.3)] we know that

r{34+D}(n) = d1,12(12n+ 5)− d11,12(12n+ 5).

Theorem 26 For all n ≥ 0, we have

C3(6n+ 4) ≡ 2 r{64+ 2D}(n) (mod 4).

Proof It follows from (31) that
∞∑
n=0

C3(6n+ 4)qn = 6
f22 f

2
3 f

2
6

f21
≡ 2f2f

3
6 (mod 4).

Thanks to (6) and (7), we have
∞∑
n=0

C3(6n+ 4)qn ≡ 2

∞∑
k=−∞

∞∑
l=0

qk(3k−1)+3l(l+1) (mod 4), (38)

from which the result follows. �

Theorem 26 also yields an infinite family of congruences modulo 4.

Corollary 27 Let p > 3 be a prime with p ≡ 3 (mod 4). Then, for all k,m ≥ 0 with
p - m,

C3(6p2k+1m+ 5p2k+2 − 1) ≡ 0 (mod 4).

Proof It follows from (38) that
∞∑
n=0

C3(6n+ 4)q12n+10 ≡ 2

∞∑
k=−∞

∞∑
l=0

q(6k−1)
2+(6l+3)2 (mod 4).

Thus, C3(6n + 4) ≡ 0 (mod 4) if 12n + 10 is not the sum of two squares. However,
here we have n = p2k+1m+ 5(p2k+2 − 1)/6 and, then,

12n+ 10 = 12p2k+1m+ 10p2k+2 = p2k+1(12m+ 10p).

It follows that νp(12n + 10) is odd, which implies that 12n + 10 is not the sum of
two squares and the result follows. �
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Our next theorem exhibits the complete characterization of C3(12n + 1)
modulo 4.

Theorem 28 For all n ≥ 0, we have

C3(12n+ 1) ≡ s{2D+ 2D}(n) (mod 4).

Proof We start by using (11) to extract the even part of (28), which yields
∞∑
n=0

C3(12n+ 1)q2n ≡ f64 f
4
6

f82 f
2
12

≡ f22 (mod 4).

By (7), we have
∞∑
n=0

C3(12n+ 1)qn ≡
∞∑

k,l=−∞
(−1)k+lqk(3k−1)+l(3l−1) (mod 4), (39)

from which the result follows. �

Corollary 29 For all n ≥ 0, C3(24n+ 13) ≡ 0 (mod 4).

Proof Note that k(3k − 1) and l(3l − 1) are each, respectively, twice a pentagonal
number. Thus, n = k(3k − 1) + l(3l − 1) must be even. So, thanks to Theorem 28,
we know that, for all n ≥ 0,

C3(12(2n+ 1) + 1) = C3(24n+ 13) ≡ 0 (mod 4).

�

The above theorem also yields infinitely many Ramanujan–like congruences
modulo 4.

Corollary 30 Let p > 3 be a prime with p ≡ 3 (mod 4). Then, for all k,m ≥ 0 with
p - m,

C3(12p2k+1m+ 2p2k+2 − 1) ≡ 0 (mod 4).

Proof From (39) we have
∞∑
n=0

C3(12n+ 1)q12n+2 ≡
∞∑

k,l=−∞
(−1)k+lq(6k−1)

2+(6l−1)2 (mod 4).

Thus, C3(12n + 1) ≡ 0 (mod 4) if 12n + 2 is not the sum of two squares. However
we have n = p2k+1m+ (p2k+2 − 1)/6, which implies that

12n+ 2 = 12p2k+1m+ 2p2k+2 = p2k+1(12m+ 2p).

It follows that νp(12n+ 2) is odd and, then, 12n+ 2 is not a sum of two squares and
the result follows. �
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Theorem 31 For all n ≥ 0, we have

C3(12n+ 9) ≡ 2 r{64+ 2D}(n) (mod 4).

Proof It follows from (30) that

∞∑
n=0

C3(6n+ 3)qn ≡ f63
f21
≡ f23 f

2
6

f21
(mod 4).

Using (10) we can extract the odd part of both sides of this congruence:

∞∑
n=0

C3(12n+ 9)qn ≡ 2
f2f

4
3 f4f12
f41 f6

≡ 2f2f
3
6 (mod 4).

Finally, using (6) and (7), we have

∞∑
n=0

C3(12n+ 9)qn ≡ 2

∞∑
k=−∞

∞∑
l=0

qk(3k−1)+3l(l+1) (mod 4), (40)

from which the result follows. �

Corollary 32 For all n ≥ 0, C3(24n+ 21) ≡ 0 (mod 4).

Proof Note that n = k(3k − 1) + 3l(l + 1) must be even because k(3k − 1) is twice
a pentagonal number while 3l(l+ 1) is six times a triangular number. Therefore, for
all n ≥ 0,

C3(12(2n+ 1) + 9) = C3(24n+ 21) ≡ 0 (mod 4)

thanks to Theorem 31. �

Theorem 31 also yields an infinite family of congruences modulo 4. The
proof of the next result will be omitted since it is analogous to the proof of
Corollary 27.

Corollary 33 Let p > 3 be a prime with p ≡ 3 (mod 4). Then, for all k,m ≥ 0 with
p - m,

C3(12p2k+1m+ 10p2k+2 − 1) ≡ 0 (mod 4).

We now present the complete characterization of C3(18n+ 2) modulo 4.

Theorem 34 For all n ≥ 0, we have

C3(18n+ 2) ≡ 3 s{2D+ 2D}(n) (mod 4).
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Proof Initially we use (13) to extract from (19) the terms involving q3n:

∞∑
n=0

C3(9n+ 2)qn = 3
f2f

9
3

f31 f
3
6

− 6q
f66
f22
≡ 3

f2f3f6
f31

− 2q
f66
f22

(mod 4).

Now using (11) we can extract the even part on both sides of the last congruence:

∞∑
n=0

C3(18n+ 2)qn = 3
f62 f

4
3

f81 f
2
6

≡ 3f22 (mod 4).

Thanks to (7) this yields

∞∑
n=0

C3(18n+ 2)qn = 3

∞∑
k,l=−∞

(−1)k+lqk(3k−1)+l(3l−1) (mod 4),

which completes the proof. �

Corollary 35 For all n ≥ 0, C3(36n+ 20) ≡ 0 (mod 4).

Proof Note that n = k(3k − 1) + l(3l − 1) is even because each of k(3k − 1) and
l(3l − 1) is twice a pentagonal number. Therefore, for all n ≥ 0,

C3(18(2n+ 1) + 2) = C3(36n+ 20) ≡ 0 (mod 4)

thanks to Theorem 34. �

Theorem 34 also yields an infinite family of congruences modulo 4. The
proof of the next corollary is analogous to the proof of Corollary 30 and will,
therefore, be omitted.

Corollary 36 Let p be a prime with p ≡ 7 or 11 (mod 12). Then, for all k,m ≥ 0
with p - m,

C3(18p2k+1m+ 3p2k+2 − 1) ≡ 0 (mod 4).

The next theorem describes C3(12n + 10) modulo 8 which also yields an
infinite family of congruences modulo 8.

In the next theorem, r{34+ 2D}(n) is the number of representations of n
as three times a triangular number and twice a pentagonal number. We know
(see [18, Eq. (1.4)]) that

r{34+ 2D}(n) = d1,8(24n+ 11)− d7,8(24n+ 11).

Theorem 37 For all n ≥ 0, we have

C3(12n+ 10) ≡ 4 r{64+ 4D}(n) (mod 8).
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Proof We start using (10) to extract the odd parts on both sides of (31):

∞∑
n=0

C3(12n+ 10)qn = 12
f2f

4
3 f4f12
f21 f6

≡ 4f4f
3
6 (mod 8),

where we have used the elementary fact that 4f2j ≡ 4f2j (mod 8). Using (6) and (7),
we obtain

∞∑
n=0

C3(12n+ 10)qn ≡ 4

∞∑
k=−∞

(−1)kq2k(3k−1)
∞∑
l=0

(−1)l(2l + 1)q3l(l+1)

≡ 4

∞∑
k=−∞

∞∑
l=0

q2k(3k−1)+3l(l+1) (mod 8). (41)

This completes the proof. �

Corollary 38 For all n ≥ 0, C3(24n+ 22) ≡ 0 (mod 8).

Proof Note that n = 2k(3k − 1) + 3l(l + 1) is even because 2k(3k − 1) is four times
a pentagonal number and 3l(l + 1) is six times a triangular number. Therefore, for
all n ≥ 0,

C3(12(2n+ 1) + 10) = C3(24n+ 22) ≡ 0 (mod 8)

thanks to Theorem 37. �

As noted above, this theorem yields an infinite family of congruences
modulo 8.

Corollary 39 Let p > 3 be a prime such that p ≡ 5 or 7 (mod 8). Then for all
k,m ≥ 0 with p - m,

C3

(
12p2k+1m+ 11p2k+2 − 1

)
≡ 0 (mod 8).

Proof From (41) we have

∞∑
n=0

C3(12n+ 10)q12n+11 ≡ 4

∞∑
k=−∞

∞∑
l=0

q2(6k−1)
2+(6l+3)2 (mod 8).

It follows that C3(12n+10) ≡ 0 (mod 8) if 12n+11 is not of the form 2x2+y2. Since

p ≡ 5 or 7 (mod 8) we know that

(
−2

p

)
= −1, which implies that νp(N) is even if

N is of the form 2x2 + y2. However, here n = p2k+1m+ 11(p2k+2 − 1)/12. Then

12n+ 11 = 12p2k+1m+ 11p2k+2 = p2k+1(12m+ 11p).

Therefore νp(12n+ 11) is odd and the result follows. �

We close this section with the following modulo 9 complete characterization
of C3(6n+ 2) and, as a consequence, an infinite family of congruences.
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Theorem 40 For all n ≥ 0, we have

C3(6n+ 2) ≡ 3 s{6D+ 18D}(n) (mod 9).

Proof By (29) and the elementary fact 3f3j ≡ 3f3j (mod 9), we have

∞∑
n=0

C3(6n+ 2)qn ≡ 3f43 ≡ 3f3f9 (mod 9).

Using (7), we obtain

∞∑
n=0

C3(6n+ 2)qn ≡ 3

∞∑
k,l=−∞

(−1)k+lq3k(3k−1)/2+9l(3l−1)/2 (mod 9). (42)

This completes the proof. �

Corollary 41 For all n ≥ 0,

C3(18n+ 8) ≡ 0 (mod 9), and

C3(18n+ 14) ≡ 0 (mod 9).

Proof Note that n = 3k(3k− 1)/2 + 9l(3l− 1)/2 is clearly a multiple of 3. Therefore,
for all n ≥ 0,

C3(6(3n+ 1) + 2) = C3(18n+ 8) ≡ 0 (mod 9)

and
C3(6(3n+ 2) + 2) = C3(18n+ 14) ≡ 0 (mod 9)

thanks to Theorem 40. �

Of course, C3(18n+ 8) ≡ 0 (mod 9) because C3(9n+ 8) = 9C3(n).
This theorem yields an infinite family of congruences modulo 9.

Corollary 42 Let p > 3 be a prime such that p ≡ 5 or 11 (mod 12). Then for all
k,m ≥ 0 with p - m, we have

C3

(
6p2k+1m+ 3p2k+2 − 1

)
≡ 0 (mod 9).

Proof From (42) we have

∞∑
n=0

C3(6n+ 2)q8n+4 ≡ 3
∞∑

k,l=−∞
(−1)k+lq(6k−1)

2+3(6l−1)2 (mod 9).

Thus C3(6n+ 2) ≡ 0 (mod 9) if 8n+ 4 is not of the form x2 + 3y2. The rest of the
proof follows the same steps as in the proof of Corollary 8. �
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5 Concluding remarks

While there are certainly more arithmetic properties satisfied by C3(n), we
have successfully demonstrated a significantly extended list of straightforward
results, beyond the arithmetic properties found by Gireesh [16], using elemen-
tary generating function manipulations and well–known q–series identities. The
interested reader may wish to extend this study even further.
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