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Abstract. In this paper, we give two new identities for compositions, or ordered partitions, of

integers. These two identities are based on closely-related integer partition functions which have

recently been studied. Thanks to the structure inherent in integer compositions, we are also able to
extensively generalize both of these identities. Bijective proofs are given and generating functions

are provided for each of the types of compositions which arise. A number of arithmetic properties

satisfied by the functions which count such compositions are also highlighted.

1. Introduction

In recent years, a pair of partition functions, usually denoted by pod(n) and ped(n), has been the
focus of study by a number of mathematicians. These functions denote the number of partitions of n
where the odd parts (respectively, the even parts) must be distinct. Arithmetic properties satisfied
by pod(n) and ped(n) were recently proved by Hirschhorn and Sellers [7] and Andrews, Hirschhorn,
and Sellers [2], respectively. Since then, numerous other authors have worked on these functions or
close relatives thereof; the interested reader is directed to [3, 4, 8, 10, 12].

In particular Andrews, Hirschhorn, and Sellers established the following result.

Theorem 1.1. The number of partitions of n in which each even part occurs with even multiplicity
equals the number of partitions of n where no part is congruent to 2 (mod 4).

It can be shown that the two classes of partitions in Theorem 1.1 are also enumerated by the
function pod(n).

The first goal of this paper is to find an analogue to Theorem 1.1 from the perspective of com-
positions (also known as ordered partitions). This work continues to explore the theme of a recent
paper, by the first author [9], of discovering composition analogues of classical partition identities.

In order to state such an analogue in the present setting, we place a restriction on the compositions
in question by speaking of certain parts being inplace. A part appears j times inplace in a composition
if it appears in j consecutive positions in the composition. For example, in the composition
(2, 2, 2, 2, 3, 4, 4, 5, 6, 6, 2, 2, 3, 1), even parts appear inplace with even multiplicity while odd parts
are inplace distinct. (Note that in the combinatorics of words, inplace parts correspond to “runs
of identical letters”, or “levels” as contrasted with rises and falls. See, for example, [6]). The term
inplace is a more precise terminology adapted from the library of certain computer algebra systems.

Our first identity is the following seamless analogue of Theorem 1.1 for compositions.
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Theorem 1.2. For all n ≥ 0, the number of compositions of n when each even part occurs inplace
with even multiplicity equals the number of compositions of n in which no part is congruent to 2
(mod 4).

In contrast to Theorem 1.2, our second identity focuses on odd parts but relies on color compo-
sitions (see, for example [1]).

Theorem 1.3. For all n ≥ 0, the number of compositions of 2n such that each odd part appears
inplace with even multiplicity equals the number of compositions of n where each odd part can be of
two kinds.

Example 1.4. As an illustration of Theorem 1.3 let n = 3. Then the first set of compositions
contains the following 14 objects:

(6), (3, 3), (4, 2), (4, 1, 1), (2, 4), (1, 1, 4), (2, 2, 2), (2, 2, 1, 1), (2, 1, 1, 2), (1, 1, 2, 2),
(2, 1, 1, 1, 1), (1, 1, 2, 1, 1), (1, 1, 1, 1, 2), (1, 1, 1, 1, 1, 1)

The second set of compositions contains these 14 objects:
(3), (3∗), (2, 1), (2, 1∗), (1, 2), (1∗, 2), (1, 1, 1), (1, 1, 1∗), (1, 1∗, 1), (1∗, 1, 1),
(1, 1∗, 1∗), (1∗, 1, 1∗), (1∗, 1∗, 1), (1∗, 1∗, 1∗)

Note that we designate the second “kind” of odd part with the use of an asterisk.

Theorem 1.2 is the special case of k = ` = 2 of the following two-parameter generalization.

Theorem 1.5. Let k ≥ 2 and ` ≥ 2 be fixed integers. For all n ≥ 0, the number of compositions of
n when each part divisible by k occurs inplace with multiplicity a multiple of ` equals the number of
compositions of n in which no part is congruent to ik (mod `k), where 1 ≤ i ≤ `− 1.

Theorem 1.3 has the following natural generalization (for which the case k = 2 yields Theorem
1.3).

Theorem 1.6. Let k ≥ 2 be a fixed integer. For all n ≥ 0, the number of compositions of kn such
that each part not divisible by k appears inplace with multiplicity divisible by k equals the number of
compositions of n when each part not divisible by k can be of two kinds.

In proving these theorems we concentrate primarily on bijective reasoning. We also highlight the
enumerating generating functions.

2. A Proof of Theorem 1.5

For clarity we first give a proof of Theorem 1.5 when k = ` = 2. Consider a composition of n in
which no part is congruent to 2 modulo 4. This means all the parts are either odd or are multiples
of 4. To construct the image of this composition of n, we do the following:

• Any odd part is simply mapped to itself.
• Any part which is a multiple of 4, say 4r for some positive integer r, is mapped to 2r, 2r in

the new composition.

Then by construction, the weight of the new composition is still n. Moreover, the even parts in the
image composition are always next to one another in pairs; this preserves the need for each part to
occur inplace with even multiplicity.

The inverse operation should be clear. Again, map the odd parts to themselves. And each pair
2r, 2r encountered in the composition is converted to a single part 4r. This yields a composition in
which no part is congruent to 2 modulo 4.

We now extend the foregoing bijection to the general case. Begin with a composition of n in
which no part is congruent to ik (mod `k), where 1 ≤ i ≤ `− 1. This means all the parts are either
not divisible by k or, if divisible by k, then those parts are divisible by `k. To construct the image
of this composition, we do the following:
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• Any part not divisible by k is simply mapped to itself.
• Any part which is a multiple of `k, say (`k)r for some positive integer r, is mapped to
kr, kr, kr, . . . , kr︸ ︷︷ ︸

` times

in the new composition.

The rest of the proof follows as above. This completes the proof.

For example, when k = ` = 2, the composition (8, 1, 3, 3, 5, 4, 4, 12, 7) which has the property that
no parts are congruent to 2 modulo 4 is mapped to the composition (4, 4, 1, 3, 3, 5, 2, 2, 2, 2, 6, 6, 7)
and vice versa under the bijection.

We can obtain a rational generating function which gives Ck,`(n), the common number of com-
positions of n enumerated in Theorem 1.5 for any k and `. Such a generating function, using the
second class of compositions asserted in the theorem, is given by:∑
n≥1

Ck,`(n)xn =
∑
j≥1

((x + x2 + · · · )− (xk + xk+`k + · · · )− · · · − (x(`−1)k + x(`−1)k+`k + · · · ))j

=
∑
j≥1

(
x

1− x
− xk(1− x(`−1)k)

(1− x`k)(1− xk)

)j

This geometric series can be written in closed form as

x− 2x`k+1 + x(`+1)k+1 − xk + x`k

(1− x)(1− xk)(1− x`k)

1− x− 2x`k+1 + x(`+1)k+1 − xk + x`k

(1− x)(1− xk)(1− x`k)

which, when simplified becomes

(1)
x− 2x`k+1 + x(`+1)k+1 − xk + x`k

1− 2x + xk+1 − 2x`k + 3x`k+1 + x(`+1)k − 2x(`+1)k+1
.

When k = ` = 2, (1) reduces to

(2)
∑
n≥1

C2,2(n)xn =
x + x3 + x4

1− x− x3 − 2x4
.

The function (1) gives an effective way to count the sets of compositions of n in Theorem 1.5, for
any k ≥ 2 and ` ≥ 2, using a computer algebra package such as MAPLE.

Corresponding recurrence information can also be obtained for this sequence of values based on
the above generating function.

Before closing this section, we prove an interesting parity property satisfied by C2,2(n).

Theorem 2.1. For all n ≥ 2,

C2,2(n) ≡

{
0 (mod 2), if n ≡ 1, 3, 4 (mod 7)

1 (mod 2), otherwise.

Proof. Thanks to (2), the generating function equivalent of the statement of this theorem is that

x + x3 + x4

1− x− x3 − 2x4
≡ x2 + x5 + x6 + x7

1− x7
+ x (mod 2)
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which is the same as

(3)
x + x3 + x4

1− x− x3
≡ x + x2 + x5 + x6 + x7 + x8

1− x7
(mod 2).

But (3) is easily checked by noting that (x+x3+x4)(1−x7) and (1−x−x3)(x+x2+x5+x6+x7+x8)
are each congruent to x + x3 + x4 + x8 + x10 + x11 modulo 2.

Similar proof techniques can be employed to prove related results for other functions Ck,`(n) for
small values of k and `. For example, one can prove that

C3,3(n) ≡

{
0 (mod 2), if n ≡ 0 (mod 2) or n ≡ 1, 2, 4 (mod 7)

1 (mod 2), otherwise.

3. A Proof of Theorem 1.6

We now transition to a bijective proof of Theorem 1.6 in the spirit of the proof of Theorem 1.5.
Namely, begin with a composition of n where each part not divisible by k can be of two kinds. Then
construct the corresponding composition of kn where each part not divisible by k appears inplace
with multiplicity divisible by k, to which our original composition is mapped, in the following way:

• Any part divisible by k is mapped to a new part which is k times that part.
• Any part not divisible by k which is not marked with an asterisk is mapped to a new part

which is k times that part.
• Any part not divisible by k, say p, which is marked with an asterisk is mapped to p, p, p, . . . , p︸ ︷︷ ︸

k times

in the new composition.

It is clear that the new composition has weight kn given that the original composition has weight n.
It should also be clear that the new composition has the property that all of the parts not divisible
by k are “inplace” with multiplicity divisible by k. Lastly, this mapping is obviously invertible. This
completes the proof.

This bijection is demonstrated in the case k = 2, when n = 3, in Example 1.4; members of the
two lists of compositions correspond one-to-one according to the bijection.

The generating function for the function Ck(n) which enumerates the number of compositions of
n when each part not divisible by k can be of 2 kinds is given by∑

n≥0

Ck(n)xn =
∑
j≥0

(
2(x + x2 + · · · )− (xk + x2k + · · · )

)j
=

(1− x)(1− xk)

1− 3x + 2xk+1

=
1− xk

1− 2x− 2x2 − 2x3 − · · · − 2xk
.

As we close, we share a few remarks about the arithmetic behavior of Ck(n). First, it is clear from
the generating function that Ck(n) satisfies the recurrence

Ck(n) = 2(Ck(n− 1) + Ck(n− 2) + · · ·+ Ck(n− k))

for n ≥ k. Owing to the factor of 2 on the right–hand side of this recurrence, we know that, for
fixed j ≥ 1, Ck(n) ≡ 0 (mod 2j) for all n > jk. Moreover, in the special case k = 2, our recurrence
reduces to

C2(n) = 2(C2(n− 1) + C2(n− 2)).
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This second–order recurrence is quite reminiscent of the recurrence satisfied by the Fibonacci
numbers [11, A000045]. Indeed, it is the case that C2(n) satisfies a number of Fibonacci–like
arithmetic properties [5]. As an example, one can show that, for fixed m ≥ 1 and all n ≥ 0,
C2(m) | C2(2(m + 1)n + m).
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