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Throughout 2007, a great deal of attention was paid to the life and work

of Leonhard Euler (1707–1783), and rightly so! Euler’s enormous impact can

certainly still be felt today. And while his work spans a great many areas of

interest within mathematics, here we focus on one of his earliest pursuits –

determining the sums of particular infinite series.

Summing infinite series was a hot topic in the late 17th and early 18th

centuries. Indeed, Jacob Bernoulli’s Tractatus de Seriebus Infinitus [1] was

of momumental importance in the field. Bernoulli determined the sums of

numerous convergent series very elegantly, making particularly good use of

what we now call “telescoping”. For example, he proved that
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a fact often demonstrated to calculus students. Of course, this means that the
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sum of the reciprocals of the triangular numbers, the numbers 1, 3, 6, 10, 15, . . . ,

is 2.

Another series of interest at the time was

∞∑
n=1

1

n2
,

and finding its sum became known as the Basel Problem. Its solution eluded

the best mathematical minds of the day. (See, for example, Dunham [3, Ch.

3] for more information.) It was accepted that the series converges, and many

had approximated its sum with decent accuracy, but no one was able to find

its exact value. Enter Leonhard Euler.

In 1737, Euler provided the first of his many proofs of the problem. In

this early work, which put him on the map in the eyes of the mathematical

community, Euler proved that
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=

π2

6
,

a result often quoted, but (sadly) rarely proved, in calculus courses.

These two examples, both of which refer to sums of reciprocals of figurate

numbers, serve to motivate a question that does not seem to have received

much attention in the past: namely, what are the sums of the reciprocals of

the other figurate numbers,
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, . . . ?

Interestingly, such a question did arise recently. In the Spring 2007 issue of

the Pi Mu Epsilon Journal, Problem 1147 [6] asked for the sum of the recip-

rocals of the pentagonal numbers. The published solution to that problem

[7] follows lines similar to our work here.

Our goals for this paper are these. First, in arguably Eulerian fashion, we

provide a technique, based on ideas from calculus, that reduces the sums of

reciprocals of figurate numbers to the computation of an integral. We then
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use various tools to compute these integrals. We focus only on the sums of

reciprocals of figurate numbers related to polygons with an even number of

sides (squares as in Euler’s original problem, hexagons, octagons, and so on).

The odd case is similar, and the details are left to the reader.

It is worth noting that the recent papers of Efthimiou [4] and Lesko [5]

discuss results like ours. A book that may be helpful is Davis [2], which deals

with the summability of series.

We begin our analysis by noting that the nth figurate number for a polygon

with a sides is
(a− 2)n2 − (a− 4)n

2
.

(For example, the hexagonal numbers 1, 6, 15, 28, . . . , have the simple for-

mula n(2n− 1).)

Thus, our object of study is
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for even values of a ≥ 6. This can be thought of as twice
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and since the Maclaurin series for ln(1− t) is −
∑∞
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n
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antiderivative of
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Using integration by parts with u = ln(1 − xa−2) and dv = 1
xa−3 dx, we find
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Using a known result (see, for example, [8, p. 75]) for the last integral here,

we find that∫
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which we call F2k+2(x) after setting C = 0. Then
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The first limit can also be evaluated using l’Hospital’s rule, but it is somewhat

more involved. We focus our attention on
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One more application of l’Hospital’s rule shows that the limit here is 0, so
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Therefore, for every integer k ≥ 2,
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It is now straightforward to calculate the values of these series, at least for

certain figurate numbers, and some examples are given in the table.

From a computational perspective, this formula for S2k+2 is quite satis-

factory, especially since it can be evaluated rather handily with a computer

algebra package. Moreover, it is obvious that the difficulty in using this for-

mula lies in obtaining certain values of the sine and cosine functions. Again,

for wise choices of a, this is not a problem.

As frequent instructors of calculus, we are truly heartened to see that such

nice results can be obtained using only elementary topics such as Maclaurin

series, partial fractions, integration by parts, and l’Hospital’s rule, along with

straightforward evaluation of certain trigonometric and logarithmic func-

tions.
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Table 1: Values of Sums of Reciprocals of Figurate Numbers

Number of Sides Name of Polygons Sum of Series

6 Hexagonal 2 ln 2

8 Octagonal
3 ln 3

4
+

√
3π

12

10 Decagonal ln 2 +
π

6

14 Tetrakaidecagonal
2 ln 2

5
+

3 ln 3

10
+

√
3π

10
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