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PARITY RESULTS FOR PARTITIONS WHEREIN EACH
PART APPEARS AN ODD NUMBER OF TIMES

MICHAEL D. HIRSCHHORN and JAMES A. SELLERS�∨

Abstract
In this brief note, we consider the function f (n) which enumerates partitions of weight n wherein each part
appears an odd number of times. In a recent work, Chern noted that such partitions can be placed in one–
to–one correspondence with the partitions of n which he calls unlimited parity alternating partitions with
smallest part odd. Our goal is to study the parity of f (n) in detail. In particular, we prove a characterization
of f (2n) modulo 2 which implies infinitely many Ramanujan–like congruences modulo 2 satisfied by the
function f . All of the proof techniques utilized are elementary and involve classical generating function
dissection tools.
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1. Introduction

In a recent note, Chern [2] defined the function pao(n) to be the number of unlimited
parity alternating partitions of n with smallest part odd. Chern’s work is motivated by
work of Andrews [1] who defined a partition of n as “parity alternating” if the parts of
the partition in question alternate in parity.

Chern notes in passing that pao(n) also counts the number of partitions of n in
which each part appears an odd number of times. (Indeed, one can place the unlimited
parity alternating partitions of n with smallest part odd and the partitions of n in which
each part appears an odd number of times in one–to–one corresponce via conjugation.)

In order to simplify notation, we let f (n) be the number of partitions of n in which
each part appears an odd number of times. Our primary goal in this note is to prove
the following characterization of f (2n) modulo 2:

Theorem 1.1. For all n ≥ 0,

f (2n) ≡

1 (mod 2) if n = k2 for some integer k with 3 - k,
0 (mod 2) otherwise.

At the conclusion of the note, we will highlight infinite families of Ramanujan–like
congruences modulo 2 which are satisfied by f . We will also note how Theorem 1.1
implies a characterization modulo 2 of a3(n), the number of 3–cores of n. [4].
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2. An Elementary Generating Function Proof

In order to prove Theorem 1.1, we will utilize some well–known generating
function results and elementary manipulations thereof. We provide this foundation
here.

We begin by setting some standard notation. In particular, we define (a; q)∞, which
is the usual Pochhammer symbol, to be

(a; q)∞ = (1 − a)(1 − aq)(1 − aq2)(1 − aq3) . . .

Next, we provide three important lemmas.

Lemma 2.1.
(q; q)∞

(q3; q3)∞
=

(q2; q2)∞
(q6; q6)2

∞

∞∑
n=−∞

(−1)nq3n2−2n.

Proof.
∞∑

n=−∞

(−1)nq3n2−2n = (q; q6)∞(q5; q6)∞(q6; q6)∞

=
(q; q)∞(q6; q6)2

∞

(q2; q2)∞(q3; q3)∞
.

The result follows.

Lemma 2.2.
(q3; q3)3

∞

(q; q)∞
≡

∞∑
n=−∞

q3n2−2n (mod 2).

Proof.
∞∑

n=−∞

q3n2−2n ≡

∞∑
n=−∞

(−1)nq3n2−2n (mod 2)

=
(q; q)∞(q6; q6)2

∞

(q2; q2)∞(q3; q3)∞

≡
(q; q)∞(q3; q3)4

∞

(q; q)2
∞(q3; q3)∞

(mod 2)

=
(q3; q3)3

∞

(q; q)∞
.

As an aside, we note that Lemma 2.2 yields a mod 2 characterization for the number
of 3-core partitions of n [4]. We will return to this observation at the end of this paper.
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Lemma 2.3. If, as usual,

ψ(q) =
∑
n≥0

q(n2+n)/2 =
(q2; q2)2

∞

(q; q)∞
and Π(q) =

∞∑
n=−∞

q(3n2−n)/2

then
ψ(q) = Π(q) + qψ(q9).

Proof. See [3, Chapter 1].

We are now in a position to prove Theorem 1.1.

Proof. (of Theorem 1.1)

∑
n≥0

f (n)qn =
∏
n≥1

(
1 +

qn

1 − q2n

)
=

∏
n≥1

1 + qn − q2n

1 − q2n

≡
∏
n≥1

1 + qn + q2n

1 − q2n (mod 2)

=
∏
n≥1

(1 − q3n)
(1 − qn)(1 − q2n)

=
(q3; q3)∞

(q; q)∞(q2; q2)∞

=
(q3; q3)2

∞

(q; q)2
∞(q2; q2)∞

·
(q; q)∞

(q3; q3)∞

≡
(q6; q6)∞
(q2; q2)2

∞

·
(q; q)∞

(q3; q3)∞
(mod 2)

=
(q6; q6)∞
(q2; q2)2

∞

·
(q2; q2)∞
(q6; q6)2

∞

∞∑
n=−∞

(−1)nq3n2−2n by Lemma 2.1

=
1

(q2; q2)∞(q6; q6)∞

∞∑
n=−∞

(−1)nq3n2−2n

=
1

(q2; q2)∞(q6; q6)∞

 ∞∑
n=−∞

q12n2−4n − q
∞∑

n=−∞

q12n2−8n

 .
It follows that∑

n≥0

f (2n)qn ≡
1

(q; q)∞(q3; q3)∞

∞∑
n=−∞

q6n2−2n (mod 2)
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≡
1

(q; q)∞(q3; q3)∞

∞∑
n=−∞

(−1)nq6n2−2n (mod 2)

=
1

(q; q)∞(q3; q3)∞
(q4; q4)∞

≡
(q2; q2)2

∞

(q; q)∞(q3; q3)∞
(mod 2)

=
ψ(q)

(q3; q3)∞

=
Π(q3) + qψ(q9)

(q3; q3)∞
by Lemma 2.3

≡
(q3; q3)∞ + qψ(q9)

(q3; q3)∞
(mod 2)

= 1 + q
(q18; q18)2

∞

(q3; q3)∞(q9; q9)∞

≡ 1 + q
(q9; q9)4

∞

(q3; q3)∞(q9; q9)∞
(mod 2)

= 1 + q
(q9; q9)3

∞

(q3; q3)∞

≡ 1 + q
∞∑

n=−∞

q9n2−6n (mod 2) Lemma 2.2

= 1 +

∞∑
n=−∞

q(3n−1)2

= 1 +
∑

n>0, 3-n

qn2
.

The result follows.

Several comments are in order as we close.
First, note that we can now prove a variety of corollaries which provide infinitely

many Ramanujan–like congruences modulo 2 involving f (2n). We simply need to
make sure we avoid arguments of the form 2n where n is square. So, although not
exhaustive, we provide two such corollaries here.

Corollary 2.4. Let p ≥ 3 be prime and let r be a quadratic nonresidue modulo p.
Then, for all M ≥ 1 and n ≥ 0,

f (2M2(pn + r)) ≡ 0 (mod 2).

Proof. Thanks to Theorem 1.1, we need to see whether pn + r can be written as
pn + r = k2 with 3 - k. However, note that pn + r = k2 implies that r ≡ k2 (mod p).
This contradicts the definition of r given in the corollary. And we know that M2(pn+r)
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cannot be square because it is the product of a square and a non–square. The result
follows.

Corollary 2.5. For all M ≥ 1 and n ≥ 0,

f (2M2(4n + 2)) ≡ 0 (mod 2).

Proof. Note that, for M = 1, the result follows because 4n + 2 is never square. (All
squares are congruent to either 0 or 1 modulo 4.) Next, we need to ask whether
M2(4n + 2) can ever be square. Clearly, this also cannot be the case given that
M2(4n + 2) is the product of a square with a non–square.

Secondly, we highlight an unrelated observation about the parity of a3(n), the
number of 3–core partitions of n [4]. Since the generating function for a3(n) is given
by ∑

n≥0

a3(n)qn =
(q3; q3)3

∞

(q; q)∞
,

it is clear that Lemma 2.2 yields the following result:

Theorem 2.6. For all n ≥ 0,

a3(n) ≡

1 (mod 2) if n = 3m2 + 2m for some integer m,
0 (mod 2) otherwise.

Finally, we note that a combinatorial proof of Theorem 1.1 would be very illumi-
nating.
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