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Abstract. In 1948, D. H. Lehmer published a brief work discussing the difference between

representations of the integer n as a sum of squares and partitions of n into square summands.
In this article, we return to this topic and consider four partition functions involving square
parts and prove various arithmetic properties of these functions. These results provide a
natural extension to the work of Lehmer.

1. Introduction

Just over half a century ago, D. H. Lehmer [5] initiated the study of partitions of a
number into a fixed number of squares. In a very readable introduction, he points out
the distinction between the number of representations of n as a sum of four squares,
which we denote by r4(n), and the number of partitions of n into four squares, which
we denote by p4�(n). Lehmer gives as an example the case n = 98, where the number of
representations is 1368 and the number of partitions is 7.
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With the goal of better understanding the significant difference between r4(98) and
p4�(98), consider the following. The single partition 98 = 81 + 16 + 1 + 0 gives rise to 192
distinct representations which are counted by r4(98). This is because one can permute the
squares 81, 16, 1 and 0 in 24 different ways and then one can think of 81 as (±9)2, 16 as
(±4)2, and 1 as (±1)2. So there are 24×23 or 192 different representations of 98 generated
by the single partition 81 + 16 + 1 + 0.

Given this situation, Lehmer goes on to say “... it is a fair question to ask how one may
obtain the reasonable number 7 from the obviously inflated value 1368. This problem is
unfortunately one of extreme difficulty. At least no solution has ever been given.” These
comments appear to be true even today. He goes on “The difficulty lies in the unequal
numbers of representations derivable from a single partition. It is not difficult to see that
there are eleven different types of partitions as far as we are concerned ...”.

In the next section, we describe Lehmer’s eleven types of partitions and find the gen-
erating functions for each one of these. We show how these may be combined to obtain
the generating function for p4�(n) as well as for the related partition functions p+

4�(n),

the number of partitions of n into four positive squares, pd
4�(n), the number of partitions

of n into four distinct squares, and pd+
4�(n), the number of partitions of n into four dis-

tinct positive squares. We then state and prove various arithmetic properties of these four
partition functions.

2. The generating functions

We begin by reproducing Lehmer’s list of eleven types of partitions into four squares.
(This list appears in Table 1.) The values in the third column of this table show the number
of representations derivable from each partition type. Thus, in the first row, each partition
of n in the form a2 + b2 + c2 + d2 with a, b, c, d positive and distinct (1 ≤ a < b < c < d)
yields 4!×24 or 384 representations of n as a sum of four squares because there are 4! ways
to permute a2, b2, c2, and d2, and there are 24 variations of positive and negative signs that
can be used. As another example, in the fifth row, each partition of the form 02+a2+a2+b2

with a, b positive and distinct corresponds to
(
4
2

)(
2
1

)(
1
1

)
(23) or 96 representations.



ON A PROBLEM OF LEHMER ON PARTITIONS INTO SQUARES 3

I a2 + b2 + c2 + d2 384
II 02 + a2 + b2 + c2 192
III a2 + a2 + b2 + c2 192
IV a2 + a2 + b2 + b2 96
V 02 + a2 + a2 + b2 96
VI a2 + a2 + a2 + b2 64
VII 02 + 02 + a2 + b2 48
VIII 02 + a2 + a2 + a2 32
IX 02 + 02 + a2 + a2 24
X a2 + a2 + a2 + a2 16
XI 02 + 02 + 02 + a2 8

Table 1: Lehmer’s Eleven Types of Partitions of n into Four Squares

We shall define the generating functions of each of these eleven types of partitions in a
fairly self–explanatory fashion. Thus, for example, the generating function for partitions
of type V will be denoted by F (a2 + a2 + b2, q).

It then follows that

(1) ∑
n≥0

p4�(n)qn = 1 + F (a2 + b2 + c2 + d2, q) + F (a2 + b2 + c2, q)

+ F (a2 + a2 + b2 + c2, q) + F (a2 + a2 + b2 + b2, q)

+ F (a2 + a2 + b2, q) + F (a2 + a2 + a2 + b2, q)

+ F (a2 + b2, q) + F (a2 + a2 + a2, q) + F (a2 + a2, q)

+ F (a2 + a2 + a2 + a2, q) + F (a2, q),

while ∑
n≥0

r4(n)qn = 1 + 384F (a2 + b2 + c2 + d2, q) + 192F (a2 + b2 + c2, q)

+ 192F (a2 + a2 + b2 + c2, q) + 96F (a2 + a2 + b2 + b2, q)

+ 96F (a2 + a2 + b2, q) + 64F (a2 + a2 + a2 + b2, q)

+ 48F (a2 + b2, q) + 32F (a2 + a2 + a2, q) + 24F (a2 + a2, q)

+ 16F (a2 + a2 + a2 + a2, q) + 8F (a2, q).
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Next, we introduce the well–known function φ(q) given by

φ(q) =
∞∑

n=−∞
qn2

= 1 + 2
∞∑

n=1

qn2
.

This function arises naturally in the area of representations as sums of squares because,
for example,

∑
n≥0

r4(n)qn = φ(q)4.

We now write each of the generating functions corresponding to the eleven partition
types in Table 1 in terms of φ(q) and obtain the following theorem. We include the
proofs of the various results in the statement of the theorem, as the work involved is
straightforward.

Theorem 1. The following generating function identities hold.

F (a2, q) =
1
2

(φ(q)− 1),

F (a2 + a2, q) =
1
2

(φ(q2)− 1),

F (a2 + a2 + a2, q) =
1
2

(φ(q3)− 1),

F (a2 + a2 + a2 + a2, q) =
1
2

(φ(q4)− 1),

F (a2 + b2, q) =
1
2
(
F (a2, q)2 − F (a2 + a2, q)

)
=

1
8
(
φ(q)2 − 2φ(q)− 2φ(q2) + 3

)
,

F (a2 + a2 + b2 + b2, q) =
1
8
(
φ(q2)2 − 2φ(q2)− 2φ(q4) + 3

)
,

F (a2 + a2 + b2, q) = F (a2 + a2, q)F (a2, q)− F (a2 + a2 + a2, q)

=
1
4
(
φ(q)φ(q2)− φ(q)− φ(q2)− 2φ(q3) + 3

)
,

F (a2 + a2 + a2 + b2, q) = F (a2 + a2 + a2, q)F (a2, q)− F (a2 + a2 + a2 + a2, q)

=
1
4
(
φ(q)φ(q3)− φ(q)− φ(q3)− 2φ(q4) + 3

)
,

F (a2 + b2 + c2, q) =
1
3
(
F (a2 + b2, q)F (a2, q)− F (a2 + a2 + b2, q)

)
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=
1
48
(
φ(q)3 − 3φ(q)2 − 6φ(q)φ(q2) + 9φ(q) + 6φ(q2)

+8φ(q3)− 15
)
,

F (a2 + a2 + b2 + c2, q) = F (a2 + a2, q)F (a2 + b2, q)− F (a2 + a2 + a2 + b2, q)

=
1
16
(
φ(q)2φ(q2)− φ(q)2 − 2φ(q)φ(q2)− 4φ(q)φ(q3)

−2φ(q2)2 + 6φ(q) + 5φ(q2) + 4φ(q3) + 8φ(q4)− 15
)

and

F (a2 + b2 + c2 + d2, q) =
1
4
(
F (a2 + b2 + c2, q)F (a2, q)− F (a2 + a2 + b2 + c2, q)

)
=

1
384

(
φ(q)4 − 4φ(q)3 − 12φ(q)2φ(q2) + 18φ(q)2

+24φ(q)φ(q2) + 32φ(q)φ(q3) + 12φ(q2)2 − 60φ(q)

−36φ(q2)− 32φ(q3)− 48φ(q4) + 105
)
. �

Notice that we can substitute these eleven expressions into (1) to yield

∑
n≥0

p4�(n)qn =
1

384
(
φ(q)4 + 4φ(q)3 + 12φ(q)2φ(q2) + 18φ(q)2 + 24φ(q)φ(q2)(2)

+32φ(q)φ(q3) + 12φ(q2)2 + 60φ(q) + 36φ(q2) + 32φ(q3)

+48φ(q4) + 105
)
.

This result (2) was obtained via another method by Hirschhorn [3]. We can also obtain

similar generating function identities for p+
4�, p

d
4�, and pd+

4�.

Theorem 2. (including proof)∑
n≥0

p+
4�(n)qn = F (a2 + a2 + a2 + a2, q) + F (a2 + a2 + b2 + b2, q)

+ F (a2 + a2 + a2 + b2, q) + F (a2 + a2 + b2 + c2, q)

+ F (a2 + b2 + c2 + d2, q)

=
1

384
(
φ(q)4 − 4φ(q)3 + 12φ(q)2φ(q2)− 6φ(q)2 − 24φ(q)φ(q2)

+32φ(q)φ(q3) + 12φ(q2)2 − 12φ(q)
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−12φ(q2)− 32φ(q3) + 48φ(q4)− 15
)
,∑

n≥0

pd
4�(n)qn = F (a2 + b2 + c2, q) + F (a2 + b2 + c2 + d2, q)

=
1

384
(
φ(q)4 + 4φ(q)3 − 12φ(q)2φ(q2)− 6φ(q)2

−24φ(q)φ(q2) + 32φ(q)φ(q3) + 12φ(q2)2 + 12φ(q)

+12φ(q2) + 32φ(q3)− 48φ(q4)− 15
)
,

and∑
n≥0

pd+
4�(n)qn = F (a2 + b2 + c2 + d2)

=
1

384
(
φ(q)4 − 4φ(q)3 − 12φ(q)2φ(q2) + 18φ(q)2

+24φ(q)φ(q2) + 32φ(q)φ(q3) + 12φ(q2)2 − 60φ(q)

−36φ(q2)− 32φ(q3)− 48φ(q4) + 105
)
. �

3. Some arithmetic relations

In [5], Lehmer proved that p4�(8n) = p4�(2n) for all n ≥ 0. Our goal was to search for

other such arithmetic relations involving p4�, p
+
4�, p

d
4�, and pd+

4�.

Now that we have the generating functions for the four partition functions mentioned
above, it is an easy matter to expand them using MAPLE or a similar package. We did so,
and made the following discoveries.

Theorem 3. For all n ≥ 0,

p4�(8n) = p4�(2n),(i)

p+
4�(8n) = p+

4�(2n),(ii)

pd
4�(8n) = pd

4�(2n),(iii)

and

pd+
4�(8n) = pd+

4�(2n),(iv)

p4�(8n+ 4) = 2p4�(2n+ 1) + p+
4�(2n+ 1),(v)

p+
4�(8n+ 4) = 2p+

4�(2n+ 1) + p4�(2n+ 1),(vi)
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pd
4�(8n+ 4) = 2pd

4�(2n+ 1) + pd+
4�(2n+ 1),(vii)

and

pd+
4�(8n+ 4) = 2pd+

4�(2n+ 1) + pd
4�(2n+ 1),(viii)

p4�(32n+ 28) = 3p4�(8n+ 7)(ix)

and

pd
4�(32n+ 28) = 3pd

4�(8n+ 7),(x)

p4�(72n+ 69) ≡ 0 (mod 2),(xi)

p+
4�(72n+ 69) ≡ 0 (mod 2),(xii)

pd
4�(72n+ 69) ≡ 0 (mod 2),(xiii)

and

pd+
4�(72n+ 69) ≡ 0 (mod 2).(xiv)

Lehmer gave a straightforward proof of (i) by establishing a one–to–one correspondence
between partitions of 2n into four squares and partitions of 8n into four squares. The same
proof establishes (ii), (iii) and (iv). We shall give different proofs of (i) – (iv), utilizing
generating functions.

In an earlier paper [4] we gave a proof of (ix) which can be extended to prove (x).
However, note that parts (ix) and (x) are corollaries of parts (v) – (viii) together with the
fact that if 8n+ 7 is the sum of four squares, the squares are all positive. We shall prove
parts (v) – (viii) below.

Lastly, we note that our proof in [4] of (xi) can be extended to prove (xii) – (xiv).

4. Proofs

In order to attack the proof of Theorem 3, we require the following facts.

Lemma 4. Let
ψ(q) =

∑
n≥0

q(n
2+n)/2.

Then we have the following:
φ(q) = φ(q4) + 2qψ(q8),

φ(q)2 = φ(q2)2 + 4qψ(q4)2,
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φ(q)ψ(q2) = ψ(q)2

and
ψ(q)ψ(q3) = φ(q6)ψ(q4) + qφ(q2)ψ(q12).

For proofs of these identities, see [1, page 40, Entry 25] and [2, Lemma 14]. �

We now turn to the proofs of (i) and (v). Using (2) and Lemma 4, we have∑
n≥0

p4�(n)qn =
1

384

( (
φ(q4) + 2qψ(q8)

)4
+ 4

(
φ(q4) + 2qψ(q8)

)3
+ 12

(
φ(q4) + 2qψ(q8)

)2 (
φ(q8) + 2q2ψ(q16)

)
+ 18

(
φ(q4) + 2qψ(q8)

)2
+ 24

(
φ(q4) + 2qψ(q8)

) (
φ(q8) + 2q2ψ(q16)

)
+ 32

(
φ(q4) + 2qψ(q8)

) (
φ(q12) + 2q3ψ(q24)

)
+ 12

(
φ(q8) + 2q2ψ(q16)

)2
+ 60

(
φ(q4) + 2qψ(q8)

)
+ 36

(
φ(q8) + 2q2ψ(q16)

)
+ 32

(
φ(q12) + 2q3ψ(q24)

)
+ 48

(
φ(q16) + 2q4ψ(q32)

)
+ 105

)
.

It follows that∑
n≥0

p4�(4n)qn =
1

384

(
φ(q)4 + 16qψ(q2)4 + 4φ(q)3 + 12φ(q)2φ(q2) + 96qψ(q2)2ψ(q4)

+ 18φ(q)2 + 24φ(q)φ(q2) + 32φ(q)φ(q3) + 128qψ(q2)ψ(q6) + 12φ(q2)2

+ 48qψ(q4)2 + 60φ(q) + 36φ(q2) + 32φ(q3) + 48φ(q4) + 96qψ(q8) + 105
)

and so∑
n≥0

(p4�(4n)− p4�(n)) qn =
1

384

(
16qψ(q2)4 + 96qψ(q2)2ψ(q4) + 128qψ(q2)ψ(q6)

+ 48qψ(q4)2 + 96qψ(q8)
)

=
1
24
q
(
ψ(q2)4 + 6ψ(q2)2ψ(q4) + 8ψ(q2)ψ(q6)

+ 3ψ(q4)2 + 6ψ(q8)
)
.

This is an odd function of q, so∑
n≥0

(p4�(8n)− p4�(2n)) qn = 0,
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which proves (i).
Moreover,∑

n≥0

(p4�(8n+ 4)− p4�(2n+ 1)) qn =
1
24

(
ψ(q)4 + 6ψ(q)2ψ(q2) + 8ψ(q)ψ(q3) + 3ψ(q2)2

+ 6ψ(q4)
)
.

This is the first step in the proof of (v). Next, we have∑
n≥0

(
p4�(n) + p+

4�(n)
)
qn =

1
384

(
2φ(q)4 + 24φ(q)2φ(q2) + 12φ(q)2 + 64φ(q)φ(q3)

+ 24φ(q2)2 + 48φ(q) + 24φ(q2) + 96φ(q4) + 90
)

=
1

192

( (
φ(q2)2 + 4qψ(q4)2

)2
+ 12

(
φ(q2)2 + 4qψ(q4)2

)
φ(q2)

+ 6
(
φ(q2)2 + 4qψ(q4)2

)
+ 32

(
φ(q4) + 2qψ(q8)

) (
φ(q12) + 2q3ψ(q24)

)
+ 12φ(q2)2 + 24

(
φ(q4) + 2qψ(q8)

)
+ 12φ(q2) + 48φ(q4) + 45

)
.

It follows that∑
n≥0

(
p4�(2n+ 1) + p+

4�(2n+ 1)
)
qn =

1
192

(
8φ(q)2ψ(q2)2 + 48φ(q)ψ(q2)2 + 24ψ(q2)2

+ 64φ(q6)ψ(q4) + 64qφ(q2)ψ(q12) + 48ψ(q4)
)

=
1
24

(
ψ(q)4 + 6ψ(q)2ψ(q2) + 3ψ(q2)2 + 8ψ(q)ψ(q3)

+ 6ψ(q4)
)

=
∑
n≥0

(p4�(8n+ 4)− p4�(2n+ 1)) qn.

This proves (v).

We now closely mimic the proofs of (i) and (v) above to prove (ii) – (iv) and (vi) –
(viii). First, we find that∑

n≥0

(
p+
4�(4n)− p+

4�(n)
)
qn =

1
24

(
qψ(q2)4 + 6qψ(q2)2ψ(q4) + 8qψ(q2)ψ(q6)
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+ 3qψ(q4)2 + 6qψ(q8)
)
,

from which both (ii) and (vi) follow.

Also,∑
n≥0

(
pd
4�(4n)− pd

4�(n)
)
qn =

∑
n≥0

(
pd+
4�(4n)− pd+

4�(n)
)
qn

=
1
24

(
qψ(q2)4 − 6qψ(q2)2ψ(q4) + 8qψ(q2)ψ(q6) + 3qψ(q4)2

− 6qψ(q8)
)

from which (iii) and (iv) follow, and∑
n≥0

(
pd
4�(8n+ 4)− pd

4�(2n+ 1)
)
qn =

∑
n≥0

(
pd+
4�(8n+ 4)− pd+

4�(2n+ 1)
)
qn

=
1
24

(
ψ(q)4 − 6ψ(q)2ψ(q2) + 8ψ(q)ψ(q3) + 3ψ(q2)2

− 6ψ(q4)
)

=
∑
n≥0

(
pd
4�(2n+ 1) + pd+

4�(2n+ 1)
)
qn

from which (vii) and (viii) follow.
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