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Abstract

We study various spaces of magic squares over a field, and determine their
dimensions. These results generalize the main result of Small from 1988.
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1. Introduction

A magic square of order n over a field F is an n× n matrix with entries in
F with the property that every row, every column, and the two main diagonals
all have the same sum, called the magic sum. The set of all such magic squares
over a given field F forms a vector space. In [4], Small proved that for n ≥ 5,
the dimension of this space of magic squares of order n is n2 − 2n, independent
of the field F . For n < 5, the results depend upon the characteristic of the field
and are summarized in [4, page 622].

This definition of a magic square differs from the more traditional definition
in which a magic square of order n is an n × n square which uses each of the
numbers 0, 1, . . . , n2 − 1 exactly once and for which each row, each column,
and each of the two main diagonals has the constant sum n(n2 − 1)/2, called
the magic sum. Sometimes the square is based on the symbols 1, 2, . . . , n2, in
which case the magic sum is n(n2 + 1)/2; see [1, pages 524-528] for properties
and methods of construction for various kinds magic squares. Thompson [5]
considers multiplicative properties of sets of magic squares (under normal matrix
multiplication).

Let F be a field, t ∈ F , n a positive integer, and 0 ≤ k ≤ n. Let Mn,k(t)
be the set of all n × n matrices [aij ]0≤i,j≤n−1 over F satisfying the following
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conditions:

n−1∑
j=0

aij = t for all 0 ≤ i ≤ n− 1 (row sums)

n−1∑
i=0

aij = t for all 0 ≤ j ≤ n− 1 (column sums)∑
j+i=−l−1

aij = t for all 0 ≤ l ≤ k − 1 (antidiagonal sums)

∑
j−i=l

aij = t for all 0 ≤ l ≤ k − 1 (diagonal sums)

where the subscripts are taken modulo n. Define Mn,k =
⋃
t∈FMn,k(t).

Thus when k = 0, we have a square which is magic for all rows and columns
but not necessarily for the two main diagonals. When k = 1, we have a magic
square in the sense of Small [4]; and when k = n, we have a square in which
each row, each column, and each of the 2n wrap around diagonals has the same
sum. Following terminology from Latin squares, such a square might be called
a pandiagonal magic square.

The problem which we wish to address in this paper is easily stated – for
any field F and any 0 ≤ k ≤ n, determine dimFMn,k. It is clear that

dimFMn,k = dimFMn,k(0) +

{
1 if Mn,k(1) 6= ∅,
0 if Mn,k(1) = ∅.

Our main results provide the determination of dimFMn,k(0). The main theo-
rems are stated in Section 2 and proved in Section 3. The remaining question
is when Mn,k(1) 6= ∅. We do not have the complete answer to the question. In
Section 4, we include some sufficient conditions for Mn,n(1) to be nonempty.

2. Statement of main results

In this section, we give the main results of our paper. We break the results
into two theorems based on whether the characteristic of F, which we denote
by charF , divides n or does not divide n.

Theorem 2.1. Let n ≥ 0 and let F be a field such that charF - n. Also, define
α(n) by

α(n) :=

{
3 if 2 - n,
4 if 2 | n.

Then

dimMn,k(0) =

{
n2 − 4n+ α(n) if n− 1 ≤ k ≤ n,
n2 − 2n− 2k + 1 if 0 ≤ k ≤ n− 2.
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Theorem 2.2. Let n ≥ 0 and let F be a field such that charF | n. Also, define
β1(n) and β2(n) by

β1(n) :=


6 if 2 - n,
5 if 2 | n and charF - n2 ,
7 if 2 | n and charF | n2

and

β2(n) :=

{
7 if 2 - n or charF - n2 ,
8 if 2 | n and charF | n2 .

Then

dimMn,k(0) =


n2 − 4n+ β1(n) if n− 2 ≤ k ≤ n,
n2 − 4n+ β2(n) if k = n− 3,

n2 − 2n− 2k + 1 if 0 ≤ k ≤ n− 4.

3. Proofs of Theorems 2.1 and 2.2

We begin with the proof of Theorem 2.1.

Proof of Theorem 2.1

Throughout this proof, let F be a field such that char F - n. Let Eij ∈
Mn×n(F ) be the matrix whose (i, j) entry is 1 and whose other entries are 0.
Put

Ai =

n−1∑
j=0

Eij , Bj =

n−1∑
i=0

Eij , Cl =
∑

j+i=−l−1

Eij , Dl =
∑
j−i=l

Eij .

Endow Mn×n(F ) with the standard inner product

〈[aij ], [bij ]〉 =
∑
i,j

aijbij .

Then clearly,

Mn,k(0) = {A0, . . . , An−1, B0, . . . , Bn−1, C0, . . . , Ck−1, D0, . . . , Dk−1}⊥.

Thus

dimMn,k(0) = n2−dim〈A0, . . . , An−1, B0, . . . , Bn−1, C0, . . . , Ck−1, D0, . . . , Dk−1〉,
(1)

where 〈· · · 〉 denotes linear span.
Consider the equation

n−1∑
i=0

[
a(i)Ai + b(i)Bi + c(i)Ci + d(i)Di

]
= 0, (2)
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where a, b, c, d are functions from Zn to F to be determined. Entry wise, equa-
tion (2) is equivalent to

a(i) + b(j) + c(−j − i− 1) + d(j − i) = 0, i, j ∈ Zn. (3)

Let
Sn = {(a, b, c, d) : a, b, c, d : Zn → F satisfy (3)},

and
Sn,k = {(a, b, c, d) ∈ Sn : c(i) = d(i) = 0 for k ≤ i < n}.

Then

dim〈A0, . . . , An−1, B0, . . . , Bn−1, C0, . . . , Ck−1, D0, . . . , Dk−1〉 = 2n+2k−dimSn,k.
(4)

By (1) and (4),

dimMn,k(0) = n2 − 2n− 2k + dimSn,k. (5)

Now we see that the essential question is to solve the functional equation
(3).

Lemma 3.1. For (a, b, c, d) ∈ Sn, the functions a, b, c, and d satisfy the follow-
ing: a(i) = α for all i ∈ Zn, where α ∈ F , b(j) = β for all j ∈ Zn, where β ∈ F ,
and

c(−j − 2i− 1) + d(j) = −α− β. (6)

Proof of Lemma 3.1. Let (a, b, c, d) ∈ Sn. By (3),

na(i) = −
∑
j∈Zn

[
b(j) + c(−j − i− 1) + d(j − i)

]
= −

∑
j∈Zn

[
b(j) + c(j) + d(j)

]
.

So a is a constant function: a(i) = α for all i ∈ Zn, where α ∈ F . In the same
way, b(j) = β for all j ∈ Zn, where β ∈ F . By (3),

c(−j − 2i− 1) + d(j) = −α− β.

�
At this stage, we break our proof into two lemmas which depend on the

parity of n.

Lemma 3.2. If 2 - n, then

dimMn,k(0) =

{
n2 − 4n+ 3 if k = n,

n2 − 2n− 2k + 1 if 0 ≤ k ≤ n− 1.
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Proof of Lemma 3.2. By (6),

nd(j) = −n(α+ β)−
∑
i∈Zn

c(−j − 2i− 1) = −(α+ β)−
∑
i∈Zn

c(i).

Thus d(j) = δ for all j ∈ Zn, where δ ∈ F . Hence the solutions of (3) are
a(i) = α,

b(i) = β,

c(i) = γ,

d(i) = δ,

i ∈ Zn,

where α, β, γ, δ ∈ F and α+ β + γ + δ = 0. When 0 ≤ k ≤ n− 1, the solutions
of (3) in Sn,k are 

a(i) = α,

b(i) = β,

c(i) = 0,

d(i) = 0,

i ∈ Zn,

where α+ β = 0. It is clear that

dimSn,k =

{
3 if k = n,

1 if 0 ≤ k ≤ n− 1.

Thus equation (5) completes the proof. �

Lemma 3.3. If 2 | n, then

dimMn,k(0) =

{
n2 − 4n+ 4 if k = n or n− 1,

n2 − 2n− 2k + 1 if 0 ≤ k ≤ n− 2.

Proof of Lemma 3.3. By (6),

nd(j) = −n(α+β)−
∑
i∈Zn

c(−j−2i−1) = −n(α+β)−2

 ∑
i≡−j−1 (mod 2)

c(i)

 .

So we have

d(j) =

{
δ0 if j ≡ 0 (mod 2),

δ1 if j ≡ 1 (mod 2),

where δ0, δ1 ∈ F . Therefore the solutions of (3) are

a(i) = α,

b(i) = β,

c(i) =

{
γ0 if i ≡ 0 (mod 2),

γ1 if i ≡ 1 (mod 2),

d(i) =

{
δ0 if i ≡ 0 (mod 2),

δ1 if i ≡ 1 (mod 2),

i ∈ Zn,
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where α, β, γ0, γ1, δ0, δ1 ∈ F and α+ β + γ0 + δ1 = 0, α+ β + γ1 + δ0 = 0.
When k = n− 1, the solutions of (3) in Sn,k = Sn,n−1 are

a(i) = α,

b(i) = β,

c(i) =

{
γ0 if i ≡ 0 (mod 2),

0 if i ≡ 1 (mod 2),

d(i) =

{
δ0 if i ≡ 0 (mod 2),

0 if i ≡ 1 (mod 2),

i ∈ Zn,

where α+ β+ γ0 = 0, α+ β+ δ0 = 0. When 0 ≤ k ≤ n− 2, the solutions of (3)
in Sn,k are 

a(i) = α,

b(i) = β,

c(i) = 0,

d(i) = 0,

i ∈ Zn,

where α+ β = 0. It is easy to see that

dimSn,k =


4 if k = n,

2 if k = n− 1,

1 if 0 ≤ k = n− 2.

Thus (5) gives

dimMn,k(0) =

{
n2 − 4n+ 4 if k = n or n− 1,

n2 − 2n− 2k + 1 if 0 ≤ k ≤ n− 2.

�
Combining Lemmas 3.2 and 3.3 completes the proof of Theorem 2.1.

We now proceed to a proof of Theorem 2.2. Thus, we let F be a field such that
char F | n.

Lemma 3.4. For (a, b, c, d) ∈ Sn, we have

(∆2d)(j) = (∆2c)(−j + 2i), i, j ∈ Zn, (7)

where (∆c)(i) = c(i+ 1)− c(i).

Proof of Lemma 3.4. Let f : Zn × Zn → F be a function. The equation

a(i) + b(j) = f(i, j), i, j ∈ Zn (8)

has a solution a, b : Zn → F if and only if

f(i, j)− f(i+ 1, j)− f(i, j + 1) + f(i+ 1, j + 1) = 0 for all i, j ∈ Zn. (9)
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When (9) is satisfied, the solutions of (8) are{
a(i) = f(i, 0) + σ,

b(i) = f(0, i) + τ,
i ∈ Zn, (10)

where σ + τ = −f(0, 0).
Assume that (a, b, c, d) ∈ Sn. Put

f(i, j) = −c(−j − i− 1)− d(j − i). (11)

Then (9) becomes

0 = f(i, j)− f(i+ 1, j)− f(i, j + 1) + f(i+ 1, j + 1)

= − c(−j − i− 1) + 2c(−j − i− 2)− c(−j − i− 3)

+ d(j − i+ 1)− 2d(j − i) + d(j − i− 1)

= (∆2d)(j − i− 1)− (∆2c)(−j − i− 3),

where (∆c)(i) = c(i+ 1)− c(i). The above equation is equivalent to

(∆2d)(j) = (∆2c)(−j + 2i), i, j ∈ Zn. (12)

�
As with the proof of Theorem 2.1, we now break our proof into two lemmas

which depend on the parity of n.

Lemma 3.5. If 2 - n, then

dimMn,k(0) =

{
n2 − 4n+ 6 if n− 2 ≤ k ≤ n,
n2 − 2n− 2k + 1 if 0 ≤ k ≤ n− 3.

Proof of Lemma 3.5. By (7) we have

(∆2d)(j) = (∆2c)(j) = α for all j ∈ Zn,

where α ∈ F . Thus {
c(j) = α

2 j
2 + βj + γ,

d(j) = α
2 j

2 + β′j + γ′,
j ∈ Zn, (13)

where β, β′, γ, γ′ ∈ F . By (10), (11) and (13),

a(i) = f(i, 0) + σ = −αi2 + (−α+ β + β′)i− α

2
+ β − γ − γ′ + σ,

b(i) = f(0, i) + τ = −αi2 + (−α+ β − β′)i− α

2
+ β − γ − γ′ + τ,

where
σ + τ = −f(0, 0) =

α

2
− β + γ + γ′.
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Thus the solutions of (3) are

a(i) = −αi2 + (−α+ β + β′)i+ σ′,

b(i) = −αi2 + (−α+ β − β′)i+ τ ′,

c(i) = α
2 i

2 + βi+ γ,

d(i) = α
2 i

2 + β′i+ γ′,

i ∈ Zn, (14)

where α, β, β′, γ, γ′, σ′, τ ′ ∈ F and σ′ + τ ′ = −α2 + β − γ − γ′.
The F -map

φ :

{
(α, β, β′, γ, γ′, σ′, τ ′) ∈ F 7

: σ′ + τ ′ = −α2 + β − γ − γ′
}
−→ Sn

(α, . . . , τ ′) 7−→ the solution in (14)

(15)

is onto with kerφ = 0. Thus
dimSn = 6.

When k = n − 1, the solutions of (3) in Sn,k = Sn,n−1 are given by (14)
subject to the conditions

σ′ + τ ′ = −α2 + β − γ − γ′,
α
2 − β + γ = 0,
α
2 − β

′ + γ′ = 0.

An argument similar to (15) gives

dimSn,n−1 = 4.

When k = n − 2, the solutions of (3) in Sn,k = Sn,n−2 are given by (14)
subject to the conditions

σ′ + τ ′ = −α2 + β − γ − γ′,
α
2 − β + γ = 0,
α
2 − β

′ + γ′ = 0,

2α− 2β + γ = 0,

2α− 2β′ + γ′ = 0.

(16)

The system (16) is equivalent to
σ′ + τ ′ = −α2 + β − γ − γ′,
β = β′ = 3

2α,

γ = γ′ = α.

Then it is easy to see that
dimSn,n−2 = 2.
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When 0 ≤ k ≤ n − 3, the solutions of (3) in Sn,k are given by (14) subject
to the conditions {

σ′ + τ ′ = 0,

α = β = β′ = γ = γ′ = 0.

Thus
dimSn,k = 1.

Therefore we have

dimMn,k(0) =

{
n2 − 4n+ 6 if n− 2 ≤ k ≤ n,
n2 − 2n− 2k + 1 if 0 ≤ k ≤ n− 3.

�

Lemma 3.6. If 2 | n, then

dimMn,k(0) =


n2 − 4n+ 7 if n− 2 ≤ k ≤ n,
n2 − 4n+ 8 if k = n− 3,

n2 − 2n− 2k + 1 if 0 ≤ k ≤ n− 4.

Proof of Lemma 3.6. By (7) we have

(∆2c)(j) = (∆2d)(j) =

{
α0 if j ≡ 0 (mod 2),

α1 if j ≡ 1 (mod 2),

where α0, α1 ∈ F . Thus

(∆c)(2j) = (∆2c)(0) + · · ·+ (∆2c)(2j − 1) + β (β = (∆c)(0))

= α0 + α1 + · · ·+ α0 + α1 + β

= jα0 + jα1 + β,

and
(∆c)(2j + 1) = (j + 1)α0 + jα1 + β.

Consequently,

c(2j) = (∆c)(0) + · · ·+ (∆c)(2j − 1) + γ (γ = c(0))

= 0α0 + 0α1 + β

+ 1α0 + 0α1 + β

+ 1α0 + 1α1 + β

+ 2α0 + 1α1 + β

...

+ (j − 1)α0 + (j − 1)α1 + β

+ jα0 + (j − 1)α1 + β + γ

= j2α0 + j(j − 1)α1 + 2jβ + γ,

(17)
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and
c(2j + 1) = j(j + 1)α0 + j2α1 + (2j + 1)β + γ. (18)

In the same way,d(2j) = j2α0 + j(j − 1)α1 + 2jβ′ + γ′,

d(2j + 1) = j(j + 1)α0 + j2α1 + (2j + 1)β′ + γ′.
(19)

From (10), (11), (17) – (19), we have

a(2i) = f(2i, 0) + σ

= − 2(α0 + α1)i2 + (−α0 − 3α1 + 2β + 2β′)i− α1 + β − γ − γ′ + σ,

a(2i+ 1) = f(2i+ 1, 0) + σ

= − 2(α0 + α1)i2 + (−3α0 − 5α1 + 2β + 2β′)i− α0 − 3α1 + 2β + β′ − γ − γ′ + σ,

b(2i) = f(0, 2i) + τ

= − 2(α0 + α1)i2 + (−α0 − α1 + 2β − 2β′)i− α1 + β − γ − γ′ + τ,

b(2i+ 1) = f(0, 2i+ 1) + τ

= − 2(α0 + α1)i2 + (−3α0 − 3α1 + 2β − 2β′)i− α0 − 2α1 + 2β − β′ − γ − γ′ + τ,

where
σ + τ = −f(0, 0) = α1 − β + γ + γ′.

It is important to note that in order for the functions a, b, c, d obtained above
to be well defined on Zn, it is necessary and sufficient that

n

2

((n
2

+ 1
)
α0 +

n

2
α1

)
= 0,

n(n+ 1)

2
(α0 + α1) = 0.

(20)

Therefore the solutions of (3) are given by

a(2i) = −2(α0 + α1)i2 + (−α0 − 3α1 + 2β + 2β′)i+ σ′,

a(2i+ 1) = −2(α0 + α1)i2 + (−3α0 − 5α1 + 2β + 2β′)i− α0 − 2α1 + β + β′ + σ′,

b(2i) = −2(α0 + α1)i2 + (−α0 − α1 + 2β − 2β′)i+ τ ′,

b(2i+ 1) = −2(α0 + α1)i2 + (−3α0 − 3α1 + 2β − 2β′)i− α0 − α1 + β − β′ + τ ′,

c(2i) = i2α0 + i(i− 1)α1 + 2iβ + γ,

c(2i+ 1) = i(i+ 1)α0 + i2α1 + (2i+ 1)β + γ,

d(2i) = i2α0 + i(i− 1)α1 + 2iβ′ + γ′,

d(2i+ 1) = i(i+ 1)α0 + i2α1 + (2i+ 1)β′ + γ′,

(21)
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where α0, α1, β, β
′, γ, γ′, σ′, τ ′ ∈ F , σ′+τ ′ = −α1 +β−γ−γ′, and α0, α1 satisfy

(20).

Case 1. Assume charF - n2 . Then charF = 2. From (20) we have α0 =
α1 = 0. Thus (21) becomes

a(2i) = σ′,

a(2i+ 1) = β + β′ + σ′,

b(2i) = τ ′,

b(2i+ 1) = β − β′ + τ ′,

c(2i) = γ,

c(2i+ 1) = β + γ,

d(2i) = γ′,

d(2i+ 1) = β′ + γ′,

i ∈ Zn, (22)

where β, β′, γ, γ′, σ′, τ ′ ∈ F and σ′ + τ ′ = β − γ − γ′.
The F -map

ψ :

{
(β, β′, γ, γ′, σ′, τ ′) ∈ F 6

: σ′ + τ ′ = β − γ − γ′
}
−→ Sn

(β, . . . , τ ′) 7−→ the solution in (22)

is onto with kerψ = 0. Thus
dimSn = 5.

When k = n − 1, the solutions of (3) in Sn,k = Sn,n−1 are given by (22)
subject to the conditions σ′ + τ ′ = β − γ − γ′, β + γ = 0, β′ + γ′ = 0. Thus

dimSn,n−1 = 3.

When 0 ≤ k ≤ n − 2, the solutions of (3) in Sn,k are given by (22) subject
to the conditions σ′ + τ ′ = 0, β = β′ = γ = γ′ = 0. Thus

dimSn,k = 1.

It follows from (5) that

dimMn,k(0) =

{
n2 − 4n+ 5 if k = n or n− 1,

n2 − 2n− 2k + 1 if 0 ≤ k ≤ n− 2.

Case 2. Assume charF | n2 . Note that (20) is automatically satisfied. The
F -map

Φ :

{
(α0, α1, β, β

′, γ, γ′, σ′, τ ′) ∈ F 8

: σ′ + τ ′ = −α1 + β − γ − γ′
}
−→ Sn

(α0, . . . , τ
′) 7−→ the solution in (21)

11



is onto with ker Φ = 0. So
dimSn = 7.

When k = n − 1, the solutions of (3) in Sn,k = Sn,n−1 are given by (21)
subject to the conditions

σ′ + τ ′ = −α1 + β − γ − γ′,
α1 − β + γ = 0,

α1 − β′ + γ′ = 0.

Therefore
dimSn,n−1 = 5.

When k = n − 2, the solutions of (3) in Sn,k = Sn,n−2 are given by (21)
subject to the conditions

σ′ + τ ′ = −α1 + β − γ − γ′,
α1 − β + γ = 0,

α1 − β′ + γ′ = 0,

α0 + 2α1 − 2β + γ = 0,

α0 + 2α1 − 2β′ + γ′ = 0.

(23)

The system (23) is equivalent to
σ′ + τ ′ = −α1 + β − γ − γ′,
α0 = γ = γ′,

α1 = β − γ,
β = β′.

Thus it is easy to see that
dimSn,n−2 = 3.

When k = n − 3, the solutions of (3) in Sn,k = Sn,n−3 are given by (21)
subject to the conditions

σ′ + τ ′ = −α1 + β − γ − γ′,
α0 = β = β′ = γ = γ′,

α1 = 0.

Hence
dimSn,n−3 = 2.

When 0 ≤ k ≤ n − 4, the solutions of (3) in Sn,k are given by (21) subject
to the conditions {

σ′ + τ ′ = −α1 + β − γ − γ′,
α0 = α1 = β = β′ = γ = γ′ = 0.

12



Thus
dimSn,k = 1.

Now (5) gives

dimMn,k(0) =


n2 − 4n+ 7 if n− 2 ≤ k ≤ n,
n2 − 4n+ 8 if k = n− 3,

n2 − 2n− 2k + 1 if 0 ≤ k ≤ n− 4.

�
Combining Lemmas 3.5 and 3.6 yields Theorem 2.2.

4. Sufficient conditions for Mn,n(1) to be nonempty

In [4], Small proved that

Mn,1(1)

{
= ∅ if charF = n = 2 or charF = n = 3,

6= ∅ otherwise.

It follows that Mn,n(1) = ∅ if charF = n = 2 or charF = n = 3. In this
section, we collect some sufficient conditions for Mn,n(1) to be nonempty.

Fact 4.1. If charF - n, then Mn,n(1) 6= ∅.

In fact,

1

n

1 · · · 1
...

. . .
...

1 · · · 1

 ∈Mn,n(1).

Fact 4.2. If 2 - n and 3 - n, then Mn,n(1) 6= ∅.

To see this fact, let σ(i) = 2i, i ∈ Zn. Then σ, σ − id, σ + id are all
permutations of Zn. It is easy to see that the permutation matrix [ai,j ] of σ
belongs to Mn,n(1), where

aij =

{
1 if j = 2i,

0 otherwise.

Fact 4.3. If A ∈ Mm,m(α), B ∈ Mn,n(β), where m,n are positive integers
and α, β ∈ F , then A⊗B ∈ Mmn,mn(αβ). In particular, if Mm,m(1) 6= ∅ and
Mn,n(1) 6= ∅, then Mmn,mn(1) 6= ∅.

We leave the proof of Fact 4.3 to the reader.

By Fact 4.1 and 4.2, Mn,n(1) can possibly be empty only when charF = 2
or 3 and charF | n.
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Example 4.4. Assume charF = 2. We have M4,4(1) 6= ∅ since
1 0 0 0
1 1 1 0
1 0 0 0
0 0 0 1

 ∈M4,4(1).

Interested readers may compare this example with Example (a) in [4, §2]. The
matrix there belongs to M4,1(1) but not to M4,2(1).
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