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ABSTRACT. In a recent work, Bringmann, Dousse, Lovejoy, and
Mahlburg defined the function #(n) to be the number of overpar-
titions of weight n where (i) the difference between two successive
parts may be odd only if the larger part is overlined and (ii) if
the smallest part is odd then it is overlined. In their work, they
proved that t(n) satisfies an elegant congruence modulo 3, namely,
forn > 1,

#(n) (=1)k*1  (mod 3) if n = k? for some integer k,

n) =
0 (mod 3) otherwise.

In this work, using elementary tools for manipulating generating
functions, we prove that ¢ satisfies a corresponding parity result.
We prove that, for all n > 1,

7(2n) = 1 (mod2) ifn=(3k+1)* for some integer k,
|10 (mod 2) otherwise.
We also provide a truly elementary proof of the mod 3 charac-

terization of Bringmann, et.al., as well as a number of additional
congruences satisfied by #(n) for various moduli.
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1. INTRODUCTION

In a recent work, Bringmann, Dousse, Lovejoy, and Mahlburg [2]
defined the function #(n) to be the number of overpartitions of weight
n where (i) the difference between two successive parts may be odd
only if the larger part is overlined and (ii) if the smallest part is odd
then it is overlined. For example, t(4) = 8 where the overpartitions in
question are given by the following:

4,43+1,3+1,2+2,2+22+1+1,1+1+1+1
1
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By considering certain g—difference equations, the authors prove that
the generating function for #(n) is given by

Zyv o J3
2 1" =7

where
fo=(1=¢"A =1 =) ...
They also proved that ¢(n) satisfies an elegant congruence modulo 3.

Theorem 1.1. For alln > 1,
f(n) — (_1>k+1 (mod 3) if n = k? for some integer k,
00 (mod 3) otherwise.

In this work, using elementary tools for manipulating generating
functions, we prove that ¢ satisfies a corresponding parity result.

Theorem 1.2. For alln > 1,

i(2n) = 1 (mod2) ifn=(3k+1)* for some integer k,
|0 (mod 2) otherwise.

We also provide a truly elementary proof of the mod 3 character-
ization provided by Bringmann, et.al., as well as proofs of a number
of additional congruences satisfied by #(n) for various moduli. We list
these additional congruences here:

Theorem 1.3. For all n > 0,

(1) t(24n+4) =0 (mod 4),
(2) t(32n+4) =0 (mod 4),
(3) 1(48n +36) =0 (mod 4).
Theorem 1.4. For all n > 0,

(4) t(16n+14) =0 (mod 12),
(5) t(24n+22) =0 (mod 12),
(6) t(32n+28) =0 (mod 12),
(7) 1(48n +24) =0 (mod 12),
(8) t(48n +40) =0 (mod 12),
(9) t(48n+42) =0 (mod 12)

Theorem 1.5. For alln > 0,
t(8n+5)=0 (mod9).



2. PRELIMINARY TOOLS

In the work below, we will utilize the following functions.

o0 5
= Z an = %7

n=-—00 174

oo oo 2
o n(n+1)/2 __ 2n24n __ J2
= ) q =) =7
_ B

fs’
- i gBr+n/2 f2f:>?7

2. fifo

2 Fifids
AR

fofs

The functions ¢(q) and 1(q) are classical theta functions of Ramanujan,
while b(q) was introduced by Borwein, Borwein, and Garvan [1]; see [4,
Chapter 22]. The functions II(q) and (q) are featured in [4, Chapter
26]. The function X(g) was introduced by Chan [3]; see [4, Section

14.3].

We will also make use of various lemmas. First, we note the following

2—dissections:

Lemma 2.1.

L g, P
T T

Proof. This follows directly from [4, (1.9.4)]. |
Lemma 2.2.

Lo fohefsy qf2f82f12f48

fs fifshs fafg fiofoa
Proof. See [4, (30.10.1)]. |
Lemma 2.3.

fi _ Difabufh  fofths

f ffshafis " f3fiefa

Proof. See [4, (30.10.3)]. |
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Lemma 2.4.

LSy fifefa

W= mnn T RER
Proof. See [4, (30.12.1)]. |
Lemma 2.5. 1 f 1
blg) = J4 _ g, )2]12
=Yg
Proof. See [4, (22.1.13)]. |
Lemma 2.6. ) 1o f21 52
_ J4Js aJeJi2
o) BT
Proof.
1 (=9)
b(q) b(q)b(—q)
_fifs (f4 fzfu) ,
= 92 \ s +3 f4f6 using Lemma 2.5
_ B Bl
Coart
|
Next, we call out three 3-dissections which we require.
Lemma 2.7. 12 f r
oy J9 o J3Ji8
A= T gy
Proof. See [4, (14.3.3)]. |
Lemma 2.8.
¥(g) = 1(¢*) + v ().
Proof. See [4, (14.3.3)]. |
Lemma 2.9.
Jife = fofis ( (1q 3) —q—2q2X( ))
Proof. See [4, (14.3.1)]. |

We also make use of the following congruences.

Lemma 2.10.
fi=T(q) (mod 2).



Proof. Euler’s product [4, (1.6.1)] yields

o0

fi = Z (_1)nq(3n2+n)/2
= Z q(3n2+n)/2 (mod 2)
= 1I(q).

Lemma 2.11.
fi =v(q) (mod 4).
Proof. Jacobi’s cube of Euler’s product [4, (1.7.1)] yields

fio= D (=0 @nt g

n>0
= f: (4n+1)q2”2+”
= f: @ (mod 4)
= Y(q).
Lemma 2.12.
f3
Q(q)EE (mod 2).
Proof.
f3 fs frz
A=,
S (mod 2)
= 7 )

With the above tools in hand, we are prepared to prove all of the

theorems mentioned above in elementary fashion.
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3. PrROOFS OF THEOREMS 1.1-1.5

We begin this section by providing a truly elementary proof of The-
orem 1.1 which was originally proven in [2].

Proof. (of Theorem 1.1) We have

<\ I3
2t = 5
i
flf?
Ii
fo
= ¢(—q)

o0

= > (=1

k=—o00

= 142 Z(—l)qu2

k>1

1+ (-1D)F¢"  (mod 3).

k>1

(mod 3)

The result follows. |

Remark 3.1. Theorem 1.1 provides an immediate proof of the mod-
ulo 8 “portion” of the congruences listed in Theorem 1.4. One simply
needs to show that there are no squares in the arithmetic progressions
in question; this requires a simple set of straightforward calculations.
Hence, in what follows, we only focus on the modulo 4 portion of those
congruences listed in Theorem 1.4.

We next turn to an elementary proof of Theorem 1.2 in the spirit of
the proof of Theorem 1.1 just provided.

Proof. (of Theorem 1.2) We have

Yime = L

n>0 f1f2
_ 15
T hhA

_ i(f4f6f16f224+ f6f82f48>

fo \2fsfiafis L f2fiofan



using Lemma 2.3. Therefore, modulo 2,

- w  fofsfsfts
;Zot(Qn)q [ fafefa
I
[
¥(9)
II(q?)

3 9
= IT{g i_[‘(i‘qg;Mq ) using Lemma 2.8
U(q%)

II(q?)
3
1+ q‘;—g using Lemmas 2.10 and 2.11
3

using Lemmas 2.10 and 2.11

1+ ¢Q(¢*) using Lemma 2.12

n2n
_ 1+qzq3(3 +2n)

n=—oo

n 2
Y

n=—oo

We note, in passing, that the work above implies that

2
(10) ;z(zn +1)g" = jﬁ?jﬁ

We will use this fact later in our proof of Theorem 1.5.
We now turn to the proofs of Theorems 1.3-1.4 which require a
number of generating function dissections.

Proof. (of Theorems 1.3-1.4) We continue to compute a variety of gen-
erating function dissections.

- w  fafsfsfis
2 Wemd =
fafsfis f5
fafsfou f7
fofsfly 1
fafef24b(q)
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- LA (S RS

) using Lemma 2.6

fafsfoa \ f3 [T ! 13
BB
T T
So
Zf(4n+2)q”
n>0
_ f2f4f6
f1f12
_ G Rhf < 1 )
fiz \ff
3
= 3 {i];; (J{i + 2q f4f];126> using Lemma 2.1
o, fafs ( fifs 2 r4 43 3f4f16)
= 3 6q 2 +8
fat frz \ fle " fis FR0 LTt f3
Jafe fs e fs 2 [ 15 13 fis 3f4f6f16>
3(f214f12f166 O T e T R
Therefore,
< n fafs 1 LIRS
11 8 2 = 3 36g—=——"—
R D Y A
and

B SS
2 s+ 00" = WEi g Mg

It follows that, modulo 12,

25(871 +6)" = 6 f3 fs 2

2 P ffe
Now,
3 £4 79
]{E‘*f—;ﬁj;% = ffs (mod 2).

This implies
t(16n+14) =0 (mod 12).
See Theorem 1.4, (4).



Note also that, modulo 4,

Zf(Sn +6)¢" =2

n>0

BIR f_é(fé’ff)
el f \F'R)

Now, modulo 2,

3 r9
Sl = ==y
— (flz—fl?g + qui%)Q using Lemma 2.8
f6f36 f18
fafis 22f12f18f36 1 f36
s Ty

It follows that, modulo 4,

7 noo_ f_§1(f122ff8 2 J12/18/36 4f36>
2 Hn+ 0" = 2 (G + 2T

If we extract the terms of the form ¢***2, we find that

ZZ(%n +22)¢" =0 (mod 4).
n>0
See Theorem 1.4, (5).
For the remainder of this proof, unless explicitly stated otherwise,
all congruences are computed modulo 4.
Next, we see that

i n f25f32f4
2 tamd = T
fof2fi

fia

 hofi

= el
hofifs 3
f12 fﬁ

_ f2ff42f690(_q3)

fofufo

= =5 (¢(q"?) — 2¢*(¢°*)) using [4, (1.9.4)]

f2£42f6 (p(=q") = 2¢°¥(¢*"))
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_ fafafs <f_122 —2q3fi28)

f12 f24 f24
_ bbby s hliof
f24 f12f24 ‘

From the above 2—dissection, we know

Zg(8n>qn = f1f2f3f6

n>0 f12
and
nzz(>t(8n+4)q = fofiz
Note that
g = B
nzzot(Sn)q = 7 ' f
2 r4 4 2
(i v ) wine Lenma 24
So

BRI IR
2t = Tgpt - et

This means

" w _ RS
16 = .
2 W = Tap
and
ZE(lGn +8)¢" = 3f§];32];122.
2 HE
This implies
- o _ IR
16 = —I—
2 W = Zr
_ B
B
1131

fofta



_ B
fo
Also,
< N f2f3f12
6 8 =
;t(l n+ 8)q 7
_ f3f6f12
B fs
= 3f3f6

This yields
> H(48n +24)q" =0

n>0

and

> #(48n + 40)g" = 0.

n>0
See Theorem 1.4, (7) and (8).
In a different vein,

> #H(8n +4)q"

n>0

f1f2f3f24
fofin
qf1f2f3f24
12 Frs
f1f2f48
Tt
g lofis I
f12 f3
fofas ( fof16 /3, fofsfiafas .
I (khﬁg_ ﬁ&ﬁwg)““@memzz
f2 f16f24

o 2 f2f8f48
= M, T R o

2q

Hence,

fl f4 f24
"R fst

Zf(lGn +4)" = 2q

11



12 MICHAEL D. HIRSCHHORN AND JAMES A. SELLERS

134
= 2
"B ha
_ b
fe
= 2qf2.
Therefore,
Z t(32n+4)¢" = 0
n>0
and
> H(48n +36)g" = 0.
n>0
See Theorem 1.3, (2) and (3).
Also from above, we know
< f1 fsIt
t(lbn 4+ 12)¢" = .
2 M1 = 2
Moreover,

fiffs — fuf
= fofafiz (mod 2)

which is an even function of q. Therefore, for all n > 0,
t(32n +28) = 0.
See Theorem 1.4, (6).

From a different perspective,

In {— f3f24
§t<8”+4)q = f6f12f1f2

- 8 oy o200

using Lemma 2.9. Thus,
> H24n+4)¢" = 0.
n>0

See Theorem 1.3, (1).
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Thanks to (11),

n n foZ’? 415
E 8n + 2 3 .
g (82 fitfo g

fifafs

3

Il
T
=%

Il
w

Il
w

So

I [ — f12f3f82
;t(16n+10)q = 2—fo4
fifs
255t
2 fs0(—q)v(q")

3 f3f128> (f24f§6 4f_722>
2f3(f18 250 ) \fafe T s

using Lemmas 2.7 and 2.8. This yields

Zf(48n+42)q” = 0.

n>0

See Theorem 1.4, (9).

Thanks to the above work on congruences modulo 4, as well as Re-
mark 3.1 which provides us with the necessary congruences modulo 3,
we see that the proofs of Theorems 1.3 and 1.4 are now complete. &

We now provide a proof of Theorem 1.5 by appropriately dissecting
the generating function for #(2n + 1) which was obtained earlier.
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Proof. (of Theorem 1.5) Thanks to (10) above,

n n _ f3fifo
2 et = r,
T
fs.J12 b(q)
2 6 £3 2 2
= L;z;z (};3;132 +3q—f4§27f12) using Lemma 2.6
_ fiSS faa fifefi2fou
T ORRm TR
So
n no__ f28f??f12
2 TUn+ D" = s
3
Jz;g (g@ +3qffj;(;7f%2) using Lemma 2.6.
Thus,
12 f 151

ZE(8”+5)€I” = 9f17f + 27915

This implies that, for all n > 0,
t(8n+5)=0 (mod9).

4. CLOSING THOUGHTS

Computational evidence indicates that additional congruences are
satisfied by ¢ for various moduli. Proofs of such congruences are left to
the interested reader.
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