INFINITELY MANY CONGRUENCES MODULO 5 FOR 4-COLORED FROBENIUS PARTITIONS

MICHAEL D. HIRSCHHORN AND JAMES A. SELLERS

ABSTRACT. In his 1984 AMS Memoir, Andrews introduced the family of functions $c\phi_k(n)$, which denotes the number of generalized Frobenius partitions of n into k colors. Recently, Baruah and Sarmah, Lin, Sellers, and Xia established several Ramanujan–like congruences for $c\phi_4(n)$ relative to different moduli. In this paper, employing classical results in q-series, the well–known theta functions of Ramanujan, and elementary generating function manipulations, we prove a characterization of $c\phi_4(10n + 1)$ modulo 5 which leads to an infinite set of Ramanujan–like congruences modulo 5 satisfied by $c\phi_4$. This work greatly extends the recent work of Xia on $c\phi_4$ modulo 5.

2010 Mathematics Subject Classification: 05A17, 11P83

Keywords: congruences; generalized Frobenius partitions; theta functions; generating functions

1. INTRODUCTION

In his 1984 AMS Memoir, George Andrews [1] defined the family of k-colored generalized Frobenius partition functions which are denoted by $c\phi_k(n)$ where $k \ge 1$ is the number of colors in question. Among many things, Andrews [1, Corollary 10.1] proved that, for all $n \ge 0$, $c\phi_2(5n+3) \equiv 0 \pmod{5}$. Over the years, many authors proved similar congruence properties for various k-colored generalized Frobenius partition functions, typically for a small number of colors k. See, for example, [4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16].

In 2011, Baruah and Sarmah [2] proved a number of congruence properties for $c\phi_4$, all with moduli which are powers of 4. In [14], Sellers proved a new congruence result modulo 5 for $c\phi_4$:

Theorem 1.1. For all $n \ge 0$, $c\phi_4(10n + 6) \equiv 0 \pmod{5}$.

Quite recently, Xia [15] proved an additional congruence result for $c\phi_4$ modulo 5:

Theorem 1.2. For all $n \ge 0$, $c\phi_4(20n + 11) \equiv 0 \pmod{5}$.

In this note, we significantly extend the study of congruences satisfied by $c\phi_4 \mod 5$. By employing classical results in q-series, the well-known theta functions of Ramanujan, and elementary generating function manipulations, we prove a characterization of $c\phi_4(10n+1)$ modulo 5 which leads to an infinite set of Ramanujan-like congruences modulo 5 satisfied by $c\phi_4$. In particular, we shall prove the following:

Theorem 1.3. For all $n \ge 0$,

$$c\phi_4(10n+1) \equiv \begin{cases} k+1 \pmod{5} & \text{if } n = k(3k+1) \text{ for some integer } k, \\ 0 \pmod{5} & \text{otherwise.} \end{cases}$$

With Theorem 1.3, we can easily prove Theorem 1.2 as well as the following corollary (which provides infinitely many Ramanujan–like congruences satisfied by $c\phi_4$ modulo 5).

Corollary 1.4. Let $p \ge 5$ be prime and let r be an integer, $1 \le r \le p - 1$, such that 12r + 1 is a quadratic nonresidue modulo p. Then, for all $n \ge 0$,

$$c\phi_4(10pn+10r+1) \equiv 0 \pmod{5}.$$

2. Some Necessary Tools

In this section, we collect a number of definitions and lemmas which are needed to prove the main results of this paper.

First, recall Ramanujan's theta functions

$$\varphi(q) := \sum_{n=-\infty}^{\infty} q^{n^2}$$
 and $\psi(q) := \sum_{n=0}^{\infty} q^{n(n+1)/2}$.

Using Jacobi's Triple Product Identity [3, Entry 19], we have the following wellknown product representations for $\varphi(q)$ and $\psi(q)$:

(1)
$$\varphi(q) = \frac{(q^2; q^2)_{\infty}^5}{(q; q)_{\infty}^2 (q^4; q^4)_{\infty}^2}$$

and

(2)
$$\psi(q) = \frac{(q^2; q^2)_{\infty}^2}{(q; q)_{\infty}}$$

where $(a; b)_{\infty} := (1-a)(1-ab)(1-ab^2)(1-ab^3)\dots$

Next, we note an important q-series result of Ramanujan which is easily proven using the Quintuple Product Identity. Such a proof can be found in Berndt [3, Corollary 1.3.21].

Lemma 2.1.

$$\sum_{n=-\infty}^{\infty} (6n+1)q^{3n^2+n} = \frac{(q^2;q^2)_{\infty}^{\infty}}{(q^4;q^4)_{\infty}^2}$$

Lastly, we require one pivotal lemma.

Lemma 2.2. Let $F(q) = \psi(q)(q^4; q^4)^3_{\infty}$ where $\psi(q)$ is one of Ramanujan's theta functions defined above. Let

$$F(q) = F_0(q) + F_1(q) + F_2(q) + F_3(q) + F_4(q)$$

be the 5-dissection of F(q) where $F_i(q)$ contains all the terms in F(q) in which the power of q is i (mod 5) (whenever F(q) is written as a power series in q). Then

$$F_0(q) = (q^5; q^5)^3_{\infty} \varphi(-q^{10}) - 5q^{15}(q^{100}; q^{100})^3_{\infty} \psi(q^{25}).$$

Proof. Note that

$$F(q) = \psi(q)(q^4; q^4)_{\infty}^3$$

= $\sum_{m=-\infty}^{\infty} q^{2m^2 + m} \sum_{n=-\infty}^{\infty} (4n+1)q^{8n^2 + 4n}.$

Then, in order to complete the square, we have

$$q^{5}F(q^{8}) = \sum_{m,n=-\infty}^{\infty} (4n+1)q^{(4m+1)^{2}+4(4n+1)^{2}} = \sum_{x,y=-\infty}^{\infty} yq^{x^{2}+4y^{2}},$$

where $x, y \equiv 1 \pmod{4}$.

Using the notation provided in the statement of the lemma, we then see that

$$q^5 F_0(q^8) = \sum_{x,y=-\infty}^{\infty} y q^{x^2 + 4y^2}$$

where $x, y \equiv 1 \pmod{4}$ and $x^2 + 4y^2 \equiv 0 \pmod{5}$.

Now the solution of $x^2 + 4y^2 \equiv 0 \pmod{5}$ is $x \equiv \pm y \pmod{5}$. So

$$q^{5}F_{0}(q^{8}) = \sum_{x \equiv y \pmod{5}} yq^{x^{2}+4y^{2}} + \sum_{x \equiv -y \pmod{5}} yq^{x^{2}+4y^{2}} - \sum_{x \equiv y \equiv 0 \pmod{5}} yq^{x^{2}+4y^{2}},$$

where it must also be the case that $x, y \equiv 1 \pmod{4}$.

In the first sum, we have x = 4m + 1, y = 4n + 1 and $x \equiv y \pmod{5}$. So $4m+1 \equiv 4n+1 \pmod{5}$, $4(m-n) \equiv 0 \pmod{5}$, $m-n \equiv 0 \pmod{5}$, m+4n = 5w, m = w + 4v, n = w - v and

$$x = 4w + 16v + 1, \quad y = 4w - 4v + 1.$$

In the second sum, x = 4m + 1, y = 4n + 1 and $x + y \equiv 0 \pmod{5}$. So $4(m+n) + 2 \equiv 0 \pmod{5}$, $4(m+n) \equiv -2 \pmod{5}$, $m+n \equiv 2 \pmod{5}$, $m+n \equiv 5u + 2$, m - 4n = 5v + 2, m = 4u + v + 2, n = u - v and

$$x = 16u + 4v + 9, \quad y = 4u - 4v + 1.$$

In the third sum, x = 20u + 5, y = 20v + 5. It follows that

$$q^{5}F_{0}(q^{8}) = \sum_{u,v=-\infty}^{\infty} (4u - 4v + 1)q^{(4u+16v+1)^{2}+4(4u-4v+1)^{2}} + \sum_{u,v=-\infty}^{\infty} (4u - 4v + 1)q^{(16u+4v+9)^{2}+4(4u-4v+1)^{2}} - \sum_{u,v=-\infty}^{\infty} (20v + 5)q^{(20u+5)^{2}+4(20v+5)^{2}} = \sum_{u,v=-\infty}^{\infty} (4u - 4v + 1)q^{80u^{2}+320v^{2}+40u+5} + \sum_{u,v=-\infty}^{\infty} (4u - 4v + 1)q^{320u^{2}+80v^{2}+320u+40v+85} - \sum_{u,v=-\infty}^{\infty} (20v + 5)q^{400u^{2}+1600v^{2}+200u+800v+125}$$

Therefore, we know that

$$\begin{split} F_{0}(q) &= \sum_{-\infty}^{\infty} (4u+1)q^{10u^{2}+5u} \sum_{-\infty}^{\infty} q^{40v^{2}} \\ &- \sum_{-\infty}^{\infty} 4vq^{4v^{2}} \sum_{-\infty}^{\infty} q^{10u^{2}+5u} \\ &- q^{10} \sum_{-\infty}^{\infty} (4v+1)q^{10v^{2}+5v} \sum_{-\infty}^{\infty} q^{40u^{2}+40u} \\ &+ q^{10} \sum_{-\infty}^{\infty} (4u+2)q^{40u^{2}+40u} \sum_{-\infty}^{\infty} q^{10v^{2}+5v} \\ &- 5q^{15} \sum_{-\infty}^{\infty} (4v+1)q^{200v^{2}+100v} \sum_{-\infty}^{\infty} q^{50u^{2}+25u} \\ &= (q^{5};q^{5})_{\infty}^{3} \varphi(q^{40}) - 2q^{10}(q^{5};q^{5})_{\infty}^{3} \psi(q^{80}) - 5q^{15}(q^{100};q^{100})_{\infty}^{3} \psi(q^{25}) \\ &= (q^{5};q^{5})_{\infty}^{3} \varphi(-q^{10}) - 5q^{15}(q^{100};q^{100})_{\infty}^{3} \psi(q^{25}). \end{split}$$

3. Proofs of the Main Results

With the above tools in hand, we now provide an elementary proof of Theorem 1.3.

Proof. (Of Theorem 1.3) Lin [9, Equation (1.3)] notes that

$$\sum_{n=0}^{\infty} c\phi_4(2n+1)q^n = 16 \frac{(q^2; q^2)_{\infty}^{17}}{(q; q)_{\infty}^{16}(q^4; q^4)_{\infty}^2}.$$

Via elementary generating function manipulations, we have the following:

$$\sum_{n=0}^{\infty} c\phi_4(2n+1)q^n = 16 \frac{(q^2;q^2)_{\infty}^{17}}{(q;q)_{\infty}^{16}(q^4;q^4)_{\infty}^2} = 16 \frac{(q^2;q^2)_{\infty}^{15}(q^2;q^2)_{\infty}^2}{(q;q)_{\infty}^{15}(q;q)_{\infty}(q^4;q^4)_{\infty}^2} = 16 \frac{(q^2;q^2)_{\infty}^{15}\psi(q)}{(q;q)_{\infty}^{15}(q^4;q^4)_{\infty}^2} \equiv \frac{(q^{10};q^{10})_{\infty}^{3}\psi(q)}{(q^5;q^5)_{\infty}^{3}(q^4;q^4)_{\infty}^2} \pmod{5} \equiv \frac{(q^{10};q^{10})_{\infty}^{3}\psi(q)(q^4;q^4)_{\infty}^3}{(q^5;q^5)_{\infty}^{3}(q^{20};q^{20})_{\infty}} \pmod{5}.$$

From here, we now wish to find a representation of the generating function for $c\phi_4(10n+1)$. Thanks to Lemma 2.2, we see that, modulo 5, such a generating

function is given by

$$\sum_{n=0}^{\infty} c\phi_4(10n+1)q^{5n} \equiv \frac{(q^{10};q^{10})_{\infty}^3(q^5;q^5)_{\infty}^3\varphi(-q^{10})}{(q^5;q^5)_{\infty}^3(q^{20};q^{20})_{\infty}} \pmod{5}$$

or

(3)
$$\sum_{n=0}^{\infty} c\phi_4(10n+1)q^n \equiv \frac{(q^2;q^2)_{\infty}^3\varphi(-q^2)}{(q^4;q^4)_{\infty}} \pmod{5}.$$

Thanks to (1), we see that (3) implies

$$\begin{array}{rcl} \displaystyle \frac{(q^2;q^2)_{\infty}^3\varphi(-q^2)}{(q^4;q^4)_{\infty}} & = & \displaystyle \frac{(q^2;q^2)_{\infty}^3}{(q^4;q^4)_{\infty}} \times \frac{(q^2;q^2)_{\infty}^2}{(q^4;q^4)_{\infty}} \\ & = & \displaystyle \frac{(q^2;q^2)_{\infty}^5}{(q^4;q^4)_{\infty}^2} \end{array} \end{array}$$

The result follows thanks to Lemma 2.1.

With Theorem 1.3 in hand, we can now quickly prove Theorem 1.2 and Corollary 1.4.

Proof. (of Theorem 1.2) This result holds because k(3k + 1) is twice a pentagonal number and, therefore, even for every integer k. This means that 2n + 1 can never be represented as k(3k + 1) for any integer k. This means that, for all $n \ge 0$,

$$c\phi_4(10(2n+1)+1) \equiv 0 \pmod{5}.$$

We remark that this proof of Theorem 1.2 is significantly shorter and more elementary than the proof given by Xia [15].

Proof. (of Corollary 1.4) Let p and r be chosen as in the statement of the corollary. Then, by Theorem 1.3, we must ask whether there exists an integer k such that

$$pn + r = k(3k + 1).$$

By completing the square, this is equivalent to asking whether there is an integer k such that

$$12(pn+r) + 1 = (6k+1)^2.$$

This would imply that $12r + 1 \equiv (6k+1)^2 \pmod{p}$. However, r has been explicitly chosen so that 12r + 1 is a quadratic nonresidue modulo p. Hence, 12r + 1 cannot be congruent to a square modulo p. This implies that pn + r can never be represented as k(3k+1) for some integer, and the corollary then follows thanks to Theorem 1.3.

Clearly, for each prime $p \geq 5$, Corollary 1.4 provides (p-1)/2 different congruences modulo 5 satisfied by $c\phi_4$. Hence, we now have infinitely many nontrivial Ramanujan–like congruences modulo 5 for 4–colored generalized Frobenius partitions.

5

4. Closing Thoughts

As we close, it is worth noting that Theorem 1.2 and Corollary 1.4 imply infinitely many congruences modulo 5 for the function $\phi_4(n)$ (which is the number of generalized Frobenius partitions of n which allow up to 4 repetitions of an integer in either row). See Andrews [1] for more details.

Corollary 4.1. For all $n \ge 0$,

$$\phi_4(20n+11) \equiv 0 \pmod{5}.$$

Corollary 4.2. Let $p \ge 5$ be prime and let r be an integer, $1 \le r \le p-1$, such that 12r + 1 is a quadratic nonresidue modulo p. Then, for all $n \ge 0$,

$$\phi_4(10pn + 10r + 1) \equiv 0 \pmod{5}.$$

Proof. Both corollaries follow from a result of Garvan [5] which states that, for any prime p,

$$\phi_{p-1}(n) \equiv c\phi_{p-1}(n) \pmod{p}$$

for any integer $n \ge 0$.

References

- 1. G. E. Andrews, *Generalized Frobenius Partitions*, Memoirs of the American Mathematical Society, **301**, Providence, RI, 1984
- 2. N. D. Baruah and B. K. Sarmah, Congruences for generalized Frobenius partitions with 4 colors, *Discrete Math.* **311** (2011), 1892–1902
- 3. B. C. Berndt, Number Theory in the Spirit of Ramanujan, American Mathematical Society, Providence, Rhode Island, 2006
- 4. D. Eichhorn and J. A. Sellers, Computational proofs of congruences for 2-colored Frobenius partitions, *Int. J. Math. Math. Sci.* **29** (2002), 333–340
- 5. F. G. Garvan, Generalizations of Dyson's Rank, PhD Thesis, Pennsylvania State University, 1986
- 6. F. G. Garvan and J. A. Sellers, Congruences for generalized Frobenius partitions with an arbitrarily large number of colors, *INTEGERS* 14 (2014), Article A7
- L. W. Kolitsch, An extension of a congruence by Andrews for generalized Frobenius partitions, J. Combin. Theory Ser. A 45 (1987), 31–39
- L. W. Kolitsch, A congruence for generalized Frobenius partitions with 3 colors modulo powers of 3, in Analytic Number Theory: Proceedings of a Conference in Honor of Paul T. Bateman (Birkhauser, Boston, MA, 1990), 343–348
- B. L. S. Lin, New Ramanujan type congruence modulo 7 for 4-colored generalized Frobenius partitions, Int. J. Number Theory 10 (2014), 637–639
- J. Lovejoy, Ramanujan like congruences for three colored Frobenius partitions, J. Number Theory 85 (2000), 283–290
- 11. K. Ono, Congruences for Frobenius partitions, J. Number Theory 57 (1996), 170-180
- P. Paule and C. S. Radu, The Andrews–Sellers family of partition congruences, Adv. Math. 230 (2012), 819–838
- J. A. Sellers, New congruences for generalized Frobenius partitions with 2 or 3 colors, *Discrete Math.* 131 (1994), 367–374
- J. A. Sellers, An unexpected congruence modulo 5 for 4-colored generalized Frobenius partitions, J. Indian Math. Soc., Special Volume to Commemorate the 125th Birth Anniversary of Srinivasa Ramanujan (2013), 97–103
- E. X. W. Xia, A Ramanujan-type congruence modulo 5 for 4-colored generalized Frobenius partitions, Ram. J., to appear
- X. Xiong, Congruences modulo powers of 5 for three-colored Frobenius partitions, arXiv:1003.0072 [math NT], 2010

SCHOOL OF MATHEMATICS AND STATISTICS, UNSW, SYDNEY 2052, AUSTRALIA, m.hirschhorn@unsw.edu.au

Department of Mathematics, Penn State University, University Park, PA 16802, USA, sellersj@psu.edu