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Abstract

In this note, we consider arithmetic properties of the function

K(n) =
(2n)!(2n + 2)!

(n− 1)!(n + 1)!2(n + 2)!

which counts the number of two–legged knot diagrams with one self–

intersection and n − 1 tangencies. This function recently arose in

a paper by Jacobsen and Zinn–Justin on the enumeration of knots

via a transfer matrix approach. Using elementary number theoretic

techniques, we prove various results concerning K(n), including the

following:

• K(n) is never odd,

• K(n) is never a quadratic residue modulo 3, and

• K(n) is never a quadratic residue modulo 5.
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1 Background

In their recent work [2], Jacobsen and Zinn–Justin consider the problem of
enumerating certain families of alternating knots. Much of their work in-
volves asymptotics and computational enumeration, but in some cases they
give closed formulas for certain types of knot diagrams. In particular, Ja-
cobsen and Zinn–Justin note that the number of two–legged knot diagrams
with one self–intersection and n− 1 tangencies is given by

K(n) =
(2n)!(2n + 2)!

(n− 1)!(n + 1)!2(n + 2)!
. (1)

In this note, our goal is to prove some arithmetic properties for this
function K(n). We do so by considering the computation of K(n) in light
of the following lemma:

Lemma 1.1. The number of factors of a prime p in N !, denoted ordp(N !),
is equal to ∑

k≥1

⌊
N

pk

⌋
.

For a proof of Lemma 1.1, see for example [3, Theorem 2.29].
Such an approach has been used by the authors in another setting [1]. We
begin by defining

cp,k(n) =
⌊

2n

pk

⌋
+

⌊
2n + 2

pk

⌋
−

⌊
n− 1
pk

⌋
− 2

⌊
n + 1
pk

⌋
−

⌊
n + 2
pk

⌋
,

and then introduce the increment

cp,k(n + 1)− cp,k(n) =
(⌊

2n + 4
pk

⌋
−

⌊
2n

pk

⌋)
+

(⌊
n− 1
pk

⌋
−

⌊
n

pk

⌋)
+

(
2

⌊
n + 1
pk

⌋
−

⌊
n + 2
pk

⌋
−

⌊
n + 3
pk

⌋)
of cp,k(n). Note that the increment is periodic with period pk. We then
find a closed form formula for cp,k(n). Thanks to Lemma 1.1, we can use
this closed formula for cp,k(n) to calculate ordp(K(n)) given that

ordp(K(n)) =
∑
k≥1

cp,k(n).

This will then allow us to prove a number of arithmetic properties of K(n).
We now turn our attention to the increment mentioned above.
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Proposition 1.2. If pk ≥ 7, 0 ≤ n < pk then

cp,k(n + 1)− cp,k(n) =


−1 if n = 0, pk − 3, pk − 2

1 if n =
⌊

pk − 3
2

⌋
,

⌊
pk − 1

2

⌋
, pk − 1

0 otherwise.

(2)

Note that since the number of 1’s is equal to the number of −1’s, cp,k(n) is
periodic with period pk.

Hence, we have

Proposition 1.3. If pk ≥ 7, 0 ≤ n < pk then,

cp,k(n) =



0 if 1 ≤ n ≤
⌊

pk − 1
2

⌋
− 1 or n = pk − 1

1 if n = 0,

⌊
pk − 1

2

⌋
, pk − 2

2 if
⌊

pk − 1
2

⌋
+ 1 ≤ n ≤ pk − 3.

(3)

Finally, we note a few special cases of cp,k(n).

Proposition 1.4. If pk ≤ 5, 0 ≤ n < pk, then we have the following:

c2,1(0) = 1 c2,2(0) = 1 c3,1(0) = 1 c5,1(0) = 1
c2,1(1) = 0 c2,2(1) = 1 c3,1(1) = 0 c5,1(1) = 0

c2,2(2) = 1 c3,1(2) = 0 c5,1(2) = 1
c2,2(3) = 0 c5,1(3) = 1

c5,1(4) = 0
Moreover, c2,1(n), c2,2(n), c3,1(n) and c5,1(n) are periodic with period 2,

4, 3 and 5 respectively.

2 Arithmetic Properties of K(n)

In many of the proofs that follow, we will consider the base p representation
of n (where p is some prime) and note that the base p expression of the
least nonnegative residue of n mod pk is simply the base p expression of n

with all but the rightmost k digits truncated.
We also need the following definition:

Definition 2.1. Let m be an integer. We define fp (m) =
m

pordp(m)
.
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Note that fp(m) is multiplicative.
Finally, we note that, for K(n) 6≡ 0 (mod p), we have

K(n) =
(2n)!2

(n− 1)!2(n + 1)!2
· (2n + 1) · 2

n(n + 2)

≡ fp

((
2n

n + 1

))2
fp ((2n + 1)) · fp (2)
fp (n) fp ((n + 2))

(mod p) (4)

We now consider certain arithmetic properties of K(n). We begin with
a parity result for K(n).

2.1 K(n) (mod 2)

Theorem 2.2. For all n ∈ N, K(n) is even.

Proof. Note that the base 2 representation of n contains at least one 1
(unless n = 0). Let k be the least number required so that the rightmost
k digits contain exactly one 0. If k = 1 or k = 2, then by Proposition 1.4,
either c2,1(n) = 1 or c2,2(n) = 1 so ord2(K(n)) ≥ 1. Otherwise, n ≡
2k−1 − 1 (mod 2k), which, by Proposition 1.3, implies that c2,k(n) = 1
and therefore implies that ord2(K(n)) ≥ 1.

We can actually refine our parity result with the following:

Theorem 2.3. ord2(K(n)) = 1 if and only if n = 2k − 1 for some k ∈ N.

Proof. Suppose n = 2k− 1 for some k ∈ N. Then the base 2 representation
of n is a string of k 1’s. Thus, by Propositions 1.3 and 1.4, c2,r(n) = 0
for r ≤ k, c2,k+1(n) = 1 since n = 2k − 1 =

⌊
2k+1−1

2

⌋
, and c2,s(n) = 0 for

s > k + 1. Thus, ord2(K(n)) = 1.
Conversely, suppose ord2(K(n)) = 1. If m is a k-digit (base 2) number

with leading digit 1, then m ≥
⌊

2k−1
2

⌋
+ 1 = 2k−1. Thus, c2,k(m) = 2

unless m = 2k − 2 or 2k − 1 by Propositions 1.3 and 1.4 or unless k ≤ 2.
We can easily dispense with the small cases by noting that 1 and 3 are of
the form 2k − 1 and ord2(K(2)) = 2. If k ≥ 3 and m = 2k − 2 then the
base 2 representation of m is a string of k − 1 1’s followed by a 0. Then
c2,r(m) = 1 for 1 ≤ r ≤ k (and 0 for larger k), so ord2(K(n)) = k > 1.
Hence, n = 2k − 1.
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Corollary 2.4. For every positive integer k 6= 2, there are infinitely many
n for which ord2(K(n)) = k. If ord2(K(n)) = 2, then n = 2.

Proof. We consider a few cases. The case k = 1 is handled in Theorem 2.3.
If k = 3, consider n = 2j + 1 where j > 3. Then, by Propositions 1.3 and
1.4, c2,r(n) = 0 for r = 1, 3, 4, . . . j, j + 2, . . ., c2,2(n) = 1 and c2,j+1(n) = 2.

This means ord2(K(n)) = 3.
Next, suppose k ≥ 4 and consider n = 2j + 2k−2 − 2 where j ≥ k + 1.

Then c2,r(n) = 1 for 1 ≤ r ≤ k − 2, c2,r(n) = 0 for k − 1 ≤ r ≤ j and
r > j + 1, and c2,j+1(n) = 2. Thus, ord2(K(n)) = k.

Finally, we consider the case k = 2. We know that K(2) = 20, and
ord2(20) = 2. Now from the proof of Theorem 2.3, we have already seen
that if m is an r-digit (base 2) number (beginning with 1) where r ≥ 3, then
c2,r(m) = 2, unless m = 2r − 2 or 2r − 1. If m = 2r − 1, then there are no
0’s in the base 2 representation of m, and ord2(K(m)) = 1 by Theorem 2.3.
If m = 2r − 2, then there is only one 0 in the base 2 representation and it
is in the rightmost position. Furthermore, if r ≥ 3, then by the proof of
Theorem 2.3, ord2(K(m)) = r. So we are left in the case that there are 0’s
in the base 2 representation of m in at least one position other than the
rightmost position. Let s be the position of the rightmost 0 other than in the
first digit (1 < s < r). Then either c2,s(m) = 1 or c2,s−1(m) = 1 depending
on if the first digit is 1 or 0. In either case, we now have ord2(K(m)) > 2
(since we also had c2,r(m) = 2).

2.2 K(n) (mod 3)

Theorem 2.5. ord3(K(n)) = 0 precisely when n is either 1 or 2 or n is
one less than, one more than or two more than a sum of distinct powers of
3 each of which is at least 9.

Proof. We can restate the theorem by saying that ord3(K(n)) = 0 precisely
when n = 1 or 2 or, for n > 2, the base 3 representation of n has rightmost
digit 1, the 3’s digit is 0 and the remaining digits are either 1 or 0, or, for
n > 2, the base 3 representation of n has a string of 2’s as its rightmost
digits preceded by a 0, and the remaining digits are either 1 or 0. It is
straightforward to check that in any of these cases, the least nonnegative
residue of n modulo 3k is either 3k − 1 or is between 1 and 3k−1

2 − 1 (note
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that the base 3 representation of 3k−1
2 consists of all 1’s). Thus, c3,k(n) = 0

for all k and therefore ord3(K(n)) = 0 for such n.
Conversely, suppose that ord3(K(n)) = 0. Then c3,k(n) = 0 for all k.

Thus, the least nonnegative residue of n modulo 3k, i.e. the last k digits
of the base 3 representation of n, must either consist of all 2’s or must be
between 1 and 3k−1

2 − 1 inclusive (except when k = 1 in which case the
residue can equal 1). The only numbers that satisfy that criterion are those
numbers described.

Theorem 2.6. For every nonnegative integer k, there are infinitely many
n for which ord3(K(n)) = k.

Proof. If k = 0, we simply refer to Theorem 2.5. Now suppose k > 0,
and consider n = 3k. Then for 1 ≤ r ≤ k, the least nonnegative residue
of n (mod 3r) is 0. Therefore c3,r(n) = 1, and for r > k, c3,r(n) = 0
since n < 3r − 1. Thus, we have ord3(K(n)) = k. Furthermore, if we now
consider n = 3j +3k where j > k, we still have c3,r(n) = 0 for r > k. Thus,
in each of these cases ord3(K(n)) = k.

Next we wish to consider K(n) modulo 3.

Theorem 2.7. K(n) is never congruent to 1 mod 3.

Proof. We first note that, by Theorem 2.5, if n ≡ 0 (mod 3), then K(n) ≡
0 (mod 3). Thus, we only consider n ≡ 1 or 2 (mod 3).

We now divide into cases.
If n ≡ 1 (mod 3), then we know by Theorem 2.5 that n = 3j1 + 3j2 +

· · ·+ 3ji + 1 for some j1 > j2 > · · · > jr > 1, so

2n + 1 = 2 · 3j1 + 2 · 3j2 + · · ·+ 2 · 3jr + 3.

Therefore,

f3 ((2n + 1)) = 2 · 3j1−1 + 2 · 3j2−1 + · · ·+ 2 · 3jr−1 + 1.

Similarly,
f3 ((n + 2)) = 3j1−1 + · · ·+ 3jr−1 + 1.

Since ji ≥ 2 for 1 ≤ i ≤ r, both f3 ((2n + 1)) and f3 ((n + 2)) are congruent
to 1 (mod 3). Thus, combining this with (4), we have

K(n) ≡ f3

((
2n

n + 1

))2
f3 ((2n + 1)) · 2

f3 (n) f3 ((n + 2))
≡ 1 · 2

1 · 1
≡ 2 (mod 3).
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If n ≡ 2 (mod 3), then by (4) we have

K(n) ≡ f3

((
2n

n + 1

))2
f3 ((2n + 1)) · 2

f3 (n) f3 ((n + 2))
≡ 2 · 2

2 · 1
≡ 2 (mod 3).

Thus, in each of these cases, K(n) ≡ 2 (mod 3).

2.3 K(n) (mod 5)

Theorem 2.8. ord5(K(n)) = 0 precisely when n = 1 or n is one less than
or one more than a sum of positive powers of 5 each of which is allowed to
occur at most twice.

Proof. We can restate the theorem by saying that ord5(K(n)) = 0 precisely
when n = 1 or, for n > 1, the base 5 representation of n has rightmost digit
1, and the remaining digits are either 2,1 or 0, or, for n > 1, the base
5 representation of n has a string of 4’s as its rightmost digits, and the
remaining digits are either 2, 1 or 0 except that the digit just preceding the
string of 4’s is not allowed to be 2. It is straightforward to check that in any
of these cases, the least nonnegative residue of n modulo 5k is either 5k− 1
or is between 1 and 5k−1

2 − 1 (note that the base 5 representation of 5k−1
2

consists of all 2’s). Thus, c5,k(n) = 0 for all k and therefore ord5(K(n)) = 0
for such n.

Conversely, suppose that ord5(K(n)) = 0. Then c5,k(n) = 0 for all k.
Thus, the least nonnegative residue of n modulo 5k, i.e. the last k digits
of the base 5 representation of n, must either consist of all 4’s or must
be between 1 and 5k−1

2 − 1 inclusive. The only numbers that satisfy that
criterion are those numbers described.

Theorem 2.9. For every nonnegative integer k, there are infinitely many
n for which ord5(K(n)) = k.

Proof. If k = 0, we simply refer to Theorem 2.8. Now suppose k > 0,
and consider n = 5k. Then for 1 ≤ r ≤ k, the least nonnegative residue
of n (mod 5r) is 0. Therefore c5,r(n) = 1, and for r > k, c5,r(n) = 0
since n < 5r − 1. Thus, we have ord5(K(n)) = k. Furthermore, if we now
consider n = 5j +5k where j > k, we still have c5,r(n) = 0 for r > k. Thus,
in each of these cases ord5(K(n)) = k.
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Next we wish to consider K(n) modulo 5.

Theorem 2.10. K(n) is never congruent to 1 or 4 mod 5.

Proof. We first note that, by Theorem 2.8, if n ≡ 0, 2, or 3 (mod 5), then
K(n) ≡ 0 (mod 5). Thus, we only consider values n ≡ 1 or 4 (mod 5).

We now divide into cases.
If n ≡ 1 (mod 5), then by (4), we have

K(n) ≡ f5

((
2n

n + 1

))2
f5 ((2n + 1)) · 2

f5 (n) f5 ((n + 2))
≡ ±3 · 2

1 · 3
≡ ±2 (mod 5).

If n ≡ 4 (mod 5), then

K(n) ≡ f5

((
2n

n + 1

))2
f5 ((2n + 1)) · 2

f5 (n) f5 ((n + 2))
≡ ±4 · 2

4 · 1
≡ ±2 (mod 5).

Thus, in each of these cases, K(n) ≡ ±2 (mod 5). In other words,
K(n) is never congruent to 1 or 4 mod 5.

3 Concluding Thoughts

We conclude by noting the desire to see knot–theoretic proofs of Theorems
2.7 and 2.10. Moreover, we wonder whether there is some significance to
the fact that Theorems 2.7 and 2.10 are clearly related to the quadratic
residues modulo 3 and 5 (respectively).
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