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Abstract

In 2001, Andrews and Lewis utilized an identity of F. H. Jackson to derive some new
partition generating functions as well as identities involving some of the corresponding
partition functions. In particular, for 0 < a < b < k, they defined W1(a, b; k;n) to be
the number of partitions of n in which the parts are congruent to a or b mod k and
such that, for any j, kj + a and kj + b are not both parts. Our primary goal in this
note is to prove that, for all n ≥ 0, W1(1, 3; 4; 27n + 17) ≡ 0 (mod 3). We prove this
result using elementary generating function manipulations and classic results from the
theory of partitions.

1 Introduction

In 2001, Andrews and Lewis [3] utilized an identity of F. H. Jackson to derive some new par-
tition generating functions as well as identities involving some of the corresponding partition
functions. In particular, for 0 < a < b < k, they defined W1(a, b; k;n) to be the number
of partitions of n in which the parts are congruent to a or b mod k and such that, for any
j, kj + a and kj + b are not both parts. One of the identities that they proved was the
following:
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Theorem 1. The number of partitions of n into odd parts in which no part appears more
than three times equals W1(1, 3; 4;n).

Their proof of this theorem is extremely straightforward and involves elementary gener-
ating function manipulations.

Our focus in this note will be on this particular function W1(1, 3; 4;n) [5, A070048]. Thus,
for the remainder of this paper, we will abbreviate W1(1, 3; 4;n) by W (n). Our primary goal
is then to prove the following unexpected congruence:

Theorem 2. For all n ≥ 0, W (27n+ 17) ≡ 0 (mod 3).

In Section 2, we will prove Theorem 2 via elementary generating function dissections.
Prior to doing so, we make a few comments here regarding W (n) and also set some relevant
notation.

First, Andrews and Lewis [3] prove that

∞∑
n≥0

W (n)qn =
∏
n≥1

(
1 + q2n+1 + q2(2n+1) + q3(2n+1)

)
.

(Indeed, this is their generating function version of Theorem 1.) Note that the right–hand
side of the above can be factored:

∞∑
n≥0

W (n)qn =
∏
n≥1

(
1 + q2n+1

)(
1 + q2(2n+1)

)
(1)

This factorization will be very useful in Section 2. Using additional generating function
manipulations, it is also easy to see that

∞∑
n≥0

W (n)qn =
∏
n≥1

1 + qn

1 + q4n
.

Thus, W (n) can also be interpreted as the number of partitions into distinct parts, none
of which is divisible by 4. This is an interesting interpretation given the recent work of
Andrews, Hirschhorn, and Sellers [2] on the function ped(n) which counts the number of
partitions of n into parts which are not divisible by 4 [5, A001935].

With these brief introductory comments in hand, we now set some standard notation
which will be used heavily in Section 2. Namely, we define

(a; q)n := (1 − a)(1 − aq) · · · (1 − aqn−1),

(a; q)∞ := lim
n→∞

(a; q)n,

and
(a1, a2, . . . , ak; q)∞ := (a1; q)∞(a2; q)∞ · · · (ak; q)∞.

Later in the paper, we will shorten notation even further by defining fk as

fk := (qk; qk)∞. (2)
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2 Proof of Theorem 2

We begin with the generating function found in (1) and rewrite it using the notation found
at the end of Section 1.∑

n≥0

W (n)qn =
∏
n≥1

(1 + q2n−1)(1 + q2(2n−1)) = (−q; q2)∞(−q2; q4)∞

We then have

(−q; q2)∞(−q2; q4)∞
= (−q,−q3,−q5; q6)∞(−q2,−q6,−q10; q12)∞

=
(−q3; q6)∞
(q6; q6)∞

(−q,−q5, q6; q6)∞
(−q6; q12)∞
(q12; q12)∞

(−q2,−q10, q12; q12)∞

=
(q6; q12)∞

(q3; q6)∞(q6; q6)∞

(q12; q24)∞
(q6; q12)∞(q12; q12)∞

(−q,−q5, q6; q6)∞(−q2,−q10, q12; q12)∞

=
1

(q3; q3)∞(q24; q24)∞

∞∑
m,n=−∞

q3m
2+2m+6n2+4n

via Jacobi’s Triple Product Identity [1, Theorem 2.8].

We now split the sum above into three sums according to the residue of m+ 2n modulo 3:

• if m+ 2n ≡ 0 (mod 3), write m = t− 2u, n = t+ u

• if m+ 2n ≡ −1 (mod 3), write m = t− 2u− 1, n = t+ u

• if m+ 2n ≡ 1 (mod 3), write m = t− 2u, n = t+ u− 1

Then the sum above becomes

∞∑
m,n=−∞

q3m
2+2m+6n2+4n =

∞∑
t,u=−∞

q3(t−2u)
2+2(t−2u)+6(t+u)2+4(t+u)

+
∞∑

t,u=−∞

q3(t−2u−1)
2+2(t−2u−1)+6(t+u)2+4(t+u)

+
∞∑

t,u=−∞

q3(t−2u)
2+2(t−2u)+6(t+u−1)2+4(t+u−1)
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which, upon simplification, gives

∞∑
m,n=−∞

q3m
2+2m+6n2+4n

=
∞∑

t,u=−∞

q9t
2+6t+18u2 + q

∞∑
t,u=−∞

q9t
2+18u2+12u + q2

∞∑
t,u=−∞

q9t
2−6t+18u2−12u

=
f 2
6 f9f36
f3f12f18

f 5
36

f 2
18f

2
72

+ q
f 5
18

f 2
9 f

2
36

f 2
12f18f72
f6f24f36

+ q2
f 2
6 f9f36
f3f12f18

f 2
12f18f72
f6f24f36

=
f 2
6 f9f

6
36

f3f12f 3
18f

2
72

+ q
f 2
12f

6
18f72

f6f 2
9 f24f

3
36

+ q2
f6f9f12f72
f3f24

using the notation in (2) above. It follows that∑
n≥0

W (n)qn =
f2f4
f1f8

=
f 2
6 f9f

6
36

f 2
3 f12f

3
18f24f

2
72

+ q
f 2
12f

6
18f72

f3f6f 2
9 f

2
24f

3
36

+ q2
f6f9f12f72
f 2
3 f

2
24

. (3)

In the same way, it can be shown that the reciprocal of the generating function for W (n) is
given by

f1f8
f2f4

= (q; q2)∞(−q4; q4)∞

=
f3f

2
9 f

2
24f

2
36

f 2
6 f

3
12f18f72

− q
f 2
3 f

2
18f

2
24f

2
36

f 3
6 f9f

3
12f72

− 2q5
f 2
3 f

2
18f24f

2
72

f 3
6 f9f

2
12f36

.

As a corollary of (3), we see∑
n≥0

W (3n+ 2)qn =
f2f3f4f24
f 2
1 f

2
8

=
f3
f 3
1

f24
f 3
8

f1f2f4f8 ≡ f1f2f4f8 (mod 3).

This is the first significant step in proving Theorem 2. Now we must continue the process of
dissecting the generating function for W (n) (on our way to a statement about the generating
function for W (27n+ 17) modulo 3). Thus, we now consider the 3–dissection of∑

n≥0

anq
n := f1f2f4f8.

In the same manner as the work above, it can be proven that

f1f2 =
f6f

4
9

f3f 2
18

− qf9f18 − 2q2
f3f

4
18

f6f 2
9

.

Replacing q by q4 in the above yields

f4f8 =
f24f

4
36

f12f 2
72

− q4f36f72 − 2q8
f12f

4
72

f24f 2
36

.
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If we multiply these two expressions, extract those terms in which the power of q is 2 modulo
3, divide by q2 and replace q3 by q, we find that∑

n≥0

a3n+2q
n = −2

f1f
4
6 f8f

4
12

f2f 2
3 f4f

2
24

+ qf3f6f12f24 − 2q2
f2f

4
3 f4f

4
24

f1f 2
6 f8f

2
12

.

So we have ∑
n≥0

W (9n+ 8)qn

≡
∑
n≥0

a3n+2q
n (mod 3)

≡ f1f
4
6 f8f

4
12

f2f 2
3 f4f

2
24

+ qf3f6f12f24 + q2
f2f

4
3 f4f

4
24

f1f 2
6 f8f

2
12

(mod 3)

=
f 4
6 f

4
12

f 2
3 f

2
24

(
f1f8
f2f4

)
+ qf3f6f12f24 + q2

f 4
3 f

4
24

f 2
6 f

2
12

(
f2f4
f1f8

)
=

f 4
6 f

4
12

f 2
3 f

2
24

(
f3f

2
9 f

2
24f

2
36

f 2
6 f

3
12f18f72

− q
f 2
3 f

2
18f

2
24f

2
36

f 3
6 f9f

3
12f72

− 2q5
f 2
3 f

2
18f24f

2
72

f 3
6 f9f

2
12f36

)
+qf3f6f12f24

+q2
f 4
3 f

4
24

f 2
6 f

2
12

(
f 2
6 f9f

6
36

f 2
3 f12f

3
18f24f

2
72

+ q
f 2
12f

6
18f72

f3f6f 2
9 f

2
24f

3
36

+ q2
f6f9f12f72
f 2
3 f

2
24

)
.

Modulo 3, this provides us with a 3–dissection of the generating function for W (9n+ 8). If
we now identify only those terms above where the power on q is congruent to 1 modulo 3, it
follows that∑

n≥0

W (27n+ 17)qn ≡ −f2f4f
2
6 f

2
12

f3f24
+ f1f2f4f8 + q

f 2
1 f3f

2
8 f24

f2f4
(mod 3)

≡ −f
7
2 f

7
4

f 3
2 f

3
8

+ f1f2f4f8 + q
f 5
1 f

5
8

f2f4
(mod 3)

= f1f2f4f8

(
−f

6
2 f

6
4

f 4
1 f

4
8

+ 1 + q
f 4
1 f

4
8

f 2
2 f

2
4

)
.

Our final goal is to prove that

−f
6
2 f

6
4

f 4
1 f

4
8

+ 1 + q
f 4
1 f

4
8

f 2
2 f

2
4

≡ 0 (mod 3). (4)

Thanks to Fine [4, Equation (32.29)], we know

f 6
2 f

6
4

f 4
1 f

4
8

= 1 + 4
∑
n≥1

k(α)σ(m)qn,
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where n = 2αm, m odd, and

k(α) =


1, if α = 0;

2, if α = 1;

6, if α ≥ 2.

Here σ(m) is usual sum–of–divisors function [5, A000203]. It follows that

f 6
2 f

6
4

f 4
1 f

4
8

≡ 1 +
∑
n≥1

k(α)σ(m)qn (mod 3)

≡ 1 +
∑
m odd

σ(m)qm + 2
∑
m odd

σ(m)q2m (mod 3). (5)

Also,

q
f 4
1 f

4
8

f 2
2 f

2
4

,

which appears in [5, A121455], can be expanded by making use of the four triangles theorem
[4, Equation (31.53)]:

q
f 4
1 f

4
8

f 2
2 f

2
4

= q
(
ϕ(−q)ψ(q4)

)2
= q(ϕ(q2)2 − 4qψ(q4)2)ψ(q4)2

= qψ(q2)4 − 4q2ψ(q4)4

=
∑
m odd

σ(m)qm − 4
∑
m odd

σ(m)q2m

≡
∑
m odd

σ(m)qm + 2
∑
m odd

σ(m)q2m (mod 3) (6)

Here we have utilized ϕ(q) [5, A000122] and ψ(q) [5, A010054], two of Ramanujan’s famous
theta series. In light of (4), (5), and (6), it follows that∑

n≥0

W (27n+ 17)qn ≡ 0 (mod 3).
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