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PARITY RESULTS FOR PARTITIONS WHEREIN EACH
PART APPEARS AN ODD NUMBER OF TIMES

MICHAEL D. HIRSCHHORN and JAMES A. SELLERS™

Abstract

In this brief note, we consider the function f(n) which enumerates partitions of weight n wherein each part
appears an odd number of times. In a recent work, Chern noted that such partitions can be placed in one—
to—one correspondence with the partitions of n which he calls unlimited parity alternating partitions with
smallest part odd. Our goal is to study the parity of () in detail. In particular, we prove a characterization
of f(2n) modulo 2 which implies infinitely many Ramanujan-like congruences modulo 2 satisfied by the
function f. All of the proof techniques utilized are elementary and involve classical generating function
dissection tools.
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1. Introduction

In a recent note, Chern [2] defined the function pa,(n) to be the number of unlimited
parity alternating partitions of n with smallest part odd. Chern’s work is motivated by
work of Andrews [1] who defined a partition of n as “parity alternating” if the parts of
the partition in question alternate in parity.

Chern notes in passing that pa,(n) also counts the number of partitions of n in
which each part appears an odd number of times. (Indeed, one can place the unlimited
parity alternating partitions of n with smallest part odd and the partitions of n in which
each part appears an odd number of times in one—to—one corresponce via conjugation.)

In order to simplify notation, we let f(n) be the number of partitions of 7 in which
each part appears an odd number of times. Our primary goal in this note is to prove
the following characterization of f(2r) modulo 2:

Tueorem 1.1. Foralln > 0,
1 (mod 2) ifn = k> for some integer k with 3 1 k,
0 (mod 2) otherwise.

fn) =

At the conclusion of the note, we will highlight infinite families of Ramanujan-like
congruences modulo 2 which are satisfied by f. We will also note how Theorem 1.1
implies a characterization modulo 2 of az(n), the number of 3—cores of n. [4].
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2. An Elementary Generating Function Proof

In order to prove Theorem 1.1, we will utilize some well-known generating
function results and elementary manipulations thereof. We provide this foundation
here.

‘We begin by setting some standard notation. In particular, we define (@; ¢)«, Which
is the usual Pochhammer symbol, to be

(@ Qo = (1 —a)1 - ag)(1 —ag>)(1 - ag)...

Next, we provide three important lemmas.

Lemma 2.1.
(@D (@508 2
= (=1)y'g™
(@5 P (4% 9% ,,;X,
ProOF.
SV = (g e O )
n=—o00
(@: Do(q% %),
(@)@ 4P
The result follows. [ |
Lemma 2.2.
3. ,3\3 ©
—(6(1 jq))oo = Z q3”2_2" (mod 2).
P
PRrOOF.

Z q3n2—2n = i (_1)nq3n2—2n (mod 2)
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(@543,

(4 Do

(mod 2)

As an aside, we note that Lemma 2.2 yields a mod 2 characterization for the number
of 3-core partitions of n [4]. We will return to this observation at the end of this paper.



Lemma 2.3. If, as usual,

Please supply a running title

_N ot - @0 _ N e
Y(g) = Zq = and T(q) = Z q

n>0

then

(@5 Do

n=-—0oo

¥(q) = T1(g) + q(q’).

Proor. See [3, Chapter 1].

We are now in a position to prove Theorem 1.1.

Proor. (of Theorem 1.1)
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Z (—1)”q3"2_2" by Lemma 2.1
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The result follows. [ |

Several comments are in order as we close.

First, note that we can now prove a variety of corollaries which provide infinitely
many Ramanujan-like congruences modulo 2 involving f(2n). We simply need to
make sure we avoid arguments of the form 2n where n is square. So, although not
exhaustive, we provide two such corollaries here.

CoroLLARY 2.4. Let p > 3 be prime and let r be a quadratic nonresidue modulo p.
Then, forall M > 1 and n > 0,

fCeM?*(pn+r) =0 (mod 2).

Proor. Thanks to Theorem 1.1, we need to see whether pn + r can be written as
pn + r = k* with 3 1 k. However, note that pn + r = k* implies that r = k> (mod p).
This contradicts the definition of r given in the corollary. And we know that M?(pn+r)
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cannot be square because it is the product of a square and a non—square. The result
follows. |

CoRrROLLARY 2.5. Forall M > 1 andn > 0,
fCM?*(4n+2))=0 (mod 2).

Proor. Note that, for M = 1, the result follows because 4n + 2 is never square. (All
squares are congruent to either O or 1 modulo 4.) Next, we need to ask whether
M?(4n + 2) can ever be square. Clearly, this also cannot be the case given that
M?(4n + 2) is the product of a square with a non—square. |

Secondly, we highlight an unrelated observation about the parity of as(n), the
number of 3—core partitions of n [4]. Since the generating function for a3(n) is given

by
w (@)
D asng = ===,
e (45 Do

it is clear that Lemma 2.2 yields the following result:
Tueorem 2.6. Foralln > 0,
1 (mod 2) ifn = 3m?+ 2mfor some integer m,
@) = {0 (mod 2) otherwise.

Finally, we note that a combinatorial proof of Theorem 1.1 would be very illumi-
nating.
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