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Abstract. In his 1984 AMS Memoir, Andrews introduced the family of func-

tions cφk(n), which denotes the number of generalized Frobenius partitions
of n into k colors. Recently, Baruah and Sarmah, Lin, Sellers, and Xia es-

tablished several Ramanujan–like congruences for cφ4(n) relative to different

moduli. In this paper, employing classical results in q–series, the well–known
theta functions of Ramanujan, and elementary generating function manipula-

tions, we prove a characterization of cφ4(10n + 1) modulo 5 which leads to

an infinite set of Ramanujan–like congruences modulo 5 satisfied by cφ4. This
work greatly extends the recent work of Xia on cφ4 modulo 5.
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1. Introduction

In his 1984 AMS Memoir, George Andrews [1] defined the family of k–colored
generalized Frobenius partition functions which are denoted by cφk(n) where k ≥ 1
is the number of colors in question. Among many things, Andrews [1, Corollary
10.1] proved that, for all n ≥ 0, cφ2(5n+3) ≡ 0 (mod 5). Over the years, many au-
thors proved similar congruence properties for various k–colored generalized Frobe-
nius partition functions, typically for a small number of colors k. See, for example,
[4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16].

In 2011, Baruah and Sarmah [2] proved a number of congruence properties for
cφ4, all with moduli which are powers of 4. In [14], Sellers proved a new congruence
result modulo 5 for cφ4 :

Theorem 1.1. For all n ≥ 0, cφ4(10n+ 6) ≡ 0 (mod 5).

Quite recently, Xia [15] proved an additional congruence result for cφ4 modulo
5:

Theorem 1.2. For all n ≥ 0, cφ4(20n+ 11) ≡ 0 (mod 5).

In this note, we significantly extend the study of congruences satisfied by cφ4
mod 5. By employing classical results in q–series, the well–known theta functions of
Ramanujan, and elementary generating function manipulations, we prove a charac-
terization of cφ4(10n+1) modulo 5 which leads to an infinite set of Ramanujan–like
congruences modulo 5 satisfied by cφ4. In particular, we shall prove the following:

Theorem 1.3. For all n ≥ 0,

cφ4(10n+ 1) ≡

{
k + 1 (mod 5) if n = k(3k + 1) for some integer k,

0 (mod 5) otherwise.
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With Theorem 1.3, we can easily prove Theorem 1.2 as well as the following
corollary (which provides infinitely many Ramanujan–like congruences satisfied by
cφ4 modulo 5).

Corollary 1.4. Let p ≥ 5 be prime and let r be an integer, 1 ≤ r ≤ p − 1, such
that 12r + 1 is a quadratic nonresidue modulo p. Then, for all n ≥ 0,

cφ4(10pn+ 10r + 1) ≡ 0 (mod 5).

2. Some Necessary Tools

In this section, we collect a number of definitions and lemmas which are needed
to prove the main results of this paper.

First, recall Ramanujan’s theta functions

ϕ(q) :=

∞∑
n=−∞

qn
2

and ψ(q) :=

∞∑
n=0

qn(n+1)/2.

Using Jacobi’s Triple Product Identity [3, Entry 19], we have the following well–
known product representations for ϕ(q) and ψ(q) :

(1) ϕ(q) =
(q2; q2)5∞

(q; q)2∞(q4; q4)2∞

and

(2) ψ(q) =
(q2; q2)2∞
(q; q)∞

where (a; b)∞ := (1 − a)(1 − ab)(1 − ab2)(1 − ab3) . . .
Next, we note an important q–series result of Ramanujan which is easily proven

using the Quintuple Product Identity. Such a proof can be found in Berndt [3,
Corollary 1.3.21].

Lemma 2.1.
∞∑

n=−∞
(6n+ 1)q3n

2+n =
(q2; q2)5∞
(q4; q4)2∞

Lastly, we require one pivotal lemma.

Lemma 2.2. Let F (q) = ψ(q)(q4; q4)3∞ where ψ(q) is one of Ramanujan’s theta
functions defined above. Let

F (q) = F0(q) + F1(q) + F2(q) + F3(q) + F4(q)

be the 5–dissection of F (q) where Fi(q) contains all the terms in F (q) in which the
power of q is i (mod 5) (whenever F (q) is written as a power series in q). Then

F0(q) = (q5; q5)3∞ϕ(−q10) − 5q15(q100; q100)3∞ψ(q25).

Proof. Note that

F (q) = ψ(q)(q4; q4)3∞

=

∞∑
m=−∞

q2m
2+m

∞∑
n=−∞

(4n+ 1)q8n
2+4n.
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Then, in order to complete the square, we have

q5F (q8) =

∞∑
m,n=−∞

(4n+ 1)q(4m+1)2+4(4n+1)2 =

∞∑
x,y=−∞

yqx
2+4y2

,

where x, y ≡ 1 (mod 4).
Using the notation provided in the statement of the lemma, we then see that

q5F0(q8) =

∞∑
x,y=−∞

yqx
2+4y2

where x, y ≡ 1 (mod 4) and x2 + 4y2 ≡ 0 (mod 5).
Now the solution of x2 + 4y2 ≡ 0 (mod 5) is x ≡ ±y (mod 5). So

q5F0(q8) =
∑

x≡y (mod 5)

yqx
2+4y2

+
∑

x≡−y (mod 5)

yqx
2+4y2

−
∑

x≡y≡0 (mod 5)

yqx
2+4y2

,

where it must also be the case that x, y ≡ 1 (mod 4).
In the first sum, we have x = 4m + 1, y = 4n + 1 and x ≡ y (mod 5). So

4m+1 ≡ 4n+1 (mod 5), 4(m−n) ≡ 0 (mod 5), m−n ≡ 0 (mod 5), m+4n = 5w,
m = w + 4v, n = w − v and

x = 4w + 16v + 1, y = 4w − 4v + 1.

In the second sum, x = 4m + 1, y = 4n + 1 and x + y ≡ 0 (mod 5). So
4(m+ n) + 2 ≡ 0 (mod 5), 4(m+ n) ≡ −2 (mod 5), m+ n ≡ 2 (mod 5), m+ n =
5u+ 2, m− 4n = 5v + 2, m = 4u+ v + 2, n = u− v and

x = 16u+ 4v + 9, y = 4u− 4v + 1.

In the third sum, x = 20u+ 5, y = 20v + 5.
It follows that

q5F0(q8) =

∞∑
u,v=−∞

(4u− 4v + 1)q(4u+16v+1)2+4(4u−4v+1)2

+

∞∑
u,v=−∞

(4u− 4v + 1)q(16u+4v+9)2+4(4u−4v+1)2

−
∞∑

u,v=−∞
(20v + 5)q(20u+5)2+4(20v+5)2

=

∞∑
u,v=−∞

(4u− 4v + 1)q80u
2+320v2+40u+5

+

∞∑
u,v=−∞

(4u− 4v + 1)q320u
2+80v2+320u+40v+85

−
∞∑

u,v=−∞
(20v + 5)q400u

2+1600v2+200u+800v+125
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Therefore, we know that

F0(q) =

∞∑
−∞

(4u+ 1)q10u
2+5u

∞∑
−∞

q40v
2

−
∞∑
−∞

4vq4v
2
∞∑
−∞

q10u
2+5u

−q10
∞∑
−∞

(4v + 1)q10v
2+5v

∞∑
−∞

q40u
2+40u

+q10
∞∑
−∞

(4u+ 2)q40u
2+40u

∞∑
−∞

q10v
2+5v

−5q15
∞∑
−∞

(4v + 1)q200v
2+100v

∞∑
−∞

q50u
2+25u

= (q5; q5)3∞ϕ(q40) − 2q10(q5; q5)3∞ψ(q80) − 5q15(q100; q100)3∞ψ(q25)

= (q5; q5)3∞

(
ϕ(q40) − 2q10ψ(q80)

)
− 5q15(q100; q100)3∞ψ(q25)

= (q5; q5)3∞ϕ(−q10) − 5q15(q100; q100)3∞ψ(q25).

3. Proofs of the Main Results

With the above tools in hand, we now provide an elementary proof of Theorem
1.3.

Proof. (Of Theorem 1.3) Lin [9, Equation (1.3)] notes that

∞∑
n=0

cφ4(2n+ 1)qn = 16
(q2; q2)17∞

(q; q)16∞(q4; q4)2∞
.

Via elementary generating function manipulations, we have the following:

∞∑
n=0

cφ4(2n+ 1)qn = 16
(q2; q2)17∞

(q; q)16∞(q4; q4)2∞

= 16
(q2; q2)15∞(q2; q2)2∞

(q; q)15∞(q; q)∞(q4; q4)2∞

= 16
(q2; q2)15∞ψ(q)

(q; q)15∞(q4; q4)2∞

≡ (q10; q10)3∞ψ(q)

(q5; q5)3∞(q4; q4)2∞
(mod 5)

≡ (q10; q10)3∞ψ(q)(q4; q4)3∞
(q5; q5)3∞(q20; q20)∞

(mod 5).

From here, we now wish to find a representation of the generating function for
cφ4(10n + 1). Thanks to Lemma 2.2, we see that, modulo 5, such a generating
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function is given by

∞∑
n=0

cφ4(10n+ 1)q5n ≡ (q10; q10)3∞(q5; q5)3∞ϕ(−q10)

(q5; q5)3∞(q20; q20)∞
(mod 5)

or

(3)

∞∑
n=0

cφ4(10n+ 1)qn ≡ (q2; q2)3∞ϕ(−q2)

(q4; q4)∞
(mod 5).

Thanks to (1), we see that (3) implies

(q2; q2)3∞ϕ(−q2)

(q4; q4)∞
=

(q2; q2)3∞
(q4; q4)∞

× (q2; q2)2∞
(q4; q4)∞

=
(q2; q2)5∞
(q4; q4)2∞

The result follows thanks to Lemma 2.1.

With Theorem 1.3 in hand, we can now quickly prove Theorem 1.2 and Corollary
1.4.

Proof. (of Theorem 1.2) This result holds because k(3k + 1) is twice a pentagonal
number and, therefore, even for every integer k. This means that 2n+ 1 can never
be represented as k(3k + 1) for any integer k. This means that, for all n ≥ 0,

cφ4(10(2n+ 1) + 1) ≡ 0 (mod 5).

We remark that this proof of Theorem 1.2 is significantly shorter and more
elementary than the proof given by Xia [15].

Proof. (of Corollary 1.4) Let p and r be chosen as in the statement of the corollary.
Then, by Theorem 1.3, we must ask whether there exists an integer k such that

pn+ r = k(3k + 1).

By completing the square, this is equivalent to asking whether there is an integer
k such that

12(pn+ r) + 1 = (6k + 1)2.

This would imply that 12r+ 1 ≡ (6k+ 1)2 (mod p). However, r has been explicitly
chosen so that 12r+1 is a quadratic nonresidue modulo p. Hence, 12r+1 cannot be
congruent to a square modulo p. This implies that pn+ r can never be represented
as k(3k + 1) for some integer, and the corollary then follows thanks to Theorem
1.3.

Clearly, for each prime p ≥ 5, Corollary 1.4 provides (p − 1)/2 different con-
gruences modulo 5 satisfied by cφ4. Hence, we now have infinitely many nontrivial
Ramanujan–like congruences modulo 5 for 4–colored generalized Frobenius parti-
tions.
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4. Closing Thoughts

As we close, it is worth noting that Theorem 1.2 and Corollary 1.4 imply infin-
itely many congruences modulo 5 for the function φ4(n) (which is the number of
generalized Frobenius partitions of n which allow up to 4 repetitions of an integer
in either row). See Andrews [1] for more details.

Corollary 4.1. For all n ≥ 0,

φ4(20n+ 11) ≡ 0 (mod 5).

Corollary 4.2. Let p ≥ 5 be prime and let r be an integer, 1 ≤ r ≤ p − 1, such
that 12r + 1 is a quadratic nonresidue modulo p. Then, for all n ≥ 0,

φ4(10pn+ 10r + 1) ≡ 0 (mod 5).

Proof. Both corollaries follow from a result of Garvan [5] which states that, for any
prime p,

φp−1(n) ≡ cφp−1(n) (mod p)

for any integer n ≥ 0.
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